A Concise History of Mathematics the Beginnings 3

Total Page:16

File Type:pdf, Size:1020Kb

A Concise History of Mathematics the Beginnings 3 A CONCISE HISTORY OF A CONCISE HISTORY MATHEMATICS STRUIK OF MATHEMATICS DIRK J. STRUIK Professor Mathematics, BELL of Massachussetts Institute of Technology i Professor Struik has achieved the seemingly impossible task of compress- ing the history of mathematics into less than three hundred pages. By stressing the unfolding of a few main ideas and by minimizing references to other develop- ments, the author has been able to fol- low Egyptian, Babylonian, Chinese, Indian, Greek, Arabian, and Western mathematics from the earliest records to the beginning of the present century. He has based his account of nineteenth cen- tury advances on persons and schools rather than on subjects as the treatment by subjects has already been used in existing books. Important mathema- ticians whose work is analysed in detail are Euclid, Archimedes, Diophantos, Hammurabi, Bernoulli, Fermat, Euler, Newton, Leibniz, Laplace, Lagrange, Gauss, Jacobi, Riemann, Cremona, Betti, and others. Among the 47 illustra- tions arc portraits of many of these great figures. Each chapter is followed by a select bibliography. CHARLES WILSON A CONCISE HISTORY OF MATHEMATICS by DIRK. J. STRUIK Professor of Mathematics at the Massachusetts Institute of Technology LONDON G. BELL AND SONS LTD '954 Copyright by Dover Publications, Inc., U.S.A. FOR RUTH Printed in Great Britain by Butler & Tanner Ltd., Frame and London CONTENTS Introduction xi The Beginnings 1 The Ancient Orient 13 Greece 39 The Orient after the Decline of Greek Society 83 The Beginnings in Western Europe 98 The Seventeenth Century 125 The Eighteenth Century 163 The Nineteenth Century 201 Index 289 LIST OF ILLUSTRATIONS Geometrical Patterns Developed by American Indians 6 Neolithic Pottery Pattern 7 Egyptian Pottery Pattern 8 Pole House Dwellers Pattern 8 Patterns from Urns near Oedenburg 8 Predynastic Egyptian Pottery 10 Page from the Great Papyrus Rhind 20-21 One Side of a Cuneiform Text 27 Portion of a Page from the First Edition of Euclid's Elements, 1482 51 Two Pages from Archimedes Opera Omnia 62-63 Tomb of Omar Khayyam in Nishapur 90 Luca Pacioli with the Young Duke of Urbino 111 Francois Viete 117 John Napier 120 Johann Kepler 128 Galileo 130 Facsimile Page of Descartes' La Geometric 133 Ren6 Descartes 135 Pascal Explains to Descartes His Plans for Experiments in Jakob Steincr 247 Weight 137 Xicolai Ivanovitch Lobachevsky 252 Christiaan Huygens 143 Arthur Cayley 257 Reproduction of Leaflet Published by Pascal, 1(540 146 James Joseph Sylvester 261 Blaise Pascal 147 William Rowan Hamilton 264 Sir Isaac Newton 150 Felix Klein 270 Gottfried Wilhelm von Leibniz 155 Marius Sophus Lie 273 One Page from Leibniz's First Paper on the Calculus 159 T. J. Stieltjes 277 Leonard Euler 170 Henri Poincare 279 The Pages in Euler's Introductio where e* = cos x + i sin x is Introduced 172-173 Jean Le Rond D'Alembert 183 Joseph Louis Lagrange 189 Pierre Simon Laplace 193 Jean Etienne Montucla 197 Carl Friedrich Gauss 204 Adrien Marie Legendre 210 Gaspard Monge 214 Evariste Galois 224 Georg Friedrich Bemhard Riemann 233 Karl Weierstrass 238 Georg Cantor 242 — INTRODUCTION 1. Mathematics is a vast adventure in ideas; its his- tory reflects some of the nobiest thoughts of countless generations. It was possible to condense this history into a book of less than three hundred pages only by subjecting ourselves to strict discipline, sketching the unfolding of a few main ideas and minimizing reference to other developments. Bibliographical details had to be restricted to an outline; many relatively important authors—Roberval, Lambert, Schwarz—had to be by- passed. Perhaps the most crippling restriction was the insufficient reference to the general cultural and socio- logical atmosphere in which the mathematics of a period matured—or was stifled. Mathematics has been in- fluenced by agriculture, commerce and manufacture, by warfare, engineering and philosophy, by physics and by astronomy. The influence of hydrodynamics on func- tion theory, of Kantianism and of surveying on ge- ometry, of electromagnetism on differential equations, of Cartesianism on mechanics and of scholasticism on the calculus could only be indicated in a few sentences or perhaps a few words—yet an understanding of the course and content of mathematics can only be reached if all these determining factors are taken into considera- tion. Often a reference to the literature has had to re- place an historical analysis. Our story ends by 1900, for we do not feel competent to judge the work of our contemporaries. We hope that despite these restrictions we have been able to give a fairly honest description of the main ; xii INTRODUCTION INTRODUCTION XIII trends in the development of mathematics throughout spectively, to the commercial and the engineering period. the ages and of the social and cultural setting in which interests of the exposition of Nineteenth Century mathe- it took place. The selection of the material was, of 4. Base the course, not exclusively based on objective factors, but matics on persons and schools rather than on sub- Klein's" history could be used as was influenced by the author's likes and dislikes, his jects [Here Felix guide. exposition by subjects can be knowledge and his ignorance. As to his ignorance, it a primary An Cajori and Bell, or with the was not always possible to consult all sources first-hand found in the books by too often second- or even third-hand sources had to be more technical details, in the "Encyklopajdie der Wissenschaften" (Leipzig, 1898- used. It is therefore good advice, not only with respect mathematischen in Pascal's "Repertorium der to this book, but with respect to all such histories, to 1935, 24 vols.) and check the statements as much as possible with the hoheren Mathematik" (Leipzig 1910-29, 5 vols.).] original sources. This is a good principle for more rea- sons than one. Our knowledge of authors such as Euclid, 2. We list here some of the most important books on Diophantos, Descartes, Laplace, Gauss, or Riemann the history of mathematics as a whole. Such a list is Sarton, should not be obtained exclusively from quotations or superfluous for those who can consult G. The History (Cambridge, 1936, histories describing their works. There is the same Study of the of Mathematics invigorating power in the original Euclid or Gauss as 103 pp.) which not only has an interesting introduction there is in the original Shakespeare, and there are places to our subject but also has complete bibliographical in Archimedes, in Format, or in Jacobi which are as information. beautiful as Horace or Emerson. English texts to be consulted are: R. C. Archibald, Outline of the History of Mathematics Among the principles which have led the author in (Amer. Math. Monthly 561, Jan. 1949, 6th ed.) many the presentation of his material are the following: This issue of 1 14 pp. contains an excellent summary and bibliographic references. 1. Stress the continuity and affinity of the Oriental civilizations, rather than the mechanical divisions F. Cajori, A History of Mathematics (London, 2nd between Egyptian, Babylonian, Chinese, Indian, ed., 1938). and Arabian cultures. This is a standard text of 514 pp. 2. Distinguish between established fact, hypothesis, !>• E. Smith, History Mathematics (London, 1923- and tradition, especially in Greek mathematics. of 25, 2 vols.). 3. Relate the two trends in Renaissance mathematics, This book is mainly restricted to elementary mathematics but the arithmetical-algebraic and the "fluctional," re- : riv INTRODUCTION INTRODUCTION XV has references concerning all leading mathematicians. It contains und MittelaUer (Copenhagen, 1896; French ed., many illustrations. Paris, 1902). E. T. Bell, Men. of Mathematics (Pelican Books, 1953). H. G. Zeuthen, Geschichte der Mathematik im XVI und Jahrhundert (Leipzig, 1903). E. T. Bell, The Development of Mathematics (New York- XVII London, 2nd ed., 1945). S. Giinther—H. Wieleitner, Geschichte der Mathematik These books two contain a wealth of material, both on the mathe- (Leipzig, 2 vols.). I (1908) written by Giinther; II maticians and on their works. The emphasis of the second book (1911-21, 2 parts) written by Wieleitner. Ed. by is on modern mathematics. Wieleitner (Berlin, 1939). Dealing mainly with elementary mathematics are: J. Tropfke, Geschichte der Elementar-Mathematik (Leip- V. Sanford, A Short History of Mathematics (London, zig, 2d ed., 1921-24, 7 vols.; vols. I-IV in 3d ed. 1930). 1930-34). W. W. Rouse Ball, A Short Account of the History of Die Kultur der Gegenwart III, 1 (Leipzig-Berlin, 1912); Mathematics (London, 6th. ed., 1915). contains: An older, very readable but antiquated text. H. G. Zeuthen, Die Mathematik im Altertum und im MittelaUer; A. Voss, Die Beziehungen der Mathematik zur allgemeinen Kultur; The standard work the history of is on mathematics H. E. Timerding, Die Verbreitung mathemalUchen Wissene und still: mathematUcher Auffassung. M. Cantor, Vorlesungen iiber Geschichte der Mathematik (Leipzig, 1900-08, 4 vols.). The oldest text book in the history of mathematics is in French: This enormous work, of which the fourth volume was written by a group of specialists under Cantor's direction, covers the history J. E. Montucla, Histoire des matMmatiques (Paris, new of mathematics until 1799. It is here and there antiquated and ed., 1799-1802, vols.). often incorrect in details, but it remains a good book for a first 4 This orientation. book, first published in 1758 (2 vols.), also deals with applied mathematics. It is still good reading. Corrections by G. Enestrdm a. o. in the volumes of "Bibliotheca mathematica." A good Italian book is: Other German books are G - Loria, Storia delle matematiche (Turin, 1929-33, H. G. Zeuthen, Geschichte der Mathematik im Altertum 3 vols.). : XVI INTRODUCTION INTRODUCTION xvu There also exist anthologies of mathematical works: (Milan, 1930, 2 vols.) ; German edition (previously published Leipzig, 1910-11, 2 vols.).
Recommended publications
  • Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Logarithms – a Journey of Their Tables to All Over the World 1
    Logarithms – a Journey of their Tables to all over the World 1 Klaus Kühn, Nienstädt (Germany) 2 1 Introduction These days, nobody expects anything really new on the subject of logarithms. Surprisingly, however, there is still something to be written, something to be reviewed or something to be looked at again with fresh eyes. The history of logarithms has been described and dealt with on many occasions and is very clear. Nevertheless there are unnecessary discussions from time to time about who invented logarithms. Undeniably, a 7-place logarithmic table called "Mirifici Logarithmorum Canonis Descriptio" was published in 1614 for the very first time by John Napier (1550 – 1617). 6 years later "Aritmetische und Geometrische Progreß Tabulen / sambt gründlichem Unterricht / wie solche nützlich in allerley Rechnungen zugebrauchen / und verstanden werden soll " (translation see 3) was published by Jost Bürgi (1552 - 1632) – also known as Joost or Jobst Byrgius or Byrg. He published logarithms to 8 places; however this table failed to catch on because there were no instructions for its use included as mentioned. In the eyes of some of today’s contemporaries Bürgi is regarded as the inventor of logarithms, because he had been calculating his logarithms years before Napier, but he only published them on the insistence of Johannes Kepler (1571 – 1630). There is no information on the time it took John Napier to finish calculating his logarithms but in those times it would have been a matter of many years. The theories of the Babylonians (about 1600 B.C.), Euclid (365 – 300 B.C.), and Archimedes (287 – 212 B.C.) had already begun to move in the logarithmic direction.
    [Show full text]
  • Biography Paper – Georg Cantor
    Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies.
    [Show full text]
  • In the Wake of the Compendia Science, Technology, and Medicine in Ancient Cultures
    In the Wake of the Compendia Science, Technology, and Medicine in Ancient Cultures Edited by Markus Asper Philip van der Eijk Markham J. Geller Heinrich von Staden Liba Taub Volume 3 In the Wake of the Compendia Infrastructural Contexts and the Licensing of Empiricism in Ancient and Medieval Mesopotamia Edited by J. Cale Johnson DE GRUYTER ISBN 978-1-5015-1076-2 e-ISBN (PDF) 978-1-5015-0250-7 e-ISBN (EPUB) 978-1-5015-0252-1 ISSN 2194-976X Library of Congress Cataloging-in-Publication Data A CIP catalog record for this book has been applied for at the Library of Congress. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. © 2015 Walter de Gruyter Inc., Boston/Berlin Typesetting: Meta Systems Publishing & Printservices GmbH, Wustermark Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen ♾ Printed on acid-free paper Printed in Germany www.degruyter.com Notes on Contributors Florentina Badalanova Geller is Professor at the Topoi Excellence Cluster at the Freie Universität Berlin. She previously taught at the University of Sofia and University College London, and is currently on secondment from the Royal Anthropological Institute (London). She has published numerous papers and is also the author of ‘The Bible in the Making’ in Imagining Creation (2008), Qurʾān in Vernacular: Folk Islam in the Balkans (2008), and 2 (Slavonic Apocalypse of) Enoch: Text and Context (2010). Siam Bhayro was appointed Senior Lecturer in Early Jewish Studies in the Department of Theology and Religion, University of Exeter, in 2012, having previously been Lecturer in Early Jewish Studies since 2007.
    [Show full text]
  • Karl Weierstraß – Zum 200. Geburtstag „Alles Im Leben Kommt Doch Leider Zu Spät“ Reinhard Bölling Universität Potsdam, Institut Für Mathematik Prolog Nunmehr Im 74
    1 Karl Weierstraß – zum 200. Geburtstag „Alles im Leben kommt doch leider zu spät“ Reinhard Bölling Universität Potsdam, Institut für Mathematik Prolog Nunmehr im 74. Lebensjahr stehend, scheint es sehr wahrscheinlich, dass dies mein einziger und letzter Beitrag über Karl Weierstraß für die Mediathek meiner ehemaligen Potsdamer Arbeitsstätte sein dürfte. Deshalb erlaube ich mir, einige persönliche Bemerkungen voranzustellen. Am 9. November 1989 ging die Nachricht von der Öffnung der Berliner Mauer um die Welt. Am Tag darauf schrieb mir mein Freund in Stockholm: „Herzlich willkommen!“ Ich besorgte das damals noch erforderliche Visum in der Botschaft Schwedens und fuhr im Januar 1990 nach Stockholm. Endlich konnte ich das Mittag- Leffler-Institut in Djursholm, im nördlichen Randgebiet Stockholms gelegen, besuchen. Dort befinden sich umfangreiche Teile des Nachlasses von Weierstraß und Kowalewskaja, die von Mittag-Leffler zusammengetragen worden waren. Ich hatte meine Arbeit am Briefwechsel zwischen Weierstraß und Kowalewskaja, die meine erste mathematikhistorische Publikation werden sollte, vom Inhalt her abgeschlossen. Das Manuskript lag in nahezu satzfertiger Form vor und sollte dem Verlag übergeben werden. Geradezu selbstverständlich wäre es für diese Arbeit gewesen, die Archivalien im Mittag-Leffler-Institut zu studieren. Aber auch als Mitarbeiter des Karl-Weierstraß- Institutes für Mathematik in Ostberlin gehörte ich nicht zu denen, die man ins westliche Ausland reisen ließ. – Nun konnte ich mir also endlich einen ersten Überblick über die Archivalien im Mittag-Leffler-Institut verschaffen. Ich studierte in jenen Tagen ohne Unterbrechung von morgens bis abends Schriftstücke, Dokumente usw. aus dem dortigen Archiv, denn mir stand nur eine Woche zur Verfügung. Am zweiten Tag in Djursholm entdeckte ich unter Papieren ganz anderen Inhalts einige lose Blätter, die Kowalewskaja beschrieben hatte.
    [Show full text]
  • Halloweierstrass
    Happy Hallo WEIERSTRASS Did you know that Weierestrass was born on Halloween? Neither did we… Dmitriy Bilyk will be speaking on Lacunary Fourier series: from Weierstrass to our days Monday, Oct 31 at 12:15pm in Vin 313 followed by Mesa Pizza in the first floor lounge Brought to you by the UMN AMS Student Chapter and born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstrass 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 sent to University of Bonn to prepare for a government position { dropped out.
    [Show full text]
  • Babylonian Astral Science in the Hellenistic World: Reception and Transmission
    CAS® e SERIES Nummer 4 / 2010 Francesca Rochberg (Berkeley) Babylonian Astral Science in the Hellenistic World: Reception and Transmission Herausgegeben von Ludwig-Maximilians-Universität München Center for Advanced Studies®, Seestr. 13, 80802 München www.cas.lmu.de/publikationen/eseries Nummer 4 / 2010 Babylonian Astral Science in the Hellenistic World: Reception and Transmission Francesca Rochberg (Berkeley) In his astrological work the Tetrabiblos, the astronomer such as in Strabo’s Geography, as well as in an astrono- Ptolemy describes the effects of geography on ethnic mical text from Oxyrhynchus in the second century of character, claiming, for example, that due to their specific our era roughly contemporary with Ptolemy [P.Oxy. geographical location „The ...Chaldeans and Orchinians 4139:8; see Jones 1999, I 97-99 and II 22-23]. This have familiarity with Leo and the sun, so that they are astronomical papyrus fragment refers to the Orchenoi, simpler, kindly, addicted to astrology.” [Tetr. 2.3] or Urukeans, in direct connection with a lunar parameter Ptolemy was correct in putting the Chaldeans and identifiable as a Babylonian period for lunar anomaly Orchinians together geographically, as the Chaldeans, or preserved on cuneiform tablets from Uruk. The Kaldayu, were once West Semitic tribal groups located Babylonian, or Chaldean, literati, including those from in the parts of southern and western Babylonia known Uruk were rightly famed for astronomy and astrology, as Kaldu, and the Orchinians, or Urukayu, were the „addicted,” as Ptolemy put it, and eventually, in Greco- inhabitants of the southern Babylonian city of Uruk. He Roman works, the term Chaldean came to be interchan- was also correct in that he was transmitting a tradition geable with „astrologer.” from the Babylonians themselves, which, according to a Hellenistic Greek writers seeking to claim an authorita- Hellenistic tablet from Uruk [VAT 7847 obv.
    [Show full text]
  • Chasles' Bad Relations
    Chasles' bad relations Christophe Ritzenthaler September 10, 2004 Michel Chasles (1793-1880) 1 Introduction We give here a very atypical orientation to Chasles' life. In particular we will not deal with the ordinary aspects of his life and work. This can be found in many places (in particular [1]). We mention only that, as a mathemati- cian, he synthesized and generalized the whole geometric knowledge of his time (projective geometry, conic sections, duality and homography) - even if sometimes, (as he didn't speak German), he merely rediscovered some of these results - ([3]). Also, as a historian of mathematics, he wrote a history of geometry ([5] and two controversial essays ( [2],[4]). The following list of honors should convince us of the seriousness of this character : Membre de l'Institut, professeur de Géométrie supérieure à la faculté des Sciences de Paris, membre de la Société royale de Londres, membre honoraire de la Société royale d'Irlande, de la Société philosophique de Cambridge, de l'Académie impériale des Sciences de Saint-Pétersbourg, associé de l'Académie royale des Sciences de Brux- elles,correspondant de l'académie ponticale des Nuovi Lincei de Rome, membre de lAcadémie royale de Berlin, de l'Académie royale des Sciences de Turin, de l'Académie royale des Sciences de Naples, de l'Académie de Lincei de Rome, de la Société royale danoise des Sciences de Copenhague, de l'Académie royale des Sciences de Stockholm, de l'Académie des Sciences de l'Institut de Bologne, de l'Institut roual lombard de Milan, de la Société italienne des Sciences de Modène, correspondant de l'Académie royale des Sciences de Madrid, de l'Institut vénitien des Sciences, Lettres et Arts, membre honoraire de l'Académie royale des Sciences, Lettres et Arts de Modène, de l'Athénée vénitien des Sciences et Lettres, de l'Université d'Odessa, de l'Académie américaine des Sciences et Arts de Boston, de l'Académie nationale des sciences d'Amérique.
    [Show full text]
  • J. Wallis the Arithmetic of Infinitesimals Series: Sources and Studies in the History of Mathematics and Physical Sciences
    J. Wallis The Arithmetic of Infinitesimals Series: Sources and Studies in the History of Mathematics and Physical Sciences John Wallis was appointed Savilian Professor of Geometry at Oxford University in 1649. He was then a relative newcomer to mathematics, and largely self-taught, but in his first few years at Oxford he produced his two most significant works: De sectionibus conicis and Arithmetica infinitorum. In both books, Wallis drew on ideas originally developed in France, Italy, and the Netherlands: analytic geometry and the method of indivisibles. He handled them in his own way, and the resulting method of quadrature, based on the summation of indivisible or infinitesimal quantities, was a crucial step towards the development of a fully fledged integral calculus some ten years later. To the modern reader, the Arithmetica Infinitorum reveals much that is of historical and mathematical interest, not least the mid seventeenth-century tension between classical geometry on the one hand, and arithmetic and algebra on the other. Newton was to take up Wallis’s work and transform it into mathematics that has become part of the mainstream, but in Wallis’s text we see what we think of as modern mathematics still 2004, XXXIV, 192 p. struggling to emerge. It is this sense of watching new and significant ideas force their way slowly and sometimes painfully into existence that makes the Arithmetica Infinitorum such a relevant text even now for students and historians of mathematics alike. Printed book Dr J.A. Stedall is a Junior Research Fellow at Queen's University. She has written a number Hardcover of papers exploring the history of algebra, particularly the algebra of the sixteenth and 159,99 € | £139.99 | $199.99 ▶ seventeenth centuries.
    [Show full text]
  • Dossier Pierre Duhem Pierre Duhem's Philosophy and History of Science
    Transversal: International Journal for the Historiography of Science , 2 (201 7) 03 -06 ISSN 2526 -2270 www.historiographyofscience.org © The Author s 201 7 — This is an open access article Dossier Pierre Duhem Pierre Duhem’s Philos ophy and History of Science Introduction Fábio Rodrigo Leite 1 Jean-François Stoffel 2 DOI: http://dx.doi.org/10.24117/2526-2270.2017.i2.02 _____________________________________________________________________________ We are pleased to present in this issue a tribute to the thought of Pierre Duhem, on the occasion of the centenary of his death that occurred in 2016. Among articles and book reviews, the dossier contains 14 contributions of scholars from different places across the world, from Europe (Belgium, Greece, Italy, Portugal and Sweden) to the Americas (Brazil, Canada, Mexico and the United States). And this is something that attests to the increasing scope of influence exerted by the French physicist, philosopher and 3 historian. It is quite true that since his passing, Duhem has been remembered in the writings of many of those who knew him directly. However, with very few exceptions (Manville et al. 1927), the comments devoted to him exhibited clear biographical and hagiographic characteristics of a generalist nature (see Jordan 1917; Picard 1921; Mentré 1922a; 1922b; Humbert 1932; Pierre-Duhem 1936; Ocagne et al. 1937). From the 1950s onwards, when the studies on his philosophical work resumed, the thought of the Professor from Bordeaux acquired an irrevocable importance, so that references to La théorie physique: Son objet et sa structure became a common place in the literature of the area. As we know, this recovery was a consequence of the prominence attributed, firstly, to the notorious Duhem-Quine thesis in the English- speaking world, and secondly to the sparse and biased comments made by Popper that generated an avalanche of revaluations of the Popperian “instrumentalist interpretation”.
    [Show full text]
  • Foundations of Geometry
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2008 Foundations of geometry Lawrence Michael Clarke Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Geometry and Topology Commons Recommended Citation Clarke, Lawrence Michael, "Foundations of geometry" (2008). Theses Digitization Project. 3419. https://scholarworks.lib.csusb.edu/etd-project/3419 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Foundations of Geometry A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Lawrence Michael Clarke March 2008 Foundations of Geometry A Thesis Presented to the Faculty of California State University, San Bernardino by Lawrence Michael Clarke March 2008 Approved by: 3)?/08 Murran, Committee Chair Date _ ommi^yee Member Susan Addington, Committee Member 1 Peter Williams, Chair, Department of Mathematics Department of Mathematics iii Abstract In this paper, a brief introduction to the history, and development, of Euclidean Geometry will be followed by a biographical background of David Hilbert, highlighting significant events in his educational and professional life. In an attempt to add rigor to the presentation of Geometry, Hilbert defined concepts and presented five groups of axioms that were mutually independent yet compatible, including introducing axioms of congruence in order to present displacement.
    [Show full text]
  • Historiographie De Paul Tannery Et Receptions De Son Œuvre: Sur L'invention Du Metier D'historien Des Sciences
    Historiographie de Paul Tannery et receptions de son œuvre : sur l’invention du metier d’historien des sciences François Pineau To cite this version: François Pineau. Historiographie de Paul Tannery et receptions de son œuvre : sur l’invention du metier d’historien des sciences. Histoire, Philosophie et Sociologie des sciences. Université de Nantes, 2010. Français. NNT : 2010NANT2076. tel-00726388 HAL Id: tel-00726388 https://tel.archives-ouvertes.fr/tel-00726388 Submitted on 29 Aug 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE NANTES UFR SCIENCES ET TECHNIQUES _____ ECOLE DOCTORALE SOCIETES, CULTURES, ECHANGES Année 2010 N° attribué par la bibliothèque Historiographie de Paul Tannery et réceptions de son œuvre : sur l'invention du métier d'historien des sciences ___________ THÈSE DE DOCTORAT Discipline : Épistémologie et Histoire des sciences et des techniques Présentée et soutenue publiquement par François PINEAU Le 11 décembre 2010, devant le jury ci-dessous Rapporteurs : M. Eberhard KNOBLOCH, Professeur, Berlin Mme Jeanne PEIFFER, Directeur de recherche CNRS, Paris Examinateurs : M. Anastasios BRENNER, Professeur, Montpellier M. Bernard VITRAC, Directeur de recherche CNRS, Paris Co-directeurs de thèse : Mme Évelyne BARBIN, Professeur, Nantes M.
    [Show full text]