Agnes Scott College Mathematics 314 - Modern Geometries Spring 2014 Course Outline (syllabus) “Out of nothing, I have invented a strange new universe.” YÁnos Bolyai (1802 – 1860) “All of my efforts to discover a contradiction, an inconsistency, in this non-Euclidean geometry have been without success ….” Carl Friedrich Gauss (1777 – 1855) Instructor: Dr. Myrtle Lewin Office: Buttrick 333, X 6434 (although my messages need to go to X 6201)
[email protected] TR 2:00 to 3:15 p.m. in Buttrick G-26 Scheduled office hours (in my office or the MLC): after class until 5:30 p.m. Additional times by arrangement. • Catalog Description: A study of axiomatic systems in geometry, including affine, projective, Euclidean and non-Euclidean geometries and the historical background of their development. But this is very formal – so what actually will be studying? • Some Important Themes: A central theme of this course is to explore a mystery – why was it that Euclid’s Fifth Postulate evaded proof for more than two thousand years? The solution to this mystery is the discovery of a hidden treasure – non-Euclidean geometry . How this transformed our understanding of Euclid’s monumental work of some 2,500 years ago, is a suspense story. Our goal will be to trace this story as you retrace your experience in high school geometry, and grow to understand and appreciate it more deeply. As we go, we’ll learn a great deal about Euclidean geometry, the geometry in which we think we live (we may be in for some surprises). But we will also meet other geometries, and in particular, study spherical, hyperbolic and projective geometry.