Mechanism, Mentalism, and Metamathematics Synthese Library

Total Page:16

File Type:pdf, Size:1020Kb

Mechanism, Mentalism, and Metamathematics Synthese Library MECHANISM, MENTALISM, AND METAMATHEMATICS SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Managing Editor: JAAKKO HINTIKKA, Florida State University Editors: ROBER T S. COHEN, Boston University DONALD DAVIDSON, University o/Chicago GABRIEL NUCHELMANS, University 0/ Leyden WESLEY C. SALMON, University 0/ Arizona VOLUME 137 JUDSON CHAMBERS WEBB Boston University. Dept. 0/ Philosophy. Boston. Mass .• U.S.A. MECHANISM, MENT ALISM, AND MET AMA THEMA TICS An Essay on Finitism i Springer-Science+Business Media, B.V. Library of Congress Cataloging in Publication Data Webb, Judson Chambers, 1936- CII:J Mechanism, mentalism, and metamathematics. (Synthese library; v. 137) Bibliography: p. Includes indexes. 1. Metamathematics. I. Title. QA9.8.w4 510: 1 79-27819 ISBN 978-90-481-8357-9 ISBN 978-94-015-7653-6 (eBook) DOl 10.1007/978-94-015-7653-6 All Rights Reserved Copyright © 1980 by Springer Science+Business Media Dordrecht Originally published by D. Reidel Publishing Company, Dordrecht, Holland in 1980. Softcover reprint of the hardcover 1st edition 1980 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage and retrieval system, without written permission from the copyright owner TABLE OF CONTENTS PREFACE vii INTRODUCTION ix CHAPTER I / MECHANISM: SOME HISTORICAL NOTES I. Machines and Demons 2. Machines and Men 17 3. Machines, Arithmetic, and Logic 22 CHAPTER II / MIND, NUMBER, AND THE INFINITE 33 I. The Obligations of Infinity 33 2. Mind and Philosophy of Number 40 3. Dedekind's Theory of Arithmetic 46 4. Propositioning the Infinite 57 CHAPTER III / THE MENTAL, THE FINITE, AND THE FORMAL 72 1. Kronecker Versus Hilbert Versus Frege on Geometry 72 2. Logic, Intuition, and Mechanism in Hilbert's Geometry 88 3. The Problem of Solvability III 4. Consistency, Denumerability, and the Paradox of Richard 120 5. Frege, Later Hilbert, and the Problem of Formalization 132 6. Hilbert's Rule and the Phenomenology of Infinity 152 CHAPTER IV / EFFECTIVENESS MECHANIZED 175 1. Effectiveness, Diagonalization, and the Problem of Recursion 175 2. The Formalization of Diagonalization 189 3. The Generalization of Recursion 203 4. Church's Thesis and Artificial Intelligence 219 CONCLUDING SUMMARY 244 BIBLIOGRAPHY 248 INDEX OF NAMES 264 INDEX OF SUBJECTS 271 PREFACE This book grew out of a graduate student paper [261] in which I set down some criticisms of J. R. Lucas' attempt to refute mechanism by means of G6del's theorem. I had made several such abortive attempts myself and had become familiar with their pitfalls, and especially with the double­ edged nature of incompleteness arguments. My original idea was to model the refutation of mechanism on the almost universally accepted G6delian refutation of Hilbert's formalism, but I kept getting stuck on questions of mathematical philosophy which I found myself having to beg. A thorough study of the foundational works of Hilbert and Bernays finally convinced me that I had all too naively and uncritically bought this refutation of formalism. I did indeed discover points of surprisingly close contact between formalism and mechanism, but also that it was possible to under­ mine certain strong arguments against these positions precisely by invok­ ing G6del's and related work. I also began to realize that the Church­ Turing thesis itself is the principal bastion protecting mechanism, and that G6del's work was perhaps the best thing that ever happened to both mechanism and formalism. I pushed these lines of argument in my dis­ sertation with the patient help of my readers, Raymond Nelson and Howard Stein. I would especially like to thank the latter for many valuable criticisms of my dissertation as well as some helpful suggestions for reor­ ganizing it in the direction of the present book. Innumerable discussions with Jean van Heijenoort on the history and philosophy of mathematical logic have also been invaluable to me in writing this book. It would not exist at all, however, much less in its present form, but for Ilona Lappo: she has been its typist, its editor, its sounding board, and its muse. vii INTRODUCTION This is an essay on the significance of various metamathematical theorems, notably those of Godel and Church on incompleteness and decidability, for both psychology and the philosophy of mathematics. It is widely believed, for example, that Godel's incompleteness theorems refute the formalist philosophy of Hilbert. A less prevalent but not uncommon view - one which Godel himself inclined towards - sees in such theorems a refutation of mechanism in psychology, i.e. as showing that man is not, or could not be adequately modelled by, a machine. I shall criticize both of these views at length, and argue to the contrary that both the formalism of Hilbert and Bernays and the mechanism of Hobbes, La Mettrie, and Turing are on balance supported and strengthened in various ways by these so-called 'limitative' theorems. Incompleteness, I shall argue, cannot coherently be interpreted as our inability to formalize our notion of num­ ber as such, but rather as our inability to completely describe the behavior of certain machines. I shall also explore the close relation, pointed out by N. Wiener and G. Kreisel and implied by their common metamathematical support, between formalism and mechanism. Indeed, J. Lucas conceded, in a re­ joinder to my earlier criticisms [261] of his attempt to refute mechanism using Godel's incompleteness, that It is inherent in my program that I cannot prove to the formalist that he cannot be represented by a formal system, but only enable a reasonable man to see that in fact he is not. But that, however achieved, is enough to refute mechanism ([177], p. 312). I hope to show, however, that formalism is a reasonable position, and that, insofar as Hilbert was a formalist, he was a very reasonable man, especially in the light of GOdel's work. Prior to this work Poincare had objected to Hilbert's formalism that his formal systems for number theory would be complete and hence sterile for research, while Brouwer had ob­ jected that, since Hilbert's mechanical formal systems represented only the hollow shell of mathematical language and not mathematical thought itself, their study could lead to nothing of mathematical value; in partic­ ular, he felt that a proof of their consistency would be so easy as to be trivial! This is not unrelated to classical objections to mechanism on the IX x INTRODUCTION grounds that machine behavior, being predictable in principle, was no match for the unpredictability of human behavior. A full understanding of Hilbert's formalism is impossible without a close study of his work on the foundations of geometry, which contains the germ of all his later ideas for the foundations of mathematics. In fact, Hilbert developed a program for the study of geometry which was in some ways more extensive than his later one for arithmetic and set-theory. At the heart of his mathematical philosophy lies a certain 'Parallelisierung' of geometry and arithmetic with which he opposed the prevalent belief of his day that true rigor resided only in arithmetic and analysis. And we shall see that the issue of mechanism arises in a more full-blooded and interest­ ing way in Hilbert's geometry than it does for the arithmetical theories of his later program. Another criticism leveled against Hilbert was that his later program required clarification of such hopelessly un mathematical ideas as 'decid­ ability in a finite number of steps'. Most of us would nowadays accept such analyses as Turing's as showing that such notions can be treated in a purely mathematical way. In fact, Church's thesis, especially in Turing's form, plays a central role in my whole present approach. In my previous criticism of Lucas, I suggested that since the generality of G6del's incom­ pleteness depends on Church's thesis, one could insulate mechanism against the incompleteness argument simply by giving up that thesis. After all, some rejected it in any case. But this suggestion was quite mis­ guided, not only for having underestimated the evidence for Church's thesis, but also for having not fully appreciated the force of Church's thesis as a restricted form of mechanism itself. Indeed, this thesis implies that however much creative insight may have gone into the discovery of an algorithm, and however abstract the concepts or objects be in terms of which it is defined or specified, as long as it is effective it will be mechaniz­ able after all. In the words of Post, this thesis is our "axiom of reducibility for finite operations". In fact, it was only when Post came to appreciate this aspect of Church's thesis that he gave up his own incompleteness argument against mechanism! The thesis does not say, of course, that all mental operations are effective, but by implying the mechanizability of those that are, it shows that mechanism cannot be effectively refuted. I will spell this out in various ways in subsequent chapters. By focussing my analysis on Turing's thesis I try to avoid having to consider such implausible constructions as 'the G6del sentence of a man', supposed to be a machine, which hang over this literature like a fog, INTRODUCTION xi lending it an unreal and forced air. Individual Godel-sentences of a formal­ ism are, after all, of no special significance in and of themselves: what is important is that the whole set of them is not recursively enumerable, the significance of which is formulated already by Church's thesis itself. In short, only the 'mass phenomena' of undecidability, if anything in logic, is of ultimate importance for mechanism.
Recommended publications
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Geometric Algorithms
    Geometric Algorithms primitive operations convex hull closest pair voronoi diagram References: Algorithms in C (2nd edition), Chapters 24-25 http://www.cs.princeton.edu/introalgsds/71primitives http://www.cs.princeton.edu/introalgsds/72hull 1 Geometric Algorithms Applications. • Data mining. • VLSI design. • Computer vision. • Mathematical models. • Astronomical simulation. • Geographic information systems. airflow around an aircraft wing • Computer graphics (movies, games, virtual reality). • Models of physical world (maps, architecture, medical imaging). Reference: http://www.ics.uci.edu/~eppstein/geom.html History. • Ancient mathematical foundations. • Most geometric algorithms less than 25 years old. 2 primitive operations convex hull closest pair voronoi diagram 3 Geometric Primitives Point: two numbers (x, y). any line not through origin Line: two numbers a and b [ax + by = 1] Line segment: two points. Polygon: sequence of points. Primitive operations. • Is a point inside a polygon? • Compare slopes of two lines. • Distance between two points. • Do two line segments intersect? Given three points p , p , p , is p -p -p a counterclockwise turn? • 1 2 3 1 2 3 Other geometric shapes. • Triangle, rectangle, circle, sphere, cone, … • 3D and higher dimensions sometimes more complicated. 4 Intuition Warning: intuition may be misleading. • Humans have spatial intuition in 2D and 3D. • Computers do not. • Neither has good intuition in higher dimensions! Is a given polygon simple? no crossings 1 6 5 8 7 2 7 8 6 4 2 1 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 18 4 18 4 19 4 19 4 20 3 20 3 20 1 10 3 7 2 8 8 3 4 6 5 15 1 11 3 14 2 16 we think of this algorithm sees this 5 Polygon Inside, Outside Jordan curve theorem.
    [Show full text]
  • Formalism Or “The Regime of Truth”: a Reading of Adrienne Rich’S
    International Journal of Linguistics and Literature (IJLL) ISSN 2319-3956 Vol. 2, Issue 4, Sep 2013, 19-28 © IASET FORMALISM OR “THE REGIME OF TRUTH”: A READING OF ADRIENNE RICH’S A CHANGE OF WORLD NAHID MOHAMMADI Department of English Language and Literature, Alzahra University, Tehran, Iran ABSTRACT Formalism in Adrienne Rich‟s first book, A Change of World, has attracted different critics and scholars so far. In their interpretations, it seems that they have taken it for granted that Adrienne Rich was a formalist. But none of them has ever presented the cause for the emergence of formalism in Adrienne Rich‟s early poetry. In this paper, I draw upon Michel Foucault‟s theory of “repressive power” and demonstrate that formalism was actually “the regime of truth” which determined „true/false‟ poetry for the young poet and excluded some poetic discourses and permitted only some particular ones to come into being in her first book. KEYWORDS: Adrienne Rich, A Change of World, Formalism, Michel Foucault, Discourse Analysis, Repressive Power, Exclusion, Truth, The Regime of Truth INTRODUCTION Almost all critics of Adrienne Rich‟s poetry agree that her early poems in A Change of World (1951) have been the poet‟s practice of distancing devices of modernist formalism which was dominant among the poets in the United States in the 1950s. Trudi Dawne Witonsky, who has examined Adrienne Rich‟s works in terms of Paulo Freire‟s theory of praxis1, admits that, in her early poetry, Rich wrote under the doctrine of New Critical formalism. She goes further and states that Rich‟s transition from formalism in her early poetry to feminism in her later volumes happens because of the „inadequacy of formalist‟ theory (Witonsky)2.
    [Show full text]
  • Introduction to Computational Social Choice
    1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. Computational social choice (COMSOC), by comparison, is a very young field that formed only in the early 2000s. There were, however, a few precursors. For instance, David Gale and Lloyd Shapley's algorithm for finding stable matchings between two groups of people with preferences over each other, dating back to 1962, truly had a computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig Tovey, and Michael Trick showed that, on the one hand, computational complexity, as studied in theoretical computer science, can serve as a barrier against strategic manipulation in elections, but on the other hand, it can also prevent the efficient use of some voting rules altogether. Around the same time, a research group around Bernard Monjardet and Olivier Hudry also started to study the computational complexity of preference aggregation procedures.
    [Show full text]
  • From Frames to Inference
    From Frames to Inference Nancy Chang, Srini Narayanan, and Miriam R.L. Petruck International Computer Science Institute 1947 Center St., Suite 600, Berkeley, CA 94704 nchang,miriamp,snarayan ¡ @icsi.berkeley.edu Abstract money ($1000) to another (Jerry) in exchange for some goods (a car) – but differ in the perspective This paper describes a computational they impose on the scene. formalism that captures structural rela- The shared inferential structure of verbs like buy tionships among participants in a dy- and sell is captured in FrameNet by the COMMERCE namic scenario. This representation is frame, which is associated with a set of situational used to describe the internal structure of roles, or frame elements (FEs), corresponding to FrameNet frames in terms of parameters event participants and props. These FEs are used for active event simulations. We apply our as annotation tags for sentences like those in (1), formalism to the commerce domain and yielding, for example: show how it provides a flexible means of handling linguistic perspective and other Buyer Goods challenges of semantic representation. (2) a. [Chuck] bought [a car] [from Jerry]Seller [for $1000]Payment. 1 Introduction b. [Jerry]Seller sold [a car]Goods [to Chuck]Buyer [for $1000]Payment. The development of lexical semantic resources is widely recognized as a prerequisite to progress in FE tags act as a shorthand that allows diverse verbs scalable natural language understanding. One of the to tap into a common subset of encyclopedic knowl- most semantically sophisticated efforts in this direc- edge. Moreover, regularities in the set of FEs real- tion is FrameNet (Baker et al., 1998; Fillmore et al., ized with specific lexical items can be taken as cor- 2001), an online lexical resource1 designed accord- related with their favored perspective.
    [Show full text]
  • The Metamathematics of Putnam's Model-Theoretic Arguments
    The Metamathematics of Putnam's Model-Theoretic Arguments Tim Button Abstract. Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted mod- els. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I exam- ine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to meta- mathematical challenges. Copyright notice. This paper is due to appear in Erkenntnis. This is a pre-print, and may be subject to minor changes. The authoritative version should be obtained from Erkenntnis, once it has been published. Hilary Putnam famously attempted to use model theory to draw metaphys- ical conclusions. Specifically, he attacked metaphysical realism, a position characterised by the following credo: [T]he world consists of a fixed totality of mind-independent objects. (Putnam 1981, p. 49; cf. 1978, p. 125). Truth involves some sort of correspondence relation between words or thought-signs and external things and sets of things. (1981, p. 49; cf. 1989, p. 214) [W]hat is epistemically most justifiable to believe may nonetheless be false. (1980, p. 473; cf. 1978, p. 125) To sum up these claims, Putnam characterised metaphysical realism as an \externalist perspective" whose \favorite point of view is a God's Eye point of view" (1981, p. 49). Putnam sought to show that this externalist perspective is deeply untenable. To this end, he treated correspondence in terms of model-theoretic satisfaction.
    [Show full text]
  • Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
    Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness .
    [Show full text]
  • Formalism and Realism in Ruins (Mapping the Logics of Collapse)
    University of Colorado Law School Colorado Law Scholarly Commons Articles Colorado Law Faculty Scholarship 2009 Formalism and Realism in Ruins (Mapping the Logics of Collapse) Pierre Schlag University of Colorado Law School Follow this and additional works at: https://scholar.law.colorado.edu/articles Part of the Jurisprudence Commons, and the Law and Politics Commons Citation Information Pierre Schlag, Formalism and Realism in Ruins (Mapping the Logics of Collapse), 95 Iowa L. Rev. 195 (2009) (reprinted with permission), available at . Copyright Statement Copyright protected. Use of materials from this collection beyond the exceptions provided for in the Fair Use and Educational Use clauses of the U.S. Copyright Law may violate federal law. Permission to publish or reproduce is required. This Article is brought to you for free and open access by the Colorado Law Faculty Scholarship at Colorado Law Scholarly Commons. It has been accepted for inclusion in Articles by an authorized administrator of Colorado Law Scholarly Commons. For more information, please contact [email protected]. +(,121/,1( Citation: 95 Iowa L. Rev. 195 2009-2010 Provided by: William A. Wise Law Library Content downloaded/printed from HeinOnline Thu Mar 2 17:47:48 2017 -- Your use of this HeinOnline PDF indicates your acceptance of HeinOnline's Terms and Conditions of the license agreement available at http://heinonline.org/HOL/License -- The search text of this PDF is generated from uncorrected OCR text. -- To obtain permission to use this article beyond the scope of your HeinOnline license, please use: Copyright Information Formalism and Realism in Ruins (Mapping the Logics of Collapse) PierreSchlag* ABSTRACT: After laying out a conventional account of the formalism vs.
    [Show full text]
  • David Hilbert's Contributions to Logical Theory
    David Hilbert’s contributions to logical theory CURTIS FRANKS 1. A mathematician’s cast of mind Charles Sanders Peirce famously declared that “no two things could be more directly opposite than the cast of mind of the logician and that of the mathematician” (Peirce 1976, p. 595), and one who would take his word for it could only ascribe to David Hilbert that mindset opposed to the thought of his contemporaries, Frege, Gentzen, Godel,¨ Heyting, Łukasiewicz, and Skolem. They were the logicians par excellence of a generation that saw Hilbert seated at the helm of German mathematical research. Of Hilbert’s numerous scientific achievements, not one properly belongs to the domain of logic. In fact several of the great logical discoveries of the 20th century revealed deep errors in Hilbert’s intuitions—exemplifying, one might say, Peirce’s bald generalization. Yet to Peirce’s addendum that “[i]t is almost inconceivable that a man should be great in both ways” (Ibid.), Hilbert stands as perhaps history’s principle counter-example. It is to Hilbert that we owe the fundamental ideas and goals (indeed, even the name) of proof theory, the first systematic development and application of the methods (even if the field would be named only half a century later) of model theory, and the statement of the first definitive problem in recursion theory. And he did more. Beyond giving shape to the various sub-disciplines of modern logic, Hilbert brought them each under the umbrella of mainstream mathematical activity, so that for the first time in history teams of researchers shared a common sense of logic’s open problems, key concepts, and central techniques.
    [Show full text]
  • Arxiv:1205.6044V1 [Math.HO] 28 May 2012 Prescriptive/Prohibitive Context
    FOUNDATIONS AS SUPERSTRUCTURE1 (Reflections of a practicing mathematician) Yuri I. Manin Max–Planck–Institut f¨ur Mathematik, Bonn, Germany, ABSTRACT. This talk presents foundations of mathematics as a historically variable set of principles appealing to various modes of human intuition and de- void of any prescriptive/prohibitive power. At each turn of history, foundations crystallize the accepted norms of interpersonal and intergenerational transfer and justification of mathematical knowledge. Introduction Foundations vs Metamathematics. In this talk, I will interpret the idea of Foundations in the wide sense. For me, Foundations at each turn of history embody currently recognized, but historically variable, principles of organization of mathematical knowledge and of the interpersonal/transgenerational transferral of this knowledge. When these principles are studied using the tools of mathematics itself, we get a new chapter of mathematics, metamathematics. Modern philosophy of mathematics is often preoccupied with informal interpre- tations of theorems, proved in metamathematics of the XX–th century, of which the most influential was probably G¨odel’s incompleteness theorem that aroused considerable existential anxiety. In metamathematics, G¨odel’s theorem is a discovery that a certain class of finitely arXiv:1205.6044v1 [math.HO] 28 May 2012 generated structures (statements in a formal language) contains substructures that are not finitely generated (those statements that are true in a standard interpreta- tion). It is no big deal for an algebraist, but certainly interesting thanks to a new context. Existential anxiety can be alleviated if one strips “Foundations” from their rigid prescriptive/prohibitive, or normative functions and considers various foundational 1Talk at the international interdisciplinary conference “Philosophy, Mathematics, Linguistics: Aspects of Interaction” , Euler Mathematical Institute, May 22–25, 2012.
    [Show full text]
  • Old and New Results in the Foundations of Elementary Plane Euclidean and Non-Euclidean Geometries Marvin Jay Greenberg
    Old and New Results in the Foundations of Elementary Plane Euclidean and Non-Euclidean Geometries Marvin Jay Greenberg By “elementary” plane geometry I mean the geometry of lines and circles—straight- edge and compass constructions—in both Euclidean and non-Euclidean planes. An axiomatic description of it is in Sections 1.1, 1.2, and 1.6. This survey highlights some foundational history and some interesting recent discoveries that deserve to be better known, such as the hierarchies of axiom systems, Aristotle’s axiom as a “missing link,” Bolyai’s discovery—proved and generalized by William Jagy—of the relationship of “circle-squaring” in a hyperbolic plane to Fermat primes, the undecidability, incom- pleteness, and consistency of elementary Euclidean geometry, and much more. A main theme is what Hilbert called “the purity of methods of proof,” exemplified in his and his early twentieth century successors’ works on foundations of geometry. 1. AXIOMATIC DEVELOPMENT 1.0. Viewpoint. Euclid’s Elements was the first axiomatic presentation of mathemat- ics, based on his five postulates plus his “common notions.” It wasn’t until the end of the nineteenth century that rigorous revisions of Euclid’s axiomatics were presented, filling in the many gaps in his definitions and proofs. The revision with the great- est influence was that by David Hilbert starting in 1899, which will be discussed below. Hilbert not only made Euclid’s geometry rigorous, he investigated the min- imal assumptions needed to prove Euclid’s results, he showed the independence of some of his own axioms from the others, he presented unusual models to show certain statements unprovable from others, and in subsequent editions he explored in his ap- pendices many other interesting topics, including his foundation for plane hyperbolic geometry without bringing in real numbers.
    [Show full text]
  • Foundations of Geometry
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2008 Foundations of geometry Lawrence Michael Clarke Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Geometry and Topology Commons Recommended Citation Clarke, Lawrence Michael, "Foundations of geometry" (2008). Theses Digitization Project. 3419. https://scholarworks.lib.csusb.edu/etd-project/3419 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Foundations of Geometry A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Lawrence Michael Clarke March 2008 Foundations of Geometry A Thesis Presented to the Faculty of California State University, San Bernardino by Lawrence Michael Clarke March 2008 Approved by: 3)?/08 Murran, Committee Chair Date _ ommi^yee Member Susan Addington, Committee Member 1 Peter Williams, Chair, Department of Mathematics Department of Mathematics iii Abstract In this paper, a brief introduction to the history, and development, of Euclidean Geometry will be followed by a biographical background of David Hilbert, highlighting significant events in his educational and professional life. In an attempt to add rigor to the presentation of Geometry, Hilbert defined concepts and presented five groups of axioms that were mutually independent yet compatible, including introducing axioms of congruence in order to present displacement.
    [Show full text]