Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia
Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia Brief information on some classes of the surfaces which cylinders, cones and ortoid ruled surfaces with a constant were not picked out into the special section in the encyclo- distribution parameter possess this property. Other properties pedia is presented at the part “Surfaces”, where rather known of these surfaces are considered as well. groups of the surfaces are given. It is known, that the Plücker conoid carries two-para- At this section, the less known surfaces are noted. For metrical family of ellipses. The straight lines, perpendicular some reason or other, the authors could not look through to the planes of these ellipses and passing through their some primary sources and that is why these surfaces were centers, form the right congruence which is an algebraic not included in the basic contents of the encyclopedia. In the congruence of the4th order of the 2nd class. This congru- basis contents of the book, the authors did not include the ence attracted attention of D. Palman [8] who studied its surfaces that are very interesting with mathematical point of properties. Taking into account, that on the Plücker conoid, view but having pure cognitive interest and imagined with ∞2 of conic cross-sections are disposed, O. Bottema [9] difficultly in real engineering and architectural structures. examined the congruence of the normals to the planes of Non-orientable surfaces may be represented as kinematics these conic cross-sections passed through their centers and surfaces with ruled or curvilinear generatrixes and may be prescribed a number of the properties of a congruence of given on a picture. -
Linguistic Presentation of Objects
Zygmunt Ryznar dr emeritus Cracow Poland [email protected] Linguistic presentation of objects (types,structures,relations) Abstract Paper presents phrases for object specification in terms of structure, relations and dynamics. An applied notation provides a very concise (less words more contents) description of object. Keywords object relations, role, object type, object dynamics, geometric presentation Introduction This paper is based on OSL (Object Specification Language) [3] dedicated to present the various structures of objects, their relations and dynamics (events, actions and processes). Jay W.Forrester author of fundamental work "Industrial Dynamics”[4] considers the importance of relations: “the structure of interconnections and the interactions are often far more important than the parts of system”. Notation <!...> comment < > container of (phrase,name...) ≡> link to something external (outside of definition)) <def > </def> start-end of definition <spec> </spec> start-end of specification <beg> <end> start-end of section [..] or {..} 1 list of assigned keywords :[ or :{ structure ^<name> optional item (..) list of items xxxx(..) name of list = value assignment @ mark of special attribute,feature,property @dark unknown, to obtain, to discover :: belongs to : equivalent name (e.g.shortname) # number of |name| executive/operational object ppppXxxx name of item Xxxx with prefix ‘pppp ‘ XXXX basic object UUUU.xxxx xxxx object belonged to UUUU object class & / conjunctions ‘and’ ‘or’ 1 If using Latex editor we suggest [..] brackets -
Mathematicians
MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus -
Plato As "Architectof Science"
Plato as "Architectof Science" LEONID ZHMUD ABSTRACT The figureof the cordialhost of the Academy,who invitedthe mostgifted math- ematiciansand cultivatedpure research, whose keen intellectwas able if not to solve the particularproblem then at least to show the methodfor its solution: this figureis quite familiarto studentsof Greekscience. But was the Academy as such a centerof scientificresearch, and did Plato really set for mathemati- cians and astronomersthe problemsthey shouldstudy and methodsthey should use? Oursources tell aboutPlato's friendship or at leastacquaintance with many brilliantmathematicians of his day (Theodorus,Archytas, Theaetetus), but they were neverhis pupils,rather vice versa- he learnedmuch from them and actively used this knowledgein developinghis philosophy.There is no reliableevidence that Eudoxus,Menaechmus, Dinostratus, Theudius, and others, whom many scholarsunite into the groupof so-called"Academic mathematicians," ever were his pupilsor close associates.Our analysis of therelevant passages (Eratosthenes' Platonicus, Sosigenes ap. Simplicius, Proclus' Catalogue of geometers, and Philodemus'History of the Academy,etc.) shows thatthe very tendencyof por- trayingPlato as the architectof sciencegoes back to the earlyAcademy and is bornout of interpretationsof his dialogues. I Plato's relationship to the exact sciences used to be one of the traditional problems in the history of ancient Greek science and philosophy.' From the nineteenth century on it was examined in various aspects, the most significant of which were the historical, philosophical and methodological. In the last century and at the beginning of this century attention was paid peredominantly, although not exclusively, to the first of these aspects, especially to the questions how great Plato's contribution to specific math- ematical research really was, and how reliable our sources are in ascrib- ing to him particular scientific discoveries. -
15 Famous Greek Mathematicians and Their Contributions 1. Euclid
15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books. -
General Disclaimer One Or More of the Following Statements May Affect
https://ntrs.nasa.gov/search.jsp?R=19710025504 2020-03-11T22:36:49+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) 6 X t B ICC"m date: July 16, 1971 955 L'Enfant Plaza North, S. W Washington, D. C. 20024 to Distribution B71 07023 from. J. W. Head suhiecf Derivation of Topographic Feature Names in the Apollo 15 Landing Region - Case 340 ABSTRACT The topographic features in the region of the Apollo 15 landing site (Figure 1) are named for a number of philosophers, explorers and scientists (astronomers in particular) representing periods throughout recorded history. It is of particular interest that several of the individuals were responsible for specific discoveries, observations, or inventions which considerably advanced the study and under- standing of the moon (for instance, Hadley designed the first large reflecting telescope; Beer published classic maps and explanations of the moon's surface). -
Combination of Cubic and Quartic Plane Curve
IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis. -
The Ordered Distribution of Natural Numbers on the Square Root Spiral
The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution -
Semiflexible Polymers
Semiflexible Polymers: Fundamental Theory and Applications in DNA Packaging Thesis by Andrew James Spakowitz In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology MC 210-41 Caltech Pasadena, California 91125 2004 (Defended September 28, 2004) ii c 2004 Andrew James Spakowitz All Rights Reserved iii Acknowledgements Over the last five years, I have benefitted greatly from my interactions with many people in the Caltech community. I am particularly grateful to the members of my thesis committee: John Brady, Rob Phillips, Niles Pierce, and David Tirrell. Their example has served as guidance in my scientific development, and their professional assistance and coaching have proven to be invaluable in my future career plans. Our collaboration has impacted my research in many ways and will continue to be fruitful for years to come. I am grateful to my research advisor, Zhen-Gang Wang. Throughout my scientific development, Zhen-Gang’s ongoing patience and honesty have been instrumental in my scientific growth. As a researcher, his curiosity and fearlessness have been inspirational in developing my approach and philosophy. As an advisor, he serves as a model that I will turn to throughout the rest of my career. Throughout my life, my family’s love, encouragement, and understanding have been of utmost importance in my development, and I thank them for their ongoing devotion. My friends have provided the support and, at times, distraction that are necessary in maintaining my sanity; for this, I am thankful. Finally, I am thankful to my fianc´ee, Sarah Heilshorn, for her love, support, encourage- ment, honesty, critique, devotion, and wisdom. -
Phantom Paths from Problems to Equations
Archimedes and the Angel: Phantom Paths from Problems to Equations Fabio Acerbi CNRS, UMR 8163 ‘Savoirs, textes, langage’, Lille [email protected] Introduction This paper is a critical review of Reviel Netz’ The Transformation of Mathematics in the Early Mediterranean World.1 Its aim is to show that Netz’ methods of inquiry are too often unsatisfactory and to argue briefly for a substantially different interpretation of the evi- dence which he adduces. These two aims are pursued in parallel throughout the review and can hardly be disjoined. The review is uncommonly long and uncommonly direct, at times perhaps even a trifle vehement, in criticizing the methods and conclusions displayed in the book. There are two reasons for this. First, the transforma- tion of Academic scholarship into a branch of the editorial business and, very recently, into an expanding division of the media-driven star-system, has dramatically reduced the time left to study primary sources, to get properly informed of works by other scholars,2 and even just to read more than once what was written as a first draft. Second, at the same time, it is increasingly difficult to find serious reviews. Though the number of reviews and book-notices is explod- ing, it is clear that most reviews are written just to get a copy of an otherwise too expensive book. At any rate, the current policy is to keep sharp criticisms, if any, hidden under a seemingly gentle stylistic surface. The present paper is organized as follows. In the first section, I present Archimedes’ problem; in the next, I report the contents 1 R. -
He One and the Dyad: the Foundations of Ancient Mathematics1 What Exists Instead of Ininite Space in Euclid’S Elements?
ARCHIWUM HISTORII FILOZOFII I MYŚLI SPOŁECZNEJ • ARCHIVE OF THE HISTORY OF PHILOSOPHY AND SOCIAL THOUGHT VOL. 59/2014 • ISSN 0066–6874 Zbigniew Król he One and the Dyad: the Foundations of Ancient Mathematics1 What Exists Instead of Ininite Space in Euclid’s Elements? ABSTRACT: his paper contains a new interpretation of Euclidean geometry. It is argued that ancient Euclidean geometry was created in a quite diferent intuitive model (or frame), without ininite space, ininite lines and surfaces. his ancient intuitive model of Euclidean geometry is reconstructed in connection with Plato’s unwritten doctrine. he model cre- ates a kind of “hermeneutical horizon” determining the explicit content and mathematical methods used. In the irst section of the paper, it is argued that there are no actually ininite concepts in Euclid’s Elements. In the second section, it is argued that ancient mathematics is based on Plato’s highest principles: the One and the Dyad and the role of agrapha dogmata is unveiled. KEYWORDS: Euclidean geometry • Euclid’s Elements • ancient mathematics • Plato’s unwrit- ten doctrine • philosophical hermeneutics • history of science and mathematics • philosophy of mathematics • philosophy of science he possibility to imagine all of the theorems from Euclid’s Elements in a Tquite diferent intuitive framework is interesting from the philosophical point of view. I can give one example showing how it was possible to lose the genuine image of Euclidean geometry. In many translations into Latin (Heiberg) and English (Heath) of the theorems from Book X, the term “area” (spatium) is used. For instance, the translations of X. 26 are as follows: ,,Spatium medium non excedit medium spatio rationali” and “A medial area does not exceed a medial area by a rational area”2. -
Parametric Representations of Polynomial Curves Using Linkages
Parabola Volume 52, Issue 1 (2016) Parametric Representations of Polynomial Curves Using Linkages Hyung Ju Nam1 and Kim Christian Jalosjos2 Suppose that you want to draw a large perfect circle on a piece of fabric. A simple technique might be to use a length of string and a pen as indicated in Figure1: tie a knot at one end (A) of the string, push a pin through the knot to make the center of the circle, tie a pen at the other end (B) of the string, and rotate around the pin while holding the string tight. Figure 1: Drawing a perfect circle Figure 2: Pantograph On the other hand, you may think about duplicating or enlarging a map. You might use a pantograph, which is a mechanical linkage connecting rods based on parallelo- grams. Figure2 shows a draftsman’s pantograph 3 reproducing a map outline at 2.5 times the size of the original. As we may observe from the above examples, a combination of two or more points and rods creates a mechanism to transmit motion. In general, a linkage is a system of interconnected rods for transmitting or regulating the motion of a mechanism. Link- ages are present in every corner of life, such as the windshield wiper linkage of a car4, the pop-up plug of a bathroom sink5, operating mechanism for elevator doors6, and many mechanical devices. See Figure3 for illustrations. 1Hyung Ju Nam is a junior at Washburn Rural High School in Kansas, USA. 2Kim Christian Jalosjos is a sophomore at Washburn Rural High School in Kansas, USA.