Chapter 3 Foundations of Geometry 2

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 3 Foundations of Geometry 2 Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis De¯nition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices) are taken, in pairs, from a set of three noncollinear points. Thus, if the vertices of a triangle are A; B; and C, then its sides are AB; BC; AC, and the triangle is then the set de¯ned by AB [ BC [ AC, denoted by ¢ABC. The angles of ¢ABC are \A ´ \BAC, \B ´ \ABC, and \C ´ \ACB. Equality and Congruence Equal(=): identically the same as. For examples, 1) Two points are equal, as in A = B, we mean they coincide. 2) AB = CD only if the set of points AB is the exact same set of points denoted by CD. Congruence(»=): is an equivalence relation. (to be de¯ned later). Congruence for Segments and angles 25 Yi Wang Chapter 3. Foundations of Geometry 2 26 AB »= XY i® AB = XY \ABC »= \XYZ i® m\ABC = m\XYZ Congruence for triangles Notation: correspondence between two triangles Given ¢ABC and ¢XYZ, write ABC $ XYZ to mean the correspondence between vertices, sides and angles in the order written. Note: There are possible six ways for one triangle to correspond to another. ABC $ XY Z ABC $ XZY ABC $ YXZ ABC $ Y ZX ABC $ ZXY ABC $ ZYX De¯nition 3.2 (Congruence for triangles) If, under some correspondence between the vertices of two triangles, corresponding sides and corresponding angles are congruent, the triangles are said to be congruent. Thus we write ¢ABC »= ¢XYZ whenever AB »= XY; BC »= YZ; AC »= XZ; \A »= \X; \B »= \Y; \C »= \Z Notation: CPCF: Corresponding parts of congruent ¯gures (are congruent). Properties of Congruence 1. reflexive law: ¢ABC »= ¢ABC 2. Symmetry Law: If ¢ABC »= ¢XYZ, then ¢XYZ »= ¢ABC 3. Transitive Law: If ¢ABC »= ¢XYZ, and ¢XYZ »= ¢UVW , then ¢ABC »= ¢UVW . Remark: Euclid did not use the word congruence. Euclid attributed to congruent triangles the property that on triangle could be placed precisely on top of another. Yi Wang Chapter 3. Foundations of Geometry 2 27 3.2 Taxicab Geometry: Geometry without SAS con- gruence Skip 3.3 SAS, ASA, SSS Congruence and Perpendicular Bi- sectors Question: Can we require fewer than six sets of congruent pairs to determine two triangles are congruent? The SAS Hypothesis Under the correspondence ABC $ XYZ, let two sides and the included angles of ¢ABC be congruent, respectively, to the corresponding two sides and the included angle of ¢XYZ. Note: This can not be established within the current set of axioms. (See Section 3.2. Axiom 3.3 (SAS Postulate) If the SAS Hypothesis holds for two triangles under some correspondence between their vertices, then the triangles are congruent. Theorem 3.4 (ASA Theorem) If, under some correspondence, two angles and the in- cluded side of one triangle are congruent to the corresponding angles and included side of another, the triangles are congruent under that correspondence. Proof: Outline of the proof: (Use SAS postulate). Given \A »= \X, AB »= XY , and \B »= \Y . If AC »= XZ, then the two triangles are congruent by SAS. But if not, then either AC > XZ or AC < XZ. 1) Assume AC > XZ, then we can ¯nd D on AC such that A ¡ D ¡ C and AD »= XZ by Yi Wang Chapter 3. Foundations of Geometry 2 28 the Segment Construction Theorem. This will leads to a contradiction. 2) One can argue similarly for the case AC < XZ. 2 Example 3.5 Given: \EBA »= \CBD; AB »= BC; \A »= \C. Prove: EB »= DB. Conclusions Justi¯cations (1) ¢ABE »= ¢CBD ASA (2) ) EB »= DB CPCF Example 3.6 Yi Wang Chapter 3. Foundations of Geometry 2 29 Given: M is the midpoint of CD and EF . Prove: \C = \D. Example 3.7 Prove that a line that bisects an angle also bisects any segment perpendicular to it that joins two points on the sides of that angle. Isosceles Triangle Theorem De¯nition 3.8 Isosceles triangle: a triangle having two sides congruent. Legs, base, base angles, vertex, vertex angle. Lemma 3.9 In ¢ABC, if AC »= BC, then \A »= \B. Proof: By the SAS postulate: ¢CAB »= ¢CBA, therefore, corresponding angles \CAB and \CBA are congruent, that is \A »= \B. (You could also construct an angle bisector from the vertex). 2 Theorem 3.10 A triangle is isosceles i® the base angles are congruent. Proof: Only need to show the converse. By the ASA theorem, ¢CAB »= \CBA. Therefore AC »= BC. 2 Example 3.11 Solve the following problem in proof writing. Yi Wang Chapter 3. Foundations of Geometry 2 30 Given: GJ = KM = 2;JK = HJ = HK = 10, with betweenness relations as evident from the ¯gure. Prove: HG = HM. Symmetry á! Lemma 3.12 If M is the midpoint of segment AB and line PM is perpendicular to AB, then PA = PB. Lemma 3.13 If PA = PB and M is the midpoint of segment AB, then line PM is per- pendicular to segment AB. Lemma 3.14 If PA = PB and M is the midpoint of segment AB, then line PM bisects \AP B. Perpendicular Bisectors, Locus De¯nition 3.15 The Perpendicular bisector of a segment AB to be the line that both bisects AB and is perpendicular to it. Locus: The locus of a point is the path or set of points that is determined by that point when it satis¯es certain given properties. Theorem 3.16 (Perpendicular Bisector Theorem) The set of all points (The locus of a point which is ) equidistant from two distinct points A and B is the perpendicular bisector of the segment AB. Yi Wang Chapter 3. Foundations of Geometry 2 31 Remark: To prove above theorem, actually one needs to prove two sets are equal. Namely, the Locus (set of points, in this theorem, it is the perpendicular bisector) is equal to the set of points which are equidistant from the two distinct points A and B. Proof: ()) Let ` be the perpendicular bisector of AB, and assume P 2 `. By Lemma 3.12, PA = PB. ((): Assume P is equidistant from A and B. Let M be the midpoint of AB, then by Lemma á! á! 3.13, PM?AB. (Next argue PM = `). But `?AB, there can be only one perpendicular to á! AB at M. Hence PM = `, and P 2 `. 2 Theorem 3.17 If, under some correspondence between their vertices, two triangles have the three sides of one congruent to the corresponding three sides of the other, then the triangles are congruent under that correspondence. Proof: class exercise. Note, there are three di®erent cases, but can be reduced to two cases. 2 Example 3.18 Name all congruent pairs of distinct segments and angles in the following ¯gure. Example 3.19 In the following ¯gure, we have a four-sided ¯gure with the congruent sides and right angles as marked. (a) Prove that AD »= CD. (b) If, in addition, BC »= CD, prove \D is a right angle. Yi Wang Chapter 3. Foundations of Geometry 2 32 Theorem 3.20 (Existence of perpendicular from an external point) Let the line ` and point A not on ` be given. Then there exists a unique line m perpendicular to ` passing through A. Proof: (Existence) By construction. Locate B and C on `. let \DBC »= \ABC; BD »= BA. It follows that B and C are both equidistant from A and D. (Why) Hence AD?BC by the perpendicular bisector theorem. (Uniqueness): Class discussion. 2 3.4 Exterior Angle Inequality Ã! De¯nition 3.21 Let ¢ABC be given, and suppose D is a point on BC such that the be- tweenness relation B ¡ C ¡ D holds. Then \ACD is called an exterior angle of the given triangle. The angles at A and B of ¢ABC are called opposite interior angles of \ACD. Yi Wang Chapter 3. Foundations of Geometry 2 33 Remark: 1) In Euclidean geometry: The measure of an exterior angle of any triangle equals the sum of the measures of the other two opposite interior angles. 2) in absolute geometry: the above relationship is not valid in general. De¯nition 3.22 Absolute geometry consists of part of Euclidean geometry that includes all the axioms except all references to parallel lines, or results therefrom. Absolute geometry provides foundations not only for Euclidean geometry, but also for non-Euclidean geometry. Exterior angles: example provided by Henri Poincar`e Poincar¶eModel for Absolute Geometry Yi Wang Chapter 3. Foundations of Geometry 2 34 1. C is a circle with center O; 2. All points inside C are \points" of this geometry. A point on or outside the circle is not a \point"; 3. \line": either an straight line through O, cut o® by C, or the arc of a circle that makes right angle with C and the arc lies inside C; 4. Betweeness: If on an arc of a circle point Q is between points P and R, then we de¯ne P ¡ Q ¡ R. And the de¯nitions for segments, rays, and angles follow this betweenness de¯nition. 5. for example, the \segment" AB shown in the following ¯gure. Yi Wang Chapter 3. Foundations of Geometry 2 35 6. Angle measure: the angle between two curves de¯ned as the angle measure of the angle formed by the tangents to the two curves at the point of intersection. 7. The geometry inside C satis¯es all the axioms for absolute geometry in plane. For example: two points determine a unique line. 8. Consider one of the triangles: (see the following ¯gure) Yi Wang Chapter 3.
Recommended publications
  • Five-Dimensional Design
    PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 50, NO. 1, PP. 35–41 (2006) FIVE-DIMENSIONAL DESIGN Elek TÓTH Department of Building Constructions Budapest University of Technology and Economics H–1521 Budapest, POB. 91. Hungary Received: April 3 2006 Abstract The method architectural and engineering design and construction apply for two-dimensional rep- resentation is geometry, the axioms of which were first outlined by Euclid. The proposition of his 5th postulate started on its course a problem of geometry that provoked perhaps the most mistaken demonstrations and that remained unresolved for two thousand years, the question if the axiom of parallels can be proved. The quest for the solution of this problem led Bolyai János to revolutionary conclusions in the wake of which he began to lay the foundations of a new (absolute) geometry in the system of which planes bend and become hyperbolic. It was Einstein’s relativity theory that eventually created the possibility of the recognition of new dimensions by discussing space as well as a curved, non-linear entity. Architectural creations exist in what Kant termed the dual form of intuition, that is in time and space, thus in four dimensions. In this context the fourth dimension is to be interpreted as the current time that may be actively experienced. On the other hand there has been a dichotomy in the concept of time since ancient times. The introduction of a time-concept into the activity of the architectural designer that comprises duration, the passage of time and cyclic time opens up a so-far unknown new direction, a fifth dimension, the perfection of which may be achieved through the comprehension and the synthesis of the coded messages of building diagnostics and building reconstruction.
    [Show full text]
  • Circle Theorems
    Circle theorems A LEVEL LINKS Scheme of work: 2b. Circles – equation of a circle, geometric problems on a grid Key points • A chord is a straight line joining two points on the circumference of a circle. So AB is a chord. • A tangent is a straight line that touches the circumference of a circle at only one point. The angle between a tangent and the radius is 90°. • Two tangents on a circle that meet at a point outside the circle are equal in length. So AC = BC. • The angle in a semicircle is a right angle. So angle ABC = 90°. • When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference. So angle AOB = 2 × angle ACB. • Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal. So angle ACB = angle ADB and angle CAD = angle CBD. • A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle. Opposite angles in a cyclic quadrilateral total 180°. So x + y = 180° and p + q = 180°. • The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem. So angle BAT = angle ACB. Examples Example 1 Work out the size of each angle marked with a letter. Give reasons for your answers. Angle a = 360° − 92° 1 The angles in a full turn total 360°. = 268° as the angles in a full turn total 360°.
    [Show full text]
  • David Hilbert's Contributions to Logical Theory
    David Hilbert’s contributions to logical theory CURTIS FRANKS 1. A mathematician’s cast of mind Charles Sanders Peirce famously declared that “no two things could be more directly opposite than the cast of mind of the logician and that of the mathematician” (Peirce 1976, p. 595), and one who would take his word for it could only ascribe to David Hilbert that mindset opposed to the thought of his contemporaries, Frege, Gentzen, Godel,¨ Heyting, Łukasiewicz, and Skolem. They were the logicians par excellence of a generation that saw Hilbert seated at the helm of German mathematical research. Of Hilbert’s numerous scientific achievements, not one properly belongs to the domain of logic. In fact several of the great logical discoveries of the 20th century revealed deep errors in Hilbert’s intuitions—exemplifying, one might say, Peirce’s bald generalization. Yet to Peirce’s addendum that “[i]t is almost inconceivable that a man should be great in both ways” (Ibid.), Hilbert stands as perhaps history’s principle counter-example. It is to Hilbert that we owe the fundamental ideas and goals (indeed, even the name) of proof theory, the first systematic development and application of the methods (even if the field would be named only half a century later) of model theory, and the statement of the first definitive problem in recursion theory. And he did more. Beyond giving shape to the various sub-disciplines of modern logic, Hilbert brought them each under the umbrella of mainstream mathematical activity, so that for the first time in history teams of researchers shared a common sense of logic’s open problems, key concepts, and central techniques.
    [Show full text]
  • Geometry Unit 4 Vocabulary Triangle Congruence
    Geometry Unit 4 Vocabulary Triangle Congruence Biconditional statement – A is a statement that contains the phrase “if and only if.” Writing a biconditional statement is equivalent to writing a conditional statement and its converse. Congruence Transformations–transformations that preserve distance, therefore, creating congruent figures Congruence – the same shape and the same size Corresponding Parts of Congruent Triangles are Congruent CPCTC – the angle made by two lines with a common vertex. (When two lines meet at a common point Included angle (vertex) the angle between them is called the included angle. The two lines define the angle.) Included side – the common side of two legs. (Usually found in triangles and other polygons, the included side is the one that links two angles together. Think of it as being “included” between 2 angles. Overlapping triangles – triangles lying on top of one another sharing some but not all sides. Theorems AAS Congruence Theorem – Triangles are congruent if two pairs of corresponding angles and a pair of opposite sides are equal in both triangles. ASA Congruence Theorem -Triangles are congruent if any two angles and their included side are equal in both triangles. SAS Congruence Theorem -Triangles are congruent if any pair of corresponding sides and their included angles are equal in both triangles. SAS SSS Congruence Theorem -Triangles are congruent if all three sides in one triangle are congruent to the corresponding sides in the other. Special congruence theorem for RIGHT TRIANGLES! .
    [Show full text]
  • A Congruence Problem for Polyhedra
    A congruence problem for polyhedra Alexander Borisov, Mark Dickinson, Stuart Hastings April 18, 2007 Abstract It is well known that to determine a triangle up to congruence requires 3 measurements: three sides, two sides and the included angle, or one side and two angles. We consider various generalizations of this fact to two and three dimensions. In particular we consider the following question: given a convex polyhedron P , how many measurements are required to determine P up to congruence? We show that in general the answer is that the number of measurements required is equal to the number of edges of the polyhedron. However, for many polyhedra fewer measurements suffice; in the case of the cube we show that nine carefully chosen measurements are enough. We also prove a number of analogous results for planar polygons. In particular we describe a variety of quadrilaterals, including all rhombi and all rectangles, that can be determined up to congruence with only four measurements, and we prove the existence of n-gons requiring only n measurements. Finally, we show that one cannot do better: for any ordered set of n distinct points in the plane one needs at least n measurements to determine this set up to congruence. An appendix by David Allwright shows that the set of twelve face-diagonals of the cube fails to determine the cube up to conjugacy. Allwright gives a classification of all hexahedra with all face- diagonals of equal length. 1 Introduction We discuss a class of problems about the congruence or similarity of three dimensional polyhedra.
    [Show full text]
  • Lecture 3: Geometry
    E-320: Teaching Math with a Historical Perspective Oliver Knill, 2010-2015 Lecture 3: Geometry Geometry is the science of shape, size and symmetry. While arithmetic dealt with numerical structures, geometry deals with metric structures. Geometry is one of the oldest mathemati- cal disciplines and early geometry has relations with arithmetics: we have seen that that the implementation of a commutative multiplication on the natural numbers is rooted from an inter- pretation of n × m as an area of a shape that is invariant under rotational symmetry. Number systems built upon the natural numbers inherit this. Identities like the Pythagorean triples 32 +42 = 52 were interpreted geometrically. The right angle is the most "symmetric" angle apart from 0. Symmetry manifests itself in quantities which are invariant. Invariants are one the most central aspects of geometry. Felix Klein's Erlanger program uses symmetry to classify geome- tries depending on how large the symmetries of the shapes are. In this lecture, we look at a few results which can all be stated in terms of invariants. In the presentation as well as the worksheet part of this lecture, we will work us through smaller miracles like special points in triangles as well as a couple of gems: Pythagoras, Thales,Hippocrates, Feuerbach, Pappus, Morley, Butterfly which illustrate the importance of symmetry. Much of geometry is based on our ability to measure length, the distance between two points. A modern way to measure distance is to determine how long light needs to get from one point to the other. This geodesic distance generalizes to curved spaces like the sphere and is also a practical way to measure distances, for example with lasers.
    [Show full text]
  • Feb 23 Notes: Definition: Two Lines L and M Are Parallel If They Lie in The
    Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal. We define alternate interior angles, corresponding angles, alternate exterior angles, and interior angles on the same side of the transversal using various betweeness and half-plane notions. Suppose line l intersects lines m and n at points B and E, respectively, with points A and C on line m and points D and F on line n such that A-B-C and D-E-F, with A and D on the same side of l. Suppose also that G and H are points such that H-E-B- G. Then pABE and pBEF are alternate interior angles, as are pCBE and pDEB. pABG and pFEH are alternate exterior angles, as are pCBG and pDEH. pGBC and pBEF are a pair of corresponding angles, as are pGBA & pBED, pCBE & pFEH, and pABE & pDEH. pCBE and pFEB are interior angles on the same side of the transversal, as are pABE and pDEB. Our Last Theorem in Absolute Geometry: If two lines in the same plane are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. Proof: Let l intersect lines m and n at points A and B respectively. Let p1 p2. Suppose m and n meet at point C. Then either p1 is exterior to ªABC, or p2 is exterior to ªABC. In the first case, the exterior angle inequality gives p1 > p2; in the second, it gives p2 > p1.
    [Show full text]
  • 20. Geometry of the Circle (SC)
    20. GEOMETRY OF THE CIRCLE PARTS OF THE CIRCLE Segments When we speak of a circle we may be referring to the plane figure itself or the boundary of the shape, called the circumference. In solving problems involving the circle, we must be familiar with several theorems. In order to understand these theorems, we review the names given to parts of a circle. Diameter and chord The region that is encompassed between an arc and a chord is called a segment. The region between the chord and the minor arc is called the minor segment. The region between the chord and the major arc is called the major segment. If the chord is a diameter, then both segments are equal and are called semi-circles. The straight line joining any two points on the circle is called a chord. Sectors A diameter is a chord that passes through the center of the circle. It is, therefore, the longest possible chord of a circle. In the diagram, O is the center of the circle, AB is a diameter and PQ is also a chord. Arcs The region that is enclosed by any two radii and an arc is called a sector. If the region is bounded by the two radii and a minor arc, then it is called the minor sector. www.faspassmaths.comIf the region is bounded by two radii and the major arc, it is called the major sector. An arc of a circle is the part of the circumference of the circle that is cut off by a chord.
    [Show full text]
  • Understand the Principles and Properties of Axiomatic (Synthetic
    Michael Bonomi Understand the principles and properties of axiomatic (synthetic) geometries (0016) Euclidean Geometry: To understand this part of the CST I decided to start off with the geometry we know the most and that is Euclidean: − Euclidean geometry is a geometry that is based on axioms and postulates − Axioms are accepted assumptions without proofs − In Euclidean geometry there are 5 axioms which the rest of geometry is based on − Everybody had no problems with them except for the 5 axiom the parallel postulate − This axiom was that there is only one unique line through a point that is parallel to another line − Most of the geometry can be proven without the parallel postulate − If you do not assume this postulate, then you can only prove that the angle measurements of right triangle are ≤ 180° Hyperbolic Geometry: − We will look at the Poincare model − This model consists of points on the interior of a circle with a radius of one − The lines consist of arcs and intersect our circle at 90° − Angles are defined by angles between the tangent lines drawn between the curves at the point of intersection − If two lines do not intersect within the circle, then they are parallel − Two points on a line in hyperbolic geometry is a line segment − The angle measure of a triangle in hyperbolic geometry < 180° Projective Geometry: − This is the geometry that deals with projecting images from one plane to another this can be like projecting a shadow − This picture shows the basics of Projective geometry − The geometry does not preserve length
    [Show full text]
  • Geometry Course Outline
    GEOMETRY COURSE OUTLINE Content Area Formative Assessment # of Lessons Days G0 INTRO AND CONSTRUCTION 12 G-CO Congruence 12, 13 G1 BASIC DEFINITIONS AND RIGID MOTION Representing and 20 G-CO Congruence 1, 2, 3, 4, 5, 6, 7, 8 Combining Transformations Analyzing Congruency Proofs G2 GEOMETRIC RELATIONSHIPS AND PROPERTIES Evaluating Statements 15 G-CO Congruence 9, 10, 11 About Length and Area G-C Circles 3 Inscribing and Circumscribing Right Triangles G3 SIMILARITY Geometry Problems: 20 G-SRT Similarity, Right Triangles, and Trigonometry 1, 2, 3, Circles and Triangles 4, 5 Proofs of the Pythagorean Theorem M1 GEOMETRIC MODELING 1 Solving Geometry 7 G-MG Modeling with Geometry 1, 2, 3 Problems: Floodlights G4 COORDINATE GEOMETRY Finding Equations of 15 G-GPE Expressing Geometric Properties with Equations 4, 5, Parallel and 6, 7 Perpendicular Lines G5 CIRCLES AND CONICS Equations of Circles 1 15 G-C Circles 1, 2, 5 Equations of Circles 2 G-GPE Expressing Geometric Properties with Equations 1, 2 Sectors of Circles G6 GEOMETRIC MEASUREMENTS AND DIMENSIONS Evaluating Statements 15 G-GMD 1, 3, 4 About Enlargements (2D & 3D) 2D Representations of 3D Objects G7 TRIONOMETRIC RATIOS Calculating Volumes of 15 G-SRT Similarity, Right Triangles, and Trigonometry 6, 7, 8 Compound Objects M2 GEOMETRIC MODELING 2 Modeling: Rolling Cups 10 G-MG Modeling with Geometry 1, 2, 3 TOTAL: 144 HIGH SCHOOL OVERVIEW Algebra 1 Geometry Algebra 2 A0 Introduction G0 Introduction and A0 Introduction Construction A1 Modeling With Functions G1 Basic Definitions and Rigid
    [Show full text]
  • Old and New Results in the Foundations of Elementary Plane Euclidean and Non-Euclidean Geometries Marvin Jay Greenberg
    Old and New Results in the Foundations of Elementary Plane Euclidean and Non-Euclidean Geometries Marvin Jay Greenberg By “elementary” plane geometry I mean the geometry of lines and circles—straight- edge and compass constructions—in both Euclidean and non-Euclidean planes. An axiomatic description of it is in Sections 1.1, 1.2, and 1.6. This survey highlights some foundational history and some interesting recent discoveries that deserve to be better known, such as the hierarchies of axiom systems, Aristotle’s axiom as a “missing link,” Bolyai’s discovery—proved and generalized by William Jagy—of the relationship of “circle-squaring” in a hyperbolic plane to Fermat primes, the undecidability, incom- pleteness, and consistency of elementary Euclidean geometry, and much more. A main theme is what Hilbert called “the purity of methods of proof,” exemplified in his and his early twentieth century successors’ works on foundations of geometry. 1. AXIOMATIC DEVELOPMENT 1.0. Viewpoint. Euclid’s Elements was the first axiomatic presentation of mathemat- ics, based on his five postulates plus his “common notions.” It wasn’t until the end of the nineteenth century that rigorous revisions of Euclid’s axiomatics were presented, filling in the many gaps in his definitions and proofs. The revision with the great- est influence was that by David Hilbert starting in 1899, which will be discussed below. Hilbert not only made Euclid’s geometry rigorous, he investigated the min- imal assumptions needed to prove Euclid’s results, he showed the independence of some of his own axioms from the others, he presented unusual models to show certain statements unprovable from others, and in subsequent editions he explored in his ap- pendices many other interesting topics, including his foundation for plane hyperbolic geometry without bringing in real numbers.
    [Show full text]
  • Foundations of Geometry
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2008 Foundations of geometry Lawrence Michael Clarke Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Geometry and Topology Commons Recommended Citation Clarke, Lawrence Michael, "Foundations of geometry" (2008). Theses Digitization Project. 3419. https://scholarworks.lib.csusb.edu/etd-project/3419 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Foundations of Geometry A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Lawrence Michael Clarke March 2008 Foundations of Geometry A Thesis Presented to the Faculty of California State University, San Bernardino by Lawrence Michael Clarke March 2008 Approved by: 3)?/08 Murran, Committee Chair Date _ ommi^yee Member Susan Addington, Committee Member 1 Peter Williams, Chair, Department of Mathematics Department of Mathematics iii Abstract In this paper, a brief introduction to the history, and development, of Euclidean Geometry will be followed by a biographical background of David Hilbert, highlighting significant events in his educational and professional life. In an attempt to add rigor to the presentation of Geometry, Hilbert defined concepts and presented five groups of axioms that were mutually independent yet compatible, including introducing axioms of congruence in order to present displacement.
    [Show full text]