Geometry Illuminated an Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry
Total Page:16
File Type:pdf, Size:1020Kb
AMS / MAA TEXTBOOKS VOL 30 Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry Matthew Harvey Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2015936098 Print ISBN: 978-1-93951-211-6 Electronic ISBN: 978-1-61444-618-7 Printed in the United States of America Current Printing (last digit): 10987654321 10.1090/text/030 Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry Matthew Harvey The University of Virginia’s College at Wise Published and distributed by The Mathematical Association of America Council on Publications and Communications Jennifer J. Quinn, Chair Committee on Books Fernando Gouvea,ˆ Chair MAA Textbooks Editorial Board Stanley E. Seltzer, Editor Matthias Beck Richard E. Bedient Otto Bretscher Heather Ann Dye Charles R. Hampton Suzanne Lynne Larson John Lorch Susan F. Pustejovsky MAA TEXTBOOKS Bridge to Abstract Mathematics, Ralph W. Oberste-Vorth, Aristides Mouzakitis, and Bonita A. Lawrence Calculus Deconstructed: A Second Course in First-Year Calculus, Zbigniew H. Nitecki Calculus for the Life Sciences: A Modeling Approach, James L. Cornette and Ralph A. Ackerman Combinatorics: A Guided Tour, David R. Mazur Combinatorics: A Problem Oriented Approach, Daniel A. Marcus Complex Numbers and Geometry, Liang-shin Hahn A Course in Mathematical Modeling, Douglas Mooney and Randall Swift Cryptological Mathematics, Robert Edward Lewand Differential Geometry and its Applications, John Oprea Distilling Ideas: An Introduction to Mathematical Thinking, Brian P.Katz and Michael Starbird Elementary Cryptanalysis, Abraham Sinkov Elementary Mathematical Models, Dan Kalman An Episodic History of Mathematics: Mathematical Culture Through Problem Solving, Steven G. Krantz Essentials of Mathematics, Margie Hale Field Theory and its Classical Problems, Charles Hadlock Fourier Series, Rajendra Bhatia Game Theory and Strategy, Philip D. Straffin Geometry Illuminated: An Illustrated Introduction to Euclidean and Hyperbolic Plane Geome- try, Matthew Harvey Geometry Revisited, H. S. M. Coxeter and S. L. Greitzer Graph Theory: A Problem Oriented Approach, Daniel Marcus An Invitation to Real Analysis, Luis F. Moreno Knot Theory, Charles Livingston Learning Modern Algebra: From Early Attempts to Prove Fermat’s Last Theorem, Al Cuoco and Joseph J. Rotman The Lebesgue Integral for Undergraduates, William Johnston Lie Groups: A Problem-Oriented Introduction via Matrix Groups, Harriet Pollatsek Mathematical Connections: A Companion for Teachers and Others, Al Cuoco Mathematical Interest Theory, Second Edition, Leslie Jane Federer Vaaler and James W. Daniel Mathematical Modeling in the Environment, Charles Hadlock Mathematics for Business Decisions Part 1: Probability and Simulation (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux Mathematics for Business Decisions Part 2: Calculus and Optimization (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux Mathematics for Secondary School Teachers, Elizabeth G. Bremigan, Ralph J. Bremigan, and John D. Lorch The Mathematics of Choice, Ivan Niven The Mathematics of Games and Gambling, Edward Packel Math Through the Ages, William Berlinghoff and Fernando Gouvea Noncommutative Rings, I. N. Herstein Non-Euclidean Geometry, H. S. M. Coxeter Number Theory Through Inquiry, David C. Marshall, Edward Odell, and Michael Starbird Ordinary Differential Equations: from Calculus to Dynamical Systems, V.W. Noonburg A Primer of Real Functions, Ralph P. Boas A Radical Approach to Lebesgue’s Theory of Integration, David M. Bressoud A Radical Approach to Real Analysis, 2nd edition, David M. Bressoud Real Infinite Series, Daniel D. Bonar and Michael Khoury, Jr. Thinking Geometrically: A Survey of Geometries, Thomas Q. Sibley Topology Now!, Robert Messer and Philip Straffin Understanding our Quantitative World, Janet Andersen and Todd Swanson MAA Service Center P.O. Box 91112 Washington, DC 20090-1112 1-800-331-1MAA FAX: 1-240-396-5647 Contents Preface xv 0 Axioms and Models 1 0.1 Fano’s geometry .................................................................................. 2 0.2 Further reading ................................................................................... 4 0.3 Exercises........................................................................................... 5 I Neutral Geometry 7 1 The Axioms of Incidence and Order 9 1.1 Incidence........................................................................................... 11 1.2 Order................................................................................................ 12 1.3 Putting points in order .......................................................................... 14 1.4 Exercises........................................................................................... 16 1.5 Further reading ................................................................................... 17 2 Angles and Triangles 19 2.1 Exercises........................................................................................... 24 2.2 References......................................................................................... 25 3 Congruence Verse I: SAS and ASA 27 3.1 Triangle congruence............................................................................. 30 3.2 Exercises........................................................................................... 34 4 Congruence Verse II: AAS 37 4.1 Supplementary angles........................................................................... 37 4.2 The alternate interior angle theorem......................................................... 40 4.3 The exterior angle theorem .................................................................... 42 4.4 AAS................................................................................................. 43 4.5 Exercises........................................................................................... 44 vii viii Contents 5 Congruence Verse III: SSS 45 5.1 Exercises........................................................................................... 49 6 Distance, Length, and the Axioms of Continuity 51 6.1 Synthetic comparison ........................................................................... 51 6.2 Distance............................................................................................ 53 6.3 Exercises........................................................................................... 62 7 Angle Measure 63 7.1 Synthetic angle comparison.................................................................... 63 7.2 Right angles ....................................................................................... 67 7.3 Angle measure.................................................................................... 70 7.4 Exercises........................................................................................... 71 8 Triangles in Neutral Geometry 73 8.1 Exercises........................................................................................... 78 8.2 References......................................................................................... 79 9 Polygons 81 9.1 Definitions......................................................................................... 81 9.2 Counting polygons............................................................................... 83 9.3 Interiors and exteriors........................................................................... 84 9.4 Interior angles: two dilemmas................................................................. 88 9.5 Polygons of note.................................................................................. 92 9.6 Exercises........................................................................................... 93 10 Quadrilateral Congruence Theorems 95 10.1 Terminology....................................................................................... 95 10.2 Quadrilateral congruence....................................................................... 96 10.3 Exercises........................................................................................... 103 II Euclidean Geometry 105 11 The Axiom on Parallels 107 11.1 Exercises........................................................................................... 113 12 Parallel Projection 115 12.1 Parallel projection................................................................................ 116 12.2 Parallel projection, order, and congruence ................................................. 117 12.3 Parallel projection and distance............................................................... 120 12.4 Exercises........................................................................................... 124 13 Similarity 125 13.1 Triangle similarity theorems................................................................... 127 Contents ix 13.2 The Pythagorean theorem...................................................................... 130 13.3 Exercises........................................................................................... 133 14 Circles 135 14.1 Definitions......................................................................................... 135 14.2 Intersections....................................................................................... 137