Why Mathematical Proof?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions. -
Toward a Mathematical Semantics for Computer Languages
(! 1 J TOWARD A MATHEMATICAL SEMANTICS FOR COMPUTER LANGUAGES by Dana Scott and - Christopher Strachey Oxford University Computing Laboratory Programming Research Group-Library 8-11 Keble Road Oxford OX, 3QD Oxford (0865) 54141 Oxford University Computing Laboratory Programming Research Group tI. cr• "';' """, ":.\ ' OXFORD UNIVERSITY COMPUTING LABORATORY PROGRAMMING RESEARCH GROUP ~ 4S BANBURY ROAD \LJ OXFORD ~ .. 4 OCT 1971 ~In (UY'Y L TOWARD A ~ATHEMATICAL SEMANTICS FOR COMPUTER LANGUAGES by Dana Scott Princeton University and Christopher Strachey Oxford University Technical Monograph PRG-6 August 1971 Oxford University Computing Laboratory. Programming Research Group, 45 Banbury Road, Oxford. ~ 1971 Dana Scott and Christopher Strachey Department of Philosophy, Oxford University Computing Laboratory. 1879 lIall, Programming Research Group. Princeton University, 45 Banbury Road. Princeton. New Jersey 08540. Oxford OX2 6PE. This pape r is also to appear in Fl'(.'ceedinBs 0;- the .';y-,;;;o:illT:: on ComputeT's and AutoJ7'ata. lo-licroloo'ave Research Institute Symposia Series Volume 21. Polytechnic Institute of Brooklyn. and appears as a Technical Monograph by special aJ"rangement ...·ith the publishers. RefeJ"~nces in the Ii terature should be:- made to the _"!'OL·,-,',~;r:gs, as the texts are identical and the Symposia Sl?ries is gcaerally available in libraries. ABSTRACT Compilers for high-level languages aTe generally constructed to give the complete translation of the programs into machme language. As machines merely juggle bit patterns, the concepts of the original language may be lost or at least obscured during this passage. The purpose of a mathematical semantics is to give a correct and meaningful correspondence between programs and mathematical entities in a way that is entirely independent of an implementation. -
The Origins of Structural Operational Semantics
The Origins of Structural Operational Semantics Gordon D. Plotkin Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, Scotland I am delighted to see my Aarhus notes [59] on SOS, Structural Operational Semantics, published as part of this special issue. The notes already contain some historical remarks, but the reader may be interested to know more of the personal intellectual context in which they arose. I must straightaway admit that at this distance in time I do not claim total accuracy or completeness: what I write should rather be considered as a reconstruction, based on (possibly faulty) memory, papers, old notes and consultations with colleagues. As a postgraduate I learnt the untyped λ-calculus from Rod Burstall. I was further deeply impressed by the work of Peter Landin on the semantics of pro- gramming languages [34–37] which includes his abstract SECD machine. One should also single out John McCarthy’s contributions [45–48], which include his 1962 introduction of abstract syntax, an essential tool, then and since, for all approaches to the semantics of programming languages. The IBM Vienna school [42, 41] were interested in specifying real programming languages, and, in particular, worked on an abstract interpreting machine for PL/I using VDL, their Vienna Definition Language; they were influenced by the ideas of McCarthy, Landin and Elgot [18]. I remember attending a seminar at Edinburgh where the intricacies of their PL/I abstract machine were explained. The states of these machines are tuples of various kinds of complex trees and there is also a stack of environments; the transition rules involve much tree traversal to access syntactical control points, handle jumps, and to manage concurrency. -
Pappus of Alexandria: Book 4 of the Collection
Pappus of Alexandria: Book 4 of the Collection For other titles published in this series, go to http://www.springer.com/series/4142 Sources and Studies in the History of Mathematics and Physical Sciences Managing Editor J.Z. Buchwald Associate Editors J.L. Berggren and J. Lützen Advisory Board C. Fraser, T. Sauer, A. Shapiro Pappus of Alexandria: Book 4 of the Collection Edited With Translation and Commentary by Heike Sefrin-Weis Heike Sefrin-Weis Department of Philosophy University of South Carolina Columbia SC USA [email protected] Sources Managing Editor: Jed Z. Buchwald California Institute of Technology Division of the Humanities and Social Sciences MC 101–40 Pasadena, CA 91125 USA Associate Editors: J.L. Berggren Jesper Lützen Simon Fraser University University of Copenhagen Department of Mathematics Institute of Mathematics University Drive 8888 Universitetsparken 5 V5A 1S6 Burnaby, BC 2100 Koebenhaven Canada Denmark ISBN 978-1-84996-004-5 e-ISBN 978-1-84996-005-2 DOI 10.1007/978-1-84996-005-2 Springer London Dordrecht Heidelberg New York British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2009942260 Mathematics Classification Number (2010) 00A05, 00A30, 03A05, 01A05, 01A20, 01A85, 03-03, 51-03 and 97-03 © Springer-Verlag London Limited 2010 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. -
Actor Model of Computation
Published in ArXiv http://arxiv.org/abs/1008.1459 Actor Model of Computation Carl Hewitt http://carlhewitt.info This paper is dedicated to Alonzo Church and Dana Scott. The Actor model is a mathematical theory that treats “Actors” as the universal primitives of concurrent digital computation. The model has been used both as a framework for a theoretical understanding of concurrency, and as the theoretical basis for several practical implementations of concurrent systems. Unlike previous models of computation, the Actor model was inspired by physical laws. It was also influenced by the programming languages Lisp, Simula 67 and Smalltalk-72, as well as ideas for Petri Nets, capability-based systems and packet switching. The advent of massive concurrency through client- cloud computing and many-core computer architectures has galvanized interest in the Actor model. An Actor is a computational entity that, in response to a message it receives, can concurrently: send a finite number of messages to other Actors; create a finite number of new Actors; designate the behavior to be used for the next message it receives. There is no assumed order to the above actions and they could be carried out concurrently. In addition two messages sent concurrently can arrive in either order. Decoupling the sender from communications sent was a fundamental advance of the Actor model enabling asynchronous communication and control structures as patterns of passing messages. November 7, 2010 Page 1 of 25 Contents Introduction ............................................................ 3 Fundamental concepts ............................................ 3 Illustrations ............................................................ 3 Modularity thru Direct communication and asynchrony ............................................................. 3 Indeterminacy and Quasi-commutativity ............... 4 Locality and Security ............................................ -
The Discoveries of Continuations
LISP AND SYMBOLIC COMPUTATION: An InternationM JournM, 6, 233-248, 1993 @ 1993 Kluwer Academic Publishers - Manufactured in The Nett~eriands The Discoveries of Continuations JOHN C. REYNOLDS ( [email protected] ) School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3890 Keywords: Semantics, Continuation, Continuation-Passing Style Abstract. We give a brief account of the discoveries of continuations and related con- cepts by A. van Vv'ijngaarden, A. W. Mazurkiewicz, F. L. Morris, C. P. Wadsworth. J. H. Morris, M. J. Fischer, and S. K. Abdali. In the early history of continuations, basic concepts were independently discovered an extraordinary number of times. This was due less to poor communication among computer scientists than to the rich variety of set- tings in which continuations were found useful: They underlie a method of program transformation (into continuation-passing style), a style of def- initionM interpreter (defining one language by an interpreter written in another language), and a style of denotational semantics (in the sense of Scott and Strachey). In each of these settings, by representing "the mean- ing of the rest of the program" as a function or procedure, continnations provide an elegant description of a variety of language constructs, including call by value and goto statements. 1. The Background In the early 1960%, the appearance of Algol 60 [32, 33] inspired a fi~rment of research on the implementation and formal definition of programming languages. Several aspects of this research were critical precursors of the discovery of continuations. The ability in Algol 60 to jump out of blocks, or even procedure bod- ies, forced implementors to realize that the representation of a label must include a reference to an environment. -
Michael Oser Rabin Automata, Logic and Randomness in Computation
Michael Oser Rabin Automata, Logic and Randomness in Computation Luca Aceto ICE-TCS, School of Computer Science, Reykjavik University Pearls of Computation, 6 November 2015 \One plus one equals zero. We have to get used to this fact of life." (Rabin in a course session dated 30/10/1997) Thanks to Pino Persiano for sharing some anecdotes with me. Luca Aceto The Work of Michael O. Rabin 1 / 16 Michael Rabin's accolades Selected awards and honours Turing Award (1976) Harvey Prize (1980) Israel Prize for Computer Science (1995) Paris Kanellakis Award (2003) Emet Prize for Computer Science (2004) Tel Aviv University Dan David Prize Michael O. Rabin (2010) Dijkstra Prize (2015) \1970 in computer science is not classical; it's sort of ancient. Classical is 1990." (Rabin in a course session dated 17/11/1998) Luca Aceto The Work of Michael O. Rabin 2 / 16 Michael Rabin's work: through the prize citations ACM Turing Award 1976 (joint with Dana Scott) For their joint paper \Finite Automata and Their Decision Problems," which introduced the idea of nondeterministic machines, which has proved to be an enormously valuable concept. ACM Paris Kanellakis Award 2003 (joint with Gary Miller, Robert Solovay, and Volker Strassen) For \their contributions to realizing the practical uses of cryptography and for demonstrating the power of algorithms that make random choices", through work which \led to two probabilistic primality tests, known as the Solovay-Strassen test and the Miller-Rabin test". ACM/EATCS Dijkstra Prize 2015 (joint with Michael Ben-Or) For papers that started the field of fault-tolerant randomized distributed algorithms. -
A Memorable Trip Abhisekh Sankaran Research Scholar, IIT Bombay
A Memorable Trip Abhisekh Sankaran Research Scholar, IIT Bombay It was my first trip to the US. It had not yet sunk in that I had been chosen by ACM India as one of two Ph.D. students from India to attend the big ACM Turing Centenary Celebration in San Francisco until I saw the familiar face of Stephen Cook enter a room in the hotel a short distance from mine; later, Moshe Vardi recognized me from his trip to IITB during FSTTCS, 2011. I recognized Nitin Saurabh from IMSc Chennai, the other student chosen by ACM-India; 11 ACM SIG©s had sponsored students and there were about 75 from all over the world. Registration started at 8am on 15th June, along with breakfast. Collecting my ©Student Scholar© badge and stuffing in some food, I entered a large hall with several hundred seats, a brightly lit podium with a large screen in the middle flanked by two others. The program began with a video giving a brief biography of Alan Turing from his boyhood to the dynamic young man who was to change the world forever. There were inaugural speeches by John White, CEO of ACM, and Vint Cerf, the 2004 Turing Award winner and incoming ACM President. The MC for the event, Paul Saffo, took over and the panel discussions and speeches commenced. A live Twitter feed made it possible for people in the audience and elsewhere to post questions/comments which were actually taken up in the discussions. Of the many sessions that took place in the next two days, I will describe three that I found most interesting. -
A Brief Scientific Biography of Robin Milner
A Brief Scientific Biography of Robin Milner Gordon Plotkin, Colin Stirling & Mads Tofte Robin Milner was born in 1934 to John Theodore Milner and Muriel Emily Milner. His father was an infantry officer and at one time commanded the Worcestershire Regiment. During the second world war the family led a nomadic existence in Scotland and Wales while his father was posted to different parts of the British Isles. In 1942 Robin went to Selwyn House, a boarding Preparatory School which is normally based in Broadstairs, Kent but was evacuated to Wales until the end of the war in 1945. In 1947 Robin won a scholarship to Eton College, a public school whose fees were a long way beyond the family’s means; fortunately scholars only paid what they could afford. While there he learned how to stay awake all night solving mathematics problems. (Scholars who specialised in maths were expected to score 100% on the weekly set of problems, which were tough.) In 1952 he won a major scholarship to King’s College, Cambridge, sitting the exam in the Examinations Hall which is 100 yards from his present office. However, before going to Cambridge he did two years’ national military service in the Royal Engineers, gaining a commission as a second lieutenant (which relieved his father, who rightly suspected that Robin might not be cut out to be an army officer). By the time he went to Cambridge in 1954 Robin had forgotten a lot of mathematics; but nevertheless he gained a first-class degree after two years (by omitting Part I of the Tripos). -
The Arabic Sources of Jordanus De Nemore
The Arabic Sources of Jordanus de Nemore IMPORTANT NOTICE: Author: Prof. Menso Folkerts and Prof. Richard Lorch All rights, including copyright, in the content of this document are owned or controlled for these purposes by FSTC Limited. In Chief Editor: Prof. Mohamed El-Gomati accessing these web pages, you agree that you may only download the content for your own personal non-commercial Deputy Editor: Prof. Mohammed Abattouy use. You are not permitted to copy, broadcast, download, store (in any medium), transmit, show or play in public, adapt or Associate Editor: Dr. Salim Ayduz change in any way the content of this document for any other purpose whatsoever without the prior written permission of FSTC Release Date: July, 2007 Limited. Publication ID: 710 Material may not be copied, reproduced, republished, downloaded, posted, broadcast or transmitted in any way except for your own personal non-commercial home use. Any other use Copyright: © FSTC Limited, 2007 requires the prior written permission of FSTC Limited. You agree not to adapt, alter or create a derivative work from any of the material contained in this document or use it for any other purpose other than for your personal non-commercial use. FSTC Limited has taken all reasonable care to ensure that pages published in this document and on the MuslimHeritage.com Web Site were accurate at the time of publication or last modification. Web sites are by nature experimental or constantly changing. Hence information published may be for test purposes only, may be out of date, or may be the personal opinion of the author. -
Generalization of Apollonius Circle Arxiv:2105.03673V1 [Math.MG] 8
Generalization of Apollonius Circle Omer¨ Avcı∗ Omer¨ Talip Akalın † Faruk Avcı ‡ Halil Salih Orhan§ May 11, 2021 Abstract Apollonius of Perga, showed that for two given points A; B in the Euclidean plane and a positive real number k 6= 1, geometric locus of the points X that satisfies the equation jXAj = kjXBj is a circle. This circle is called Apollonius circle. In this paper we generalize the definition of the Apollonius circle for two given circles Γ1; Γ2 and we show that geometric locus of the points X with the ratio of the power with respect to the circles Γ1; Γ2 is constant, is also a circle. Using this we generalize the definition of Apollonius Circle, and generalize some results about Apollonius Circle. 1 Preliminaries Theorem 1.1 (Apollonius Theorem) For points A; B in the Euclidean plane, and a positive real number k 6= 1, the points X which satisfies the equation jXAj = kjBXj forms a circle. When k = 1, they form the line perpendicular to AB at the middle point of [AB] [1]. Definition 1.1 For three different points A; B; C in Euclidean plane such that A is not on arXiv:2105.03673v1 [math.MG] 8 May 2021 the perpendicular bisector of the segment [BC]. We will use the notation KA(B; C) for the circle which consists of points that holds the equation jXBj jABj = jXCj jACj and MA(B; C) for the center and rA(B; C) for the radius of that circle. During this article, we will call the notation KA(B; C), Apollonius Circle of point A to the points B; C. -
11 · the Culmination of Greek Cartography in Ptolemy
11 · The Culmination of Greek Cartography in Ptolemy o. A. w. DILKE WITH ADDITIONAL MATERIAL SUPPLIED BY THE EDITORS By the time of Marinus of Tyre (fl. A.D. 100) and Clau about his work remain unanswered. Little is known dius Ptolemy (ca. A.D. 90-168), Greek and Roman in about Ptolemy the man, and neither his birthplace nor fluences in cartography had been fused to a considerable his dates have been positively established.4 Moreover, extent into one tradition. There is a case, accordingly, in relation to the cartographic component in his writings, for treating them as a history of one already unified we must remember that no manuscript earlier than the stream of thought and practice. Here, however, though twelfth century A.D. has come down to us, and there is we accept that such a unity exists, the discussion is fo no adequate modern translation and critical edition of cused on the cartographic contributions of Marinus and the Geography.5 Perhaps most serious of all for the stu Ptolemy, both writing in Greek within the institutions dent of mapping, however, is the whole debate about of Roman society. Both men owed much to Roman the true authorship and provenance of the general and sources of information and to the extension ofgeograph regional maps that accompany the several versions of ical knowledge under the growing empire: yet equally, the Byzantine manuscripts (pp. 268-74 below). AI- in the case of Ptolemy especially, they represent a cul mination as well as a final synthesis of the scientific tradition in Greek cartography that has been traced through a succession of writers in the previous three 1.