Pappus of Alexandria: Book 4 of the Collection

Total Page:16

File Type:pdf, Size:1020Kb

Pappus of Alexandria: Book 4 of the Collection Pappus of Alexandria: Book 4 of the Collection For other titles published in this series, go to http://www.springer.com/series/4142 Sources and Studies in the History of Mathematics and Physical Sciences Managing Editor J.Z. Buchwald Associate Editors J.L. Berggren and J. Lützen Advisory Board C. Fraser, T. Sauer, A. Shapiro Pappus of Alexandria: Book 4 of the Collection Edited With Translation and Commentary by Heike Sefrin-Weis Heike Sefrin-Weis Department of Philosophy University of South Carolina Columbia SC USA [email protected] Sources Managing Editor: Jed Z. Buchwald California Institute of Technology Division of the Humanities and Social Sciences MC 101–40 Pasadena, CA 91125 USA Associate Editors: J.L. Berggren Jesper Lützen Simon Fraser University University of Copenhagen Department of Mathematics Institute of Mathematics University Drive 8888 Universitetsparken 5 V5A 1S6 Burnaby, BC 2100 Koebenhaven Canada Denmark ISBN 978-1-84996-004-5 e-ISBN 978-1-84996-005-2 DOI 10.1007/978-1-84996-005-2 Springer London Dordrecht Heidelberg New York British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2009942260 Mathematics Classification Number (2010) 00A05, 00A30, 03A05, 01A05, 01A20, 01A85, 03-03, 51-03 and 97-03 © Springer-Verlag London Limited 2010 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dieses Buch ist für Roger, Hannah und Lisa Preface In the seventeenth century, it was a common opinion among those interested in ancient Greek mathematics that there were four great mathematicians in antiquity: Euclid, Archimedes, Apollonius – and Pappus of Alexandria. Especially the fourth and seventh book of the Collection were widely read and avidly discussed. They do indeed contain a host of interesting material on ancient Greek geometry that is not attested elsewhere. The fourth book in particular offers quite a few vignettes on “higher” Greek mathematics, treating of the classical problems of squaring the circle, doubling the cube, and trisecting the angle. Also reported is an intriguing little piece on mapping the sequence of natural numbers into a closed configuration of touching circles. Despite his importance as a historical source, Pappus has nowa- days become something like the ugly stepchild among the ancient mathematicians. The present edition is intended to provide a basis for giving the writer Pappus another hearing, to rekindle scholarly interest in him. It contains a new edition of the Greek text of Collectio IV (based on a fresh transcription from the main manu- script Vat. gr. 218), an annotated translation, and a commentary. The text offers an alternative to Hultsch’s standard edition. The commentary provides access to quite a few aspects of the work that have so far been somewhat neglected. Above all, it supports the reconstruction of a coherent plan and vision within Collectio IV. This edition is developed out of a complete revision of my 1997 German dis- sertation in the Mathematics Department (Section History of Mathematics) at Mainz University (published in microfiche form in 1998). In difference from the earlier version, a Greek text was included, a new translation into English was made, and the commentary was reformulated as well. Numerous people have supported and helped me over the years with the Pappus project. To all of them, my warmest thanks. In particular, David Rowe, my disserta- tion advisor, has been extremely generous with his time, support, and advice. Henk Bos, as second reader for the original dissertation, gave encouraging, yet incisive and helpful advice. Bob Berghout discussed Pappus with me, pointed me to Ath Treweek’s edition, and let me consult Ath Treweek’s material on Collectio IV. Siegmund Probst (Leibniz-Archiv, Hannover) introduced me to the art and trade of editing manuscripts. Jeremiah Hackett helped me gain access to the Vat. gr. 218. I should also like to thank the Bibliotheca Apostolica Vaticana for the generous hospitality and the inspiring atmosphere they provide for scholars consulting their vii viii Preface collection, and especially for allowing me to study the text and figures of Vat. gr. 218 for the present edition. Ms. Regine Becker proofread the entire Greek text. Ms. Lisa Weis improved my English in numerous places. My deepest gratitude is owed to the members of my family, who have, generously, if not always voluntarily, been living with Pappus for a number of years. That is why this book is dedicated to them. Mainz/Columbia, August 2008 Heike Sefrin-Weis Contents Part I Greek Text and Annotated Translation Introductory Remarks on Part I .................................................................... 3 Part Ia Greek Text ....................................................................................... 11 Part Ib Annotated Translation of Collectio IV .......................................... 83 Props. 1–3: Euclidean Plane Geometry: Synthetic Style .......................... 83 Props. 4–6: Plane Analysis Within Euclidean Elementary Geometry ................................................................................ 88 Props. 7–10: Analysis, Apollonian Style (Focus: Resolutio) ................... 92 Props. 11 and 12: Analysis: Extension of Confi guration/Apagoge ........... 99 Props. 13–18: Arbelos Treatise: Plane Geometry, Archimedean Style .................................................................................... 103 Props. 19–22: Archimedean Spiral ............................................................ 119 Props. 23–25: Conchoid of Nicomedes/Duplication of the Cube ............. 126 Props. 26–29: Quadratrix .......................................................................... 131 Prop. 30: Symptoma-Theorem on the Archimedean Spherical Spiral ......................................................................................... 141 Props. 31–34: Angle Trisection ................................................................. 146 Props. 35–38: Generalization of Solid Problems: Angle Division ............ 155 Props. 39–41: Constructions Based on the Rectifi cation Property of the Quadratrix ........................................................................ 159 Props. 42–44: Analysis of an Archimedean Neusis .................................. 163 Part II Commentary Introductory Remarks on Part II .................................................................. 171 II, 1 Plane Geometry, Euclidean Style .......................................................... 173 Props. 1–6: Plane Geometry, Euclidean Style .......................................... 173 Prop. 1: Generalization of the Pythagorean Theorem .......................... 173 Props. 2 and 3: Construction of Euclidean Irrationals ........................ 175 ix x Contents Props. 4–6: Plane Geometrical Analysis in the Context of Euclidean Geometry ......................................................................... 181 II, 2 Plane Geometry, Apollonian Style ......................................................... 193 Props. 7–10: Plane Geometry, Apollonian Style ....................................... 193 Overview Props. 7–10 ........................................................................... 193 Prop. 7: Determining Given Features Using the Data ......................... 196 Prop. 8: Resolutio for an Intermediate Step in the Apollonian Problem .................................................................... 199 Prop. 9: Auxiliary Lemma for Prop. 10 ................................................ 201 Prop. 10: Resolutio for a Special Case of the Apollonian Problem .................................................................... 201 II, 3 Plane Geometry, Archaic Style .............................................................. 203 Analysis-Synthesis Pre-Euclidean Style ................................................... 203 Props. 11 and 12: Chords and Angles in a Semicircle ......................... 203 Prop. 11: Representation of a Chord as Segment of the Diameter ....... 204 Prop. 12: Angle Over a Segment of the Diameter ................................. 205 II, 4 Plane Geometry, Archimedean .............................................................. 207 Props. 13–18: Arbelos (Plane Geometry, Archimedean Style) ................. 207 Observations on Props. 13–18 .............................................................. 207 Prop. 13: Preliminary Lemma ............................................................
Recommended publications
  • Extending Euclidean Constructions with Dynamic Geometry Software
    Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015) Extending Euclidean constructions with dynamic geometry software Alasdair McAndrew [email protected] College of Engineering and Science Victoria University PO Box 18821, Melbourne 8001 Australia Abstract In order to solve cubic equations by Euclidean means, the standard ruler and compass construction tools are insufficient, as was demonstrated by Pierre Wantzel in the 19th century. However, the ancient Greek mathematicians also used another construction method, the neusis, which was a straightedge with two marked points. We show in this article how a neusis construction can be implemented using dynamic geometry software, and give some examples of its use. 1 Introduction Standard Euclidean geometry, as codified by Euclid, permits of two constructions: drawing a straight line between two given points, and constructing a circle with center at one given point, and passing through another. It can be shown that the set of points constructible by these methods form the quadratic closure of the rationals: that is, the set of all points obtainable by any finite sequence of arithmetic operations and the taking of square roots. With the rise of Galois theory, and of field theory generally in the 19th century, it is now known that irreducible cubic equations cannot be solved by these Euclidean methods: so that the \doubling of the cube", and the \trisection of the angle" problems would need further constructions. Doubling the cube requires us to be able to solve the equation x3 − 2 = 0 and trisecting the angle, if it were possible, would enable us to trisect 60◦ (which is con- structible), to obtain 20◦.
    [Show full text]
  • Positional Notation Or Trigonometry [2, 13]
    The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity.
    [Show full text]
  • Gpindex: Generalized Price and Quantity Indexes
    Package ‘gpindex’ August 4, 2021 Title Generalized Price and Quantity Indexes Version 0.3.4 Description A small package for calculating lots of different price indexes, and by extension quan- tity indexes. Provides tools to build and work with any type of bilateral generalized-mean in- dex (of which most price indexes are), along with a few important indexes that don't be- long to the generalized-mean family. Implements and extends many of the meth- ods in Balk (2008, ISBN:978-1-107-40496-0) and ILO, IMF, OECD, Euro- stat, UN, and World Bank (2020, ISBN:978-1-51354-298-0) for bilateral price indexes. Depends R (>= 3.5) Imports stats, utils License MIT + file LICENSE Encoding UTF-8 URL https://github.com/marberts/gpindex LazyData true Collate 'helper_functions.R' 'means.R' 'weights.R' 'price_indexes.R' 'operators.R' 'utilities.R' NeedsCompilation no Author Steve Martin [aut, cre, cph] Maintainer Steve Martin <[email protected]> Repository CRAN Date/Publication 2021-08-04 06:10:06 UTC R topics documented: gpindex-package . .2 contributions . .3 generalized_mean . .8 lehmer_mean . 12 logarithmic_means . 15 nested_mean . 18 offset_prices . 20 1 2 gpindex-package operators . 22 outliers . 23 price_data . 25 price_index . 26 transform_weights . 33 Index 37 gpindex-package Generalized Price and Quantity Indexes Description A small package for calculating lots of different price indexes, and by extension quantity indexes. Provides tools to build and work with any type of bilateral generalized-mean index (of which most price indexes are), along with a few important indexes that don’t belong to the generalized-mean family. Implements and extends many of the methods in Balk (2008, ISBN:978-1-107-40496-0) and ILO, IMF, OECD, Eurostat, UN, and World Bank (2020, ISBN:978-1-51354-298-0) for bilateral price indexes.
    [Show full text]
  • Archimedes' Principle
    General Physics Lab Handbook by D.D.Venable, A.P.Batra, T.Hubsch, D.Walton & M.Kamal Archimedes’ Principle 1. Theory We are aware that some objects oat on some uids, submerged to diering extents: ice cubes oat in water almost completely submerged, while corks oat almost completely on the surface. Even the objects that sink appear to weigh less when they are submerged in the uid than when they are not. These eects are due to the existence of an upward ‘buoyant force’ that will act on the submerged object. This force is caused by the pressure in the uid being increased with depth below the surface, so that the pressure near the bottom of the object is greater than the pressure near the top. The dierence of these pressures results in the eective ‘buoyant force’, which is described by the Archimedes’ principle. According to this principle, the buoyant force FB on an object completely or partially submerged in a uid is equal to the weight of the uid that the (submerged part of the) object displaces: FB = mf g = f Vg . (1) where f is the density of the uid, mf and V are respectively mass and the volume of the displaced uid (which is equal to the volume of the submerged part of the object) and g is the gravitational acceleration constant. 2. Experiment Object: Use Archimedes’ principle to measure the densities of a given solid and a provided liquid. Apparatus: Solid (metal) and liquid (oil) samples, beaker, thread, balance, weights, stand, micrometer, calipers, PASCO Science Workshop Interface, Force Sensors and a Macintosh Computer.
    [Show full text]
  • Great Inventors of the Ancient World Preliminary Syllabus & Course Outline
    CLA 46 Dr. Patrick Hunt Spring Quarter 2014 Stanford Continuing Studies http://www.patrickhunt.net Great Inventors Of the Ancient World Preliminary Syllabus & Course Outline A Note from the Instructor: Homo faber is a Latin description of humans as makers. Human technology has been a long process of adapting to circumstances with ingenuity, and while there has been gradual progress, sometimes technology takes a downturn when literacy and numeracy are lost over time or when humans forget how to maintain or make things work due to cataclysmic change. Reconstructing ancient technology is at times a reminder that progress is not always guaranteed, as when Classical civilization crumbled in the West, but the history of technology is a fascinating one. Global revolutions in technology occur in cycles, often when necessity pushes great minds to innovate or adapt existing tools, as happened when humans first started using stone tools and gradually improved them, often incrementally, over tens of thousands of years. In this third course examining the greats of the ancient world, we take a close look at inventions and their inventors (some of whom might be more legendary than actually known), such as vizier Imhotep of early dynastic Egypt, who is said to have built the first pyramid, and King Gudea of Lagash, who is credited with developing the Mesopotamian irrigation canals. Other somewhat better-known figures are Glaucus of Chios, a metallurgist sculptor who possibly invented welding; pioneering astronomer Aristarchus of Samos; engineering genius Archimedes of Siracusa; Hipparchus of Rhodes, who made celestial globes depicting the stars; Ctesibius of Alexandria, who invented hydraulic water organs; and Hero of Alexandria, who made steam engines.
    [Show full text]
  • A Centennial Celebration of Two Great Scholars: Heiberg's
    A Centennial Celebration of Two Great Scholars: Heiberg’s Translation of the Lost Palimpsest of Archimedes—1907 Heath’s Publication on Euclid’s Elements—1908 Shirley B. Gray he 1998 auction of the “lost” palimp- tains four illuminated sest of Archimedes, followed by col- plates, presumably of laborative work centered at the Walters Matthew, Mark, Luke, Art Museum, the palimpsest’s newest and John. caretaker, remind Notices readers of Heiberg was emi- Tthe herculean contributions of two great classical nently qualified for scholars. Working one century ago, Johan Ludvig support from a foun- Heiberg and Sir Thomas Little Heath were busily dation. His stature as a engaged in virtually “running the table” of great scholar in the interna- mathematics bequeathed from antiquity. Only tional community was World War I and a depleted supply of manuscripts such that the University forced them to take a break. In 2008 we as math- of Oxford had awarded ematicians should honor their watershed efforts to him an honorary doc- make the cornerstones of our discipline available Johan Ludvig Heiberg. torate of literature in Photo courtesy of to even mathematically challenged readers. The Danish Royal Society. 1904. His background in languages and his pub- Heiberg lications were impressive. His first language was In 1906 the Carlsberg Foundation awarded 300 Danish but he frequently published in German. kroner to Johan Ludvig Heiberg (1854–1928), a He had publications in Latin as well as Arabic. But classical philologist at the University of Copenha- his true passion was classical Greek. In his first gen, to journey to Constantinople (present day Is- position as a schoolmaster and principal, Heiberg tanbul) to investigate a palimpsest that previously insisted that his students learn Greek and Greek had been in the library of the Metochion, i.e., the mathematics—in Greek.
    [Show full text]
  • Water, Air and Fire at Work in Hero's Machines
    Water, air and fire at work in Hero’s machines Amelia Carolina Sparavigna Dipartimento di Fisica, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, Italy Known as the Michanikos, Hero of Alexandria is considered the inventor of the world's first steam engine and of many other sophisticated devices. Here we discuss three of them as described in his book “Pneumatica”. These machines, working with water, air and fire, are clear examples of the deep knowledge of fluid dynamics reached by the Hellenistic scientists. Hero of Alexandria, known as the Mechanicos, lived during the first century in the Roman Egypt [1]. He was probably a Greek mathematician and engineer who resided in the city of Alexandria. We know his work from some of writings and designs that have been arrived nowadays in their Greek original or in Arabic translations. From his own writings, it is possible to gather that he knew the works of Archimedes and of Philo the Byzantian, who was a contemporary of Ctesibius [2]. It is almost certain that Heron taught at the Museum, a college for combined philosophy and literary studies and a religious place of cult of Muses, that included the famous Library. For this reason, Hero claimed himself a pupil of Ctesibius, who was probably the first head of the Museum of Alexandria. Most of Hero’s writings appear as lecture notes for courses in mathematics, mechanics, physics and pneumatics [2]. In optics, Hero formulated the Principle of the Shortest Path of Light, principle telling that if a ray of light propagates from a point to another one within the same medium, the followed path is the shortest possible.
    [Show full text]
  • 15 Famous Greek Mathematicians and Their Contributions 1. Euclid
    15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books.
    [Show full text]
  • ANCIENT PROBLEMS VS. MODERN TECHNOLOGY 1. Geometric Constructions Some Problems, Such As the Search for a Construction That Woul
    ANCIENT PROBLEMS VS. MODERN TECHNOLOGY SˇARKA´ GERGELITSOVA´ AND TOMA´ Sˇ HOLAN Abstract. Geometric constructions using a ruler and a compass have been known for more than two thousand years. It has also been known for a long time that some problems cannot be solved using the ruler-and-compass method (squaring the circle, angle trisection); on the other hand, there are other prob- lems that are yet to be solved. Nowadays, the focus of researchers’ interest is different: the search for new geometric constructions has shifted to the field of recreational mathematics. In this article, we present the solutions of several construction problems which were discovered with the help of a computer. The aim of this article is to point out that computer availability and perfor- mance have increased to such an extent that, today, anyone can solve problems that have remained unsolved for centuries. 1. Geometric constructions Some problems, such as the search for a construction that would divide a given angle into three equal parts, the construction of a square having an area equal to the area of the given circle or doubling the cube, troubled mathematicians already hundreds and thousands of years ago. Today, we not only know that these problems have never been solved, but we are even able to prove that such constructions cannot exist at all [8], [10]. On the other hand, there is, for example, the problem of finding the center of a given circle with a compass alone. This is a problem that was admired by Napoleon Bonaparte [11] and one of the problems that we are able to solve today (Mascheroni found the answer long ago [9]).
    [Show full text]
  • AHM As a Measure of Central Tendency of Sex Ratio
    Biometrics & Biostatistics International Journal Research Article Open Access AHM as a measure of central tendency of sex ratio Abstract Volume 10 Issue 2 - 2021 In some recent studies, four formulations of average namely Arithmetic-Geometric Mean Dhritikesh Chakrabarty (abbreviated as AGM), Arithmetic-Harmonic Mean (abbreviated as AHM), Geometric- Department of Statistics, Handique Girls’ College, Gauhati Harmonic Mean (abbreviated as GHM) and Arithmetic-Geometric-Harmonic Mean University, India (abbreviated as AGHM) have recently been derived from the three Pythagorean means namely Arithmetic Mean (AM), Geometric Mean (GM) and Harmonic Mean (HM). Each Correspondence: Dhritikesh Chakrabarty, Department of of these four formulations has been found to be a measure of central tendency of data. in Statistics, Handique Girls’ College, Gauhati University, India, addition to the existing measures of central tendency namely AM, GM & HM. This paper Email focuses on the suitability of AHM as a measure of central tendency of numerical data of ratio type along with the evaluation of central tendency of sex ratio namely male-female ratio and female-male ratio of the states in India. Received: May 03, 2021 | Published: May 25, 2021 Keywords: AHM, sex ratio, central tendency, measure Introduction however, involve huge computational tasks. Moreover, these methods may not be able to yield the appropriate value of the parameter if Several research had already been done on developing definitions/ observed data used are of relatively small size (and/or of moderately 1,2 formulations of average, a basic concept used in developing most large size too) In reality, of course, the appropriate value of the 3 of the measures used in analysis of data.
    [Show full text]
  • The Ptolemies: an Unloved and Unknown Dynasty. Contributions to a Different Perspective and Approach
    THE PTOLEMIES: AN UNLOVED AND UNKNOWN DYNASTY. CONTRIBUTIONS TO A DIFFERENT PERSPECTIVE AND APPROACH JOSÉ DAS CANDEIAS SALES Universidade Aberta. Centro de História (University of Lisbon). Abstract: The fifteen Ptolemies that sat on the throne of Egypt between 305 B.C. (the date of assumption of basileia by Ptolemy I) and 30 B.C. (death of Cleopatra VII) are in most cases little known and, even in its most recognised bibliography, their work has been somewhat overlooked, unappreciated. Although boisterous and sometimes unloved, with the tumultuous and dissolute lives, their unbridled and unrepressed ambitions, the intrigues, the betrayals, the fratricides and the crimes that the members of this dynasty encouraged and practiced, the Ptolemies changed the Egyptian life in some aspects and were responsible for the last Pharaonic monuments which were left us, some of them still considered true masterpieces of Egyptian greatness. The Ptolemaic Period was indeed a paradoxical moment in the History of ancient Egypt, as it was with a genetically foreign dynasty (traditions, language, religion and culture) that the country, with its capital in Alexandria, met a considerable economic prosperity, a significant political and military power and an intense intellectual activity, and finally became part of the world and Mediterranean culture. The fifteen Ptolemies that succeeded to the throne of Egypt between 305 B.C. (date of assumption of basileia by Ptolemy I) and 30 B.C. (death of Cleopatra VII), after Alexander’s death and the division of his empire, are, in most cases, very poorly understood by the public and even in the literature on the topic.
    [Show full text]
  • Chapter Two Democritus and the Different Limits to Divisibility
    CHAPTER TWO DEMOCRITUS AND THE DIFFERENT LIMITS TO DIVISIBILITY § 0. Introduction In the previous chapter I tried to give an extensive analysis of the reasoning in and behind the first arguments in the history of philosophy in which problems of continuity and infinite divisibility emerged. The impact of these arguments must have been enormous. Designed to show that rationally speaking one was better off with an Eleatic universe without plurality and without motion, Zeno’s paradoxes were a challenge to everyone who wanted to salvage at least those two basic features of the world of common sense. On the other hand, sceptics, for whatever reason weary of common sense, could employ Zeno-style arguments to keep up the pressure. The most notable representative of the latter group is Gorgias, who in his book On not-being or On nature referred to ‘Zeno’s argument’, presumably in a demonstration that what is without body and does not have parts, is not. It is possible that this followed an earlier argument of his that whatever is one, must be without body.1 We recognize here what Aristotle calls Zeno’s principle, that what does not have bulk or size, is not. Also in the following we meet familiar Zenonian themes: Further, if it moves and shifts [as] one, what is, is divided, not being continuous, and there [it is] not something. Hence, if it moves everywhere, it is divided everywhere. But if that is the case, then everywhere it is not. For it is there deprived of being, he says, where it is divided, instead of ‘void’ using ‘being divided’.2 Gorgias is talking here about the situation that there is motion within what is.
    [Show full text]