Imaginary Crystals Made Real
Imaginary crystals made real Simone Taioli,1, 2 Ruggero Gabbrielli,1 Stefano Simonucci,3 Nicola Maria Pugno,4, 5, 6 and Alfredo Iorio1 1Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic 2European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Bruno Kessler Foundation & Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Trento, Italy 3Department of Physics, University of Camerino, Italy & Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy 4Laboratory of Bio-inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy 5School of Engineering and Materials Science, Queen Mary University of London, UK 6Center for Materials and Microsystems, Bruno Kessler Foundation, Trento, Italy (Dated: August 20, 2018) We realize Lobachevsky geometry in a simulation lab, by producing a carbon-based mechanically stable molecular structure, arranged in the shape of a Beltrami pseudosphere. We find that this structure: i) corresponds to a non-Euclidean crystallographic group, namely a loxodromic subgroup of SL(2; Z); ii) has an unavoidable singular boundary, that we fully take into account. Our approach, substantiated by extensive numerical simulations of Beltrami pseudospheres of different size, might be applied to other surfaces of constant negative Gaussian curvature, and points to a general pro- cedure to generate them. Our results also pave the way to test certain scenarios of the physics of curved spacetimes. Lobachevsky used to call his Non-Euclidean geometry \imaginary geometry" [1]. Beltrami showed that this geom- etry can be realized in our Euclidean 3-space, through surfaces of constant negative Gaussian curvature K [2].
[Show full text]