Geometry Illuminated an Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Geometry Illuminated an Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry AMS / MAA TEXTBOOKS VOL 30 Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry Matthew Harvey Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2015936098 Print ISBN: 978-1-93951-211-6 Electronic ISBN: 978-1-61444-618-7 Printed in the United States of America Current Printing (last digit): 10987654321 10.1090/text/030 Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry Matthew Harvey The University of Virginia’s College at Wise Published and distributed by The Mathematical Association of America Council on Publications and Communications Jennifer J. Quinn, Chair Committee on Books Fernando Gouvea,ˆ Chair MAA Textbooks Editorial Board Stanley E. Seltzer, Editor Matthias Beck Richard E. Bedient Otto Bretscher Heather Ann Dye Charles R. Hampton Suzanne Lynne Larson John Lorch Susan F. Pustejovsky MAA TEXTBOOKS Bridge to Abstract Mathematics, Ralph W. Oberste-Vorth, Aristides Mouzakitis, and Bonita A. Lawrence Calculus Deconstructed: A Second Course in First-Year Calculus, Zbigniew H. Nitecki Calculus for the Life Sciences: A Modeling Approach, James L. Cornette and Ralph A. Ackerman Combinatorics: A Guided Tour, David R. Mazur Combinatorics: A Problem Oriented Approach, Daniel A. Marcus Complex Numbers and Geometry, Liang-shin Hahn A Course in Mathematical Modeling, Douglas Mooney and Randall Swift Cryptological Mathematics, Robert Edward Lewand Differential Geometry and its Applications, John Oprea Distilling Ideas: An Introduction to Mathematical Thinking, Brian P.Katz and Michael Starbird Elementary Cryptanalysis, Abraham Sinkov Elementary Mathematical Models, Dan Kalman An Episodic History of Mathematics: Mathematical Culture Through Problem Solving, Steven G. Krantz Essentials of Mathematics, Margie Hale Field Theory and its Classical Problems, Charles Hadlock Fourier Series, Rajendra Bhatia Game Theory and Strategy, Philip D. Straffin Geometry Illuminated: An Illustrated Introduction to Euclidean and Hyperbolic Plane Geome- try, Matthew Harvey Geometry Revisited, H. S. M. Coxeter and S. L. Greitzer Graph Theory: A Problem Oriented Approach, Daniel Marcus An Invitation to Real Analysis, Luis F. Moreno Knot Theory, Charles Livingston Learning Modern Algebra: From Early Attempts to Prove Fermat’s Last Theorem, Al Cuoco and Joseph J. Rotman The Lebesgue Integral for Undergraduates, William Johnston Lie Groups: A Problem-Oriented Introduction via Matrix Groups, Harriet Pollatsek Mathematical Connections: A Companion for Teachers and Others, Al Cuoco Mathematical Interest Theory, Second Edition, Leslie Jane Federer Vaaler and James W. Daniel Mathematical Modeling in the Environment, Charles Hadlock Mathematics for Business Decisions Part 1: Probability and Simulation (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux Mathematics for Business Decisions Part 2: Calculus and Optimization (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux Mathematics for Secondary School Teachers, Elizabeth G. Bremigan, Ralph J. Bremigan, and John D. Lorch The Mathematics of Choice, Ivan Niven The Mathematics of Games and Gambling, Edward Packel Math Through the Ages, William Berlinghoff and Fernando Gouvea Noncommutative Rings, I. N. Herstein Non-Euclidean Geometry, H. S. M. Coxeter Number Theory Through Inquiry, David C. Marshall, Edward Odell, and Michael Starbird Ordinary Differential Equations: from Calculus to Dynamical Systems, V.W. Noonburg A Primer of Real Functions, Ralph P. Boas A Radical Approach to Lebesgue’s Theory of Integration, David M. Bressoud A Radical Approach to Real Analysis, 2nd edition, David M. Bressoud Real Infinite Series, Daniel D. Bonar and Michael Khoury, Jr. Thinking Geometrically: A Survey of Geometries, Thomas Q. Sibley Topology Now!, Robert Messer and Philip Straffin Understanding our Quantitative World, Janet Andersen and Todd Swanson MAA Service Center P.O. Box 91112 Washington, DC 20090-1112 1-800-331-1MAA FAX: 1-240-396-5647 Contents Preface xv 0 Axioms and Models 1 0.1 Fano’s geometry .................................................................................. 2 0.2 Further reading ................................................................................... 4 0.3 Exercises........................................................................................... 5 I Neutral Geometry 7 1 The Axioms of Incidence and Order 9 1.1 Incidence........................................................................................... 11 1.2 Order................................................................................................ 12 1.3 Putting points in order .......................................................................... 14 1.4 Exercises........................................................................................... 16 1.5 Further reading ................................................................................... 17 2 Angles and Triangles 19 2.1 Exercises........................................................................................... 24 2.2 References......................................................................................... 25 3 Congruence Verse I: SAS and ASA 27 3.1 Triangle congruence............................................................................. 30 3.2 Exercises........................................................................................... 34 4 Congruence Verse II: AAS 37 4.1 Supplementary angles........................................................................... 37 4.2 The alternate interior angle theorem......................................................... 40 4.3 The exterior angle theorem .................................................................... 42 4.4 AAS................................................................................................. 43 4.5 Exercises........................................................................................... 44 vii viii Contents 5 Congruence Verse III: SSS 45 5.1 Exercises........................................................................................... 49 6 Distance, Length, and the Axioms of Continuity 51 6.1 Synthetic comparison ........................................................................... 51 6.2 Distance............................................................................................ 53 6.3 Exercises........................................................................................... 62 7 Angle Measure 63 7.1 Synthetic angle comparison.................................................................... 63 7.2 Right angles ....................................................................................... 67 7.3 Angle measure.................................................................................... 70 7.4 Exercises........................................................................................... 71 8 Triangles in Neutral Geometry 73 8.1 Exercises........................................................................................... 78 8.2 References......................................................................................... 79 9 Polygons 81 9.1 Definitions......................................................................................... 81 9.2 Counting polygons............................................................................... 83 9.3 Interiors and exteriors........................................................................... 84 9.4 Interior angles: two dilemmas................................................................. 88 9.5 Polygons of note.................................................................................. 92 9.6 Exercises........................................................................................... 93 10 Quadrilateral Congruence Theorems 95 10.1 Terminology....................................................................................... 95 10.2 Quadrilateral congruence....................................................................... 96 10.3 Exercises........................................................................................... 103 II Euclidean Geometry 105 11 The Axiom on Parallels 107 11.1 Exercises........................................................................................... 113 12 Parallel Projection 115 12.1 Parallel projection................................................................................ 116 12.2 Parallel projection, order, and congruence ................................................. 117 12.3 Parallel projection and distance............................................................... 120 12.4 Exercises........................................................................................... 124 13 Similarity 125 13.1 Triangle similarity theorems................................................................... 127 Contents ix 13.2 The Pythagorean theorem...................................................................... 130 13.3 Exercises........................................................................................... 133 14 Circles 135 14.1 Definitions......................................................................................... 135 14.2 Intersections....................................................................................... 137
Recommended publications
  • Five-Dimensional Design
    PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 50, NO. 1, PP. 35–41 (2006) FIVE-DIMENSIONAL DESIGN Elek TÓTH Department of Building Constructions Budapest University of Technology and Economics H–1521 Budapest, POB. 91. Hungary Received: April 3 2006 Abstract The method architectural and engineering design and construction apply for two-dimensional rep- resentation is geometry, the axioms of which were first outlined by Euclid. The proposition of his 5th postulate started on its course a problem of geometry that provoked perhaps the most mistaken demonstrations and that remained unresolved for two thousand years, the question if the axiom of parallels can be proved. The quest for the solution of this problem led Bolyai János to revolutionary conclusions in the wake of which he began to lay the foundations of a new (absolute) geometry in the system of which planes bend and become hyperbolic. It was Einstein’s relativity theory that eventually created the possibility of the recognition of new dimensions by discussing space as well as a curved, non-linear entity. Architectural creations exist in what Kant termed the dual form of intuition, that is in time and space, thus in four dimensions. In this context the fourth dimension is to be interpreted as the current time that may be actively experienced. On the other hand there has been a dichotomy in the concept of time since ancient times. The introduction of a time-concept into the activity of the architectural designer that comprises duration, the passage of time and cyclic time opens up a so-far unknown new direction, a fifth dimension, the perfection of which may be achieved through the comprehension and the synthesis of the coded messages of building diagnostics and building reconstruction.
    [Show full text]
  • Imaginary Crystals Made Real
    Imaginary crystals made real Simone Taioli,1, 2 Ruggero Gabbrielli,1 Stefano Simonucci,3 Nicola Maria Pugno,4, 5, 6 and Alfredo Iorio1 1Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic 2European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Bruno Kessler Foundation & Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Trento, Italy 3Department of Physics, University of Camerino, Italy & Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy 4Laboratory of Bio-inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy 5School of Engineering and Materials Science, Queen Mary University of London, UK 6Center for Materials and Microsystems, Bruno Kessler Foundation, Trento, Italy (Dated: August 20, 2018) We realize Lobachevsky geometry in a simulation lab, by producing a carbon-based mechanically stable molecular structure, arranged in the shape of a Beltrami pseudosphere. We find that this structure: i) corresponds to a non-Euclidean crystallographic group, namely a loxodromic subgroup of SL(2; Z); ii) has an unavoidable singular boundary, that we fully take into account. Our approach, substantiated by extensive numerical simulations of Beltrami pseudospheres of different size, might be applied to other surfaces of constant negative Gaussian curvature, and points to a general pro- cedure to generate them. Our results also pave the way to test certain scenarios of the physics of curved spacetimes. Lobachevsky used to call his Non-Euclidean geometry \imaginary geometry" [1]. Beltrami showed that this geom- etry can be realized in our Euclidean 3-space, through surfaces of constant negative Gaussian curvature K [2].
    [Show full text]
  • Lecture 3: Geometry
    E-320: Teaching Math with a Historical Perspective Oliver Knill, 2010-2015 Lecture 3: Geometry Geometry is the science of shape, size and symmetry. While arithmetic dealt with numerical structures, geometry deals with metric structures. Geometry is one of the oldest mathemati- cal disciplines and early geometry has relations with arithmetics: we have seen that that the implementation of a commutative multiplication on the natural numbers is rooted from an inter- pretation of n × m as an area of a shape that is invariant under rotational symmetry. Number systems built upon the natural numbers inherit this. Identities like the Pythagorean triples 32 +42 = 52 were interpreted geometrically. The right angle is the most "symmetric" angle apart from 0. Symmetry manifests itself in quantities which are invariant. Invariants are one the most central aspects of geometry. Felix Klein's Erlanger program uses symmetry to classify geome- tries depending on how large the symmetries of the shapes are. In this lecture, we look at a few results which can all be stated in terms of invariants. In the presentation as well as the worksheet part of this lecture, we will work us through smaller miracles like special points in triangles as well as a couple of gems: Pythagoras, Thales,Hippocrates, Feuerbach, Pappus, Morley, Butterfly which illustrate the importance of symmetry. Much of geometry is based on our ability to measure length, the distance between two points. A modern way to measure distance is to determine how long light needs to get from one point to the other. This geodesic distance generalizes to curved spaces like the sphere and is also a practical way to measure distances, for example with lasers.
    [Show full text]
  • Feb 23 Notes: Definition: Two Lines L and M Are Parallel If They Lie in The
    Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal. We define alternate interior angles, corresponding angles, alternate exterior angles, and interior angles on the same side of the transversal using various betweeness and half-plane notions. Suppose line l intersects lines m and n at points B and E, respectively, with points A and C on line m and points D and F on line n such that A-B-C and D-E-F, with A and D on the same side of l. Suppose also that G and H are points such that H-E-B- G. Then pABE and pBEF are alternate interior angles, as are pCBE and pDEB. pABG and pFEH are alternate exterior angles, as are pCBG and pDEH. pGBC and pBEF are a pair of corresponding angles, as are pGBA & pBED, pCBE & pFEH, and pABE & pDEH. pCBE and pFEB are interior angles on the same side of the transversal, as are pABE and pDEB. Our Last Theorem in Absolute Geometry: If two lines in the same plane are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. Proof: Let l intersect lines m and n at points A and B respectively. Let p1 p2. Suppose m and n meet at point C. Then either p1 is exterior to ªABC, or p2 is exterior to ªABC. In the first case, the exterior angle inequality gives p1 > p2; in the second, it gives p2 > p1.
    [Show full text]
  • The Arbelos in Wasan Geometry: Chiba's Problem
    Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, Vol.8, (2019), Issue 2, pp.98-104 THE ARBELOS IN WASAN GEOMETRY: CHIBA’S PROBLEM HIROSHI OKUMURA Abstract. We consider a sangaku problem involving an arbelos with two congruent circles, and give several conditions where the two congruent circles appear. Also we show several pairs of congruent circles and Archimedean circles. 2010 Mathematical Subject Classification: 01A27, 51M04, 51N20. Keywords and phrases: arbelos, Archimedean circle, non-Archimedean congruent circles. 1. INTRODUCTION We consider the arbelos appeared in Wasan geometry, and consider an arbelos formed by three semicircles α, β and γ with diameters AO , BO and AB , respectively for a point O on the segment AB . The radii of α and β are denoted by a and b, respectively. We consider the following sangaku .(in 1880 [5] (see Figure 1 (نproblem proposed by Chiba ( ઍ༿ӫ࣏҆ δ ε γ α h β B O H A Figure 1. Problem 1. For a point H on the segment AO, let h be the perpendicular to AB at H. Let δ be the circle touching α and β externally and h, and let ε be the incircle of the curvilinear triangle made by α, γ and h. If δ and ε touch and δ is congruent to the circle of diameter AH, find the radius of ε in terms of a and b. Circles of radius rA = ab /(a + b) are said to be Archimedean. In this paper we generalize the problem and consider two circles touching at a point on a perpendicular to the line AB .
    [Show full text]
  • Lattice Points on Hyperboloids of One Sheet
    New York Journal of Mathematics New York J. Math. 20 (2014) 1253{1268. Lattice points on hyperboloids of one sheet Arthur Baragar Abstract. The problem of counting lattice points on a hyperboloid of two sheets is Gauss' circle problem in hyperbolic geometry. The problem of counting lattice points on a hyperboloid of one sheet does not have the same geometric interpretation, and in general, the solution(s) to Gauss' circle problem gives a lower bound, but not an upper bound. In this paper, we describe an exception. Given an ample height, and a lattice on a hyperboloid of one sheet generated by a point in the interior of the effective cone, the problem can be reduced to Gauss' circle problem. Contents Introduction 1253 1. The Gauss circle problem 1255 1.1. Euclidean case 1255 1.2. Hyperbolic case 1255 2. An instructive example 1256 3. The main result 1260 4. Motivation 1264 Appendix: The pseudosphere in Lorentz space 1265 References 1267 Introduction Let J be an (m + 1) × (m + 1) real symmetric matrix with m ≥ 2 and signature (m; 1) (that is, J has m positive eigenvalues and one negative t m+1 eigenvalue). Then x ◦ y := x Jy is a Lorentz product and R equipped m;1 with this product is a Lorentz space, denoted R . The hypersurface m;1 Vk = fx 2 R : x ◦ x = kg Received February 26, 2013; revised December 9, 2014. 2010 Mathematics Subject Classification. 11D45, 11P21, 20H10, 22E40, 11N45, 14J28, 11G50, 11H06. Key words and phrases. Gauss' circle problem, lattice points, orbits, Hausdorff dimen- sion, ample cone.
    [Show full text]
  • Archimedes and the Arbelos1 Bobby Hanson October 17, 2007
    Archimedes and the Arbelos1 Bobby Hanson October 17, 2007 The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas like the colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in the world for ugly mathematics. — G.H. Hardy, A Mathematician’s Apology ACBr 1 − r Figure 1. The Arbelos Problem 1. We will warm up on an easy problem: Show that traveling from A to B along the big semicircle is the same distance as traveling from A to B by way of C along the two smaller semicircles. Proof. The arc from A to C has length πr/2. The arc from C to B has length π(1 − r)/2. The arc from A to B has length π/2. ˜ 1My notes are shamelessly stolen from notes by Tom Rike, of the Berkeley Math Circle available at http://mathcircle.berkeley.edu/BMC6/ps0506/ArbelosBMC.pdf . 1 2 If we draw the line tangent to the two smaller semicircles, it must be perpendicular to AB. (Why?) We will let D be the point where this line intersects the largest of the semicircles; X and Y will indicate the points of intersection with the line segments AD and BD with the two smaller semicircles respectively (see Figure 2). Finally, let P be the point where XY and CD intersect. D X P Y ACBr 1 − r Figure 2 Problem 2. Now show that XY and CD are the same length, and that they bisect each other.
    [Show full text]
  • Plasmon-Polaritons on the Surface of a Pseudosphere
    Plasmon-polaritons on the surface of a pseudosphere. Igor I. Smolyaninov, Quirino Balzano, Christopher C. Davis Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA (Dated: October 27, 2018) Plasmon-polariton behavior on the surfaces of constant negative curvature is considered. Analyti- cal solutions for the eigenfrequencies and eigenfunctions are found, which describe resonant behavior of metal nanotips and nanoholes. These resonances may be used to improve performance of metal tips and nanoapertures in various scanning probe microscopy and surface-enhanced spectroscopy techniques. Surface plasmon-polaritons (SP)1,2 play an important role in the properties of metallic nanostructures. Op- a a2 x2 tical field enhancement due to SP resonances of nanos- z = aln( + ( − 1)1/2) − a(1 − )1/2 (1) tructures (such as metal tips or nanoholes) is the key x x2 a2 factor, which defines performance of numerous scanning The Gaussian curvature of the pseudosphere is K = probe microscopy and surface-enhanced spectroscopy −1/a2 everywhere on its surface (so it may be understood techniques. Unfortunately, it is often very difficult to pre- as a sphere of imaginary radius ia). It is quite apparent dict or anticipate what kind of metal tip would produce 3 from comparison of Figs.1 and 2 that the pseudospherical the best image contrast , or what shape of a nanohole shape may be a good approximation of the shape of a in metal film would produce the best optical through- nanotip or a nanohole. On the other hand, this surface put. Trial and error with many different shapes is of- possesses very nice analytical properties, which makes it ten the only way to produce good results in the exper- very convenient and easy to analyze.
    [Show full text]
  • (Anti-)De Sitter Space-Time
    Geometry of (Anti-)De Sitter space-time Author: Ricard Monge Calvo. Facultat de F´ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Dr. Jaume Garriga Abstract: This work is an introduction to the De Sitter and Anti-de Sitter spacetimes, as the maximally symmetric constant curvature spacetimes with positive and negative Ricci curvature scalar R. We discuss their causal properties and the characterization of their geodesics, and look at p;q the spaces embedded in flat R spacetimes with an additional dimension. We conclude that the geodesics in these spaces can be regarded as intersections with planes going through the origin of the embedding space, and comment on the consequences. I. INTRODUCTION In the case of dS4, introducing the coordinates (T; χ, θ; φ) given by: Einstein's general relativity postulates that spacetime T T is a differential (Lorentzian) manifold of dimension 4, X0 = a sinh X~ = a cosh ~n (4) a a whose Ricci curvature tensor is determined by its mass- energy contents, according to the equations: where X~ = X1;X2;X3;X4 and ~n = ( cos χ, sin χ cos θ, sin χ sin θ cos φ, sin χ sin θ sin φ) with T 2 (−∞; 1), 0 ≤ 1 8πG χ ≤ π, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, then the line element Rµλ − Rgµλ + Λgµλ = 4 Tµλ (1) 2 c is: where Rµλ is the Ricci curvature tensor, R te Ricci scalar T ds2 = −dT 2 + a2 cosh2 [dχ2 + sin2 χ dΩ2] (5) curvature, gµλ the metric tensor, Λ the cosmological con- a 2 stant, G the universal gravitational constant, c the speed of light in vacuum and Tµλ the energy-momentum ten- where the surfaces of constant time dT = 0 have metric 2 2 2 2 sor.
    [Show full text]
  • Solutions Manual to Accompany Classical Geometry
    Solutions Manual to Accompany Classical Geometry Solutions Manual to Accompany CLASSICAL GEOMETRY Euclidean, Transformational, Inversive, and Projective I. E. Leonard J. E. Lewis A. C. F. Liu G. W. Tokarsky Department of Mathematical and Statistical Sciences University of Alberta Edmonton, Canada WILEY Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
    [Show full text]
  • Chapter 6 the Arbelos
    Chapter 6 The arbelos 6.1 Archimedes’ theorems on the arbelos Theorem 6.1 (Archimedes 1). The two circles touching CP on different sides and AC CB each touching two of the semicircles have equal diameters AB· . P W1 W2 A O1 O C O2 B A O1 O C O2 B Theorem 6.2 (Archimedes 2). The diameter of the circle tangent to all three semi- circles is AC CB AB · · . AC2 + AC CB + CB2 · We shall consider Theorem ?? in ?? later, and for now examine Archimedes’ wonderful proofs of the more remarkable§ Theorems 6.1 and 6.2. By synthetic reasoning, he computed the radii of these circles. 1Book of Lemmas, Proposition 5. 2Book of Lemmas, Proposition 6. 602 The arbelos 6.1.1 Archimedes’ proof of the twin circles theorem In the beginning of the Book of Lemmas, Archimedes has established a basic proposition 3 on parallel diameters of two tangent circles. If two circles are tangent to each other (internally or externally) at a point P , and if AB, XY are two parallel diameters of the circles, then the lines AX and BY intersect at P . D F I W1 E H W2 G A O C B Figure 6.1: Consider the circle tangent to CP at E, and to the semicircle on AC at G, to that on AB at F . If EH is the diameter through E, then AH and BE intersect at F . Also, AE and CH intersect at G. Let I be the intersection of AE with the outer semicircle. Extend AF and BI to intersect at D.
    [Show full text]
  • A Survey of the Development of Geometry up to 1870
    A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics.
    [Show full text]