He One and the Dyad: the Foundations of Ancient Mathematics1 What Exists Instead of Ininite Space in Euclid’S Elements?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Greece: Archimedes and Apollonius
Greece: Archimedes and Apollonius Chapter 4 Archimedes • “What we are told about Archimedes is a mix of a few hard facts and many legends. Hard facts – the primary sources –are the axioms of history. Unfortunately, a scarcity of fact creates a vacuum that legends happily fill, and eventually fact and legend blur into each other. The legends resemble a computer virus that leaps from book to book, but are harder, even impossible, to eradicate.” – Sherman Stein, Archimedes: What Did He Do Besides Cry Eureka?, p. 1. Archimedes • Facts: – Lived in Syracuse – Applied mathematics to practical problems as well as more theoretical problems – Died in 212 BCE at the hands of a Roman soldier during the attack on Syracuse by the forces of general Marcellus. Plutarch, in the first century A.D., gave three different stories told about the details of his death. Archimedes • From sources written much later: – Died at the age of 75, which would put his birth at about 287 BCE (from The Book of Histories by Tzetzes, 12th century CE). – The “Eureka” story came from the Roman architect Vitruvius, about a century after Archimedes’ death. – Plutarch claimed Archimedes requested that a cylinder enclosing a sphere be put on his gravestone. Cicero claims to have found that gravestrone in about 75 CE. Archimedes • From sources written much later: – From about a century after his death come tales of his prowess as a military engineer, creating catapults and grappling hooks connected to levers that lifted boats from the sea. – Another legend has it that he invented parabolic mirrors that set ships on fire. -
Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions. -
Post-Euclid Greek Mathematics
Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Some high points of Greek mathematics after Euclid Algebra Through History October 2019 Algebra Through History Greek Math Post Euclid Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Outline 1 Archimedes 2 Apollonius and the Conics 3 How Apollonius described and classified the conic sections Algebra Through History Greek Math Post Euclid Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Who was Archimedes? Lived ca. 287 - 212 BCE, mostly in Greek city of Syracuse in Sicily Studied many topics in what we would call mathematics, physics, engineering (less distinction between them at the time) We don’t know much about his actual life; much of his later reputation was based on somewhat dubious anecdotes, e.g. the “eureka moment,” inventions he was said to have produced to aid in defense of Syracuse during Roman siege in which he was killed, etc. Perhaps most telling: we do know he designed a tombstone for himself illustrating the discovery he wanted most to be remembered for (discussed by Plutarch, Cicero) Algebra Through History Greek Math Post Euclid Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Figure: Sphere inscribed in cylinder of equal radius 3Vsphere = 2Vcyl and Asphere = Acyl (lateral area) Algebra Through History Greek Math Post Euclid Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Surviving works On the Equilibrium of Planes (2 books) On Floating Bodies (2 books) Measurement of a Circle On Conoids and Spheroids On Spirals On the Sphere and Cylinder (2 books) Algebra Through History Greek Math Post Euclid Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Surviving works, cont. -
Notes on Greek Mathematics
MATHEMATICS IN ANCIENT GREECE Periods in Greek history [AG]. Archaic Period: 750 BC to 490 BC (Emergence of city- states to Battle of Marathon) The Iliad and the Odyssey were composed c. 750-720 (based on the `Trojan war’ of 1250-1225 BC.) Between 670-500 BC, many city-states were ruled by tyrants (a word borrowed into the Greek language from Asia Minor, to signify a man who seizes control of the state by a coup and governs illegally.) Classical Period: 490 to 323 BC (Battle of Marathon to death of Alexander). The years from 480 (Persians driven from Greece) to 430 saw the rise of Athenian democracy (under Pericles). The Parthenon was built, 447-432. Playwrights Sophocles, Aristophanes, Euripides were active in Athens (c. 430-400). Following undeclared war between Athens and Sparta from 460-445, the Peloponnesian war (431-404; account by Thucydides) kept these two states (and their allies throughout the region) busy. This led to the ascendance of Sparta and the `rule of thirty tyrants’ in Athens (404-403). Socrates was tried and executed in 399. His follower Plato wrote his dialogues (399-347) and founded the Academy. The accession of Philip II of Macedon (359) signals the beginning of a period of Macedonian rule. Philip invaded Asia in 336, and was assassinated the same year. His successor Alexander III (`the Great’, 356-323 BC) continued the program of world conquest over the next 13 years, invading India in 325 BC. Hellenistic Period (323-30 BC). Science, mathematics (Euclid) and culture flourished in Egypt (Alexandria) under the Ptolemaic dynasty. -
Ioannis M. VANDOULAKIS, « the Arbitrariness of the Sign in Greek Mathematics »
Ioannis M. VANDOULAKIS, « The Arbitrariness of the sign in Greek Mathematics » Communication donnée dans l’atelier de Jean-Yves Beziau, The Arbitrariness of the Sign, au colloque Le Cours de Linguistique Générale, 1916-2016. L’émergence, Genève, 9-13 janvier 2017. CERCLE FERDINAND DE SAUSSURE N° D’ISBN : 978-2-8399-2282-1 Pour consulter le programme complet de l’atelier de Jean-Yves Beziau, The Arbitrariness of the Sign : https://www.clg2016.org/geneve/programme/ateliers-libres/the- arbitrariness-of-the-sign/ 1 Ioannis M. Vandoulakis The Arbitrariness of the Sign in Greek Mathematics Ioannis M. Vandoulakis Abstract. In this paper, we will examine some modes of signification of mathematical entities used in Greek mathematical texts in the light of Saussure’s conceptualization of sign. In particular, we examine certain mathematical texts from Early Greek period, the Euclidean and Neo- Pythagorean traditions, and Diophantus. 0. Introduction Greek mathematicians have used a wide variety of modes of signification to express mathematical entities. By signification here, we understand the relation between the form of the sign (the signifier) and its meaning (the signified), as used in Ferdinand de Saussure’s semiology. According to Saussure, this relation is essentially arbitrary, motivated only by social convention. Moreover, for Saussure, signifier and signified are inseparable. One does not exist without the other, and conversely, one always implicates the other. Each one of them is the other’s condition of possibility. In this paper, we will examine some modes of signification of mathematical entities used in Greek mathematical texts in the light of Saussure’s conceptualization of sign. -
Copyrighted Material
11194_Darling_c01_f.qxd 6/10/04 9:56 AM Page 3 A abacus The Chinese suan pan differs from the European aba- A counting frame that started out, several thousand years cus in that the board is split into two decks, with two ago, as rows of pebbles in the desert sands of the Middle beads on each rod in the upper deck and five beads, rep- East. The word appears to come from the Hebrew âbâq resenting the digits 0 through 4, on each rod in the bot- (dust) or the Phoenician abak (sand) via the Greek abax, tom. When all five beads on a rod in the lower deck are which refers to a small tray covered with sand to hold the moved up, they’re reset to the original position, and one pebbles steady. The familiar frame-supporting rods or bead in the top deck is moved down as a carry. When wires, threaded with smoothly running beads, gradually both beads in the upper deck are moved down, they’re emerged in a variety of places and mathematical forms. reset and a bead on the adjacent rod on the left is moved In Europe, there was a strange state of affairs for more up as a carry. The result of the computation is read off than 1,500 years. The Greeks and the Romans, and then from the beads clustered near the separator beam the medieval Europeans, calculated on devices with a between the upper and lower decks. In a sense, the aba- place-value system in which zero was represented by an cus works as a 5-2-5-2-5-2...–based number system in empty line or wire. -
MA 341 Fall 2011
MA 341 Fall 2011 The Origins of Geometry 1.1: Introduction In the beginning geometry was a collection of rules for computing lengths, areas, and volumes. Many were crude approximations derived by trial and error. This body of knowledge, developed and used in construction, navigation, and surveying by the Babylonians and Egyptians, was passed to the Greeks. The Greek historian Herodotus (5th century BC) credits the Egyptians with having originated the subject, but there is much evidence that the Babylonians, the Hindu civilization, and the Chinese knew much of what was passed along to the Egyptians. The Babylonians of 2,000 to 1,600 BC knew much about navigation and astronomy, which required knowledge of geometry. Clay tablets from the Sumerian (2100 BC) and the Babylonian cultures (1600 BC) include tables for computing products, reciprocals, squares, square roots, and other mathematical functions useful in financial calculations. Babylonians were able to compute areas of rectangles, right and isosceles triangles, trapezoids and circles. They computed the area of a circle as the square of the circumference divided by twelve. The Babylonians were also responsible for dividing the circumference of a circle into 360 equal parts. They also used the Pythagorean Theorem (long before Pythagoras), performed calculations involving ratio and proportion, and studied the relationships between the elements of various triangles. See Appendices A and B for more about the mathematics of the Babylonians. 1.2: A History of the Value of π The Babylonians also considered the circumference of the circle to be three times the diameter. Of course, this would make 3 — a small problem. -
Alan Hirshfeld, Eureka Man: the Life and Legacy of Archimedes Walker & Company, New York, 2009, ISBN: 978-0-8027-1618-7, 242 Pp, Price: U.S
Sci & Educ (2011) 20:83–87 DOI 10.1007/s11191-010-9244-0 BOOK REVIEW Alan Hirshfeld, Eureka Man: The Life and Legacy of Archimedes Walker & Company, New York, 2009, ISBN: 978-0-8027-1618-7, 242 pp, price: U.S. $26.00 A. K. T. Assis Published online: 19 March 2010 Ó Springer Science+Business Media B.V. 2010 Alan Hirshfeld is a professor of physics at the University of Massachusetts Dartmouth. He conducts research in the history of physics and astronomy. He is an Associate of the Harvard College Observatory and is the director of the UMass Dartmouth Observatory. He obtained his B.A. in astrophysics from Princeton University in 1973, his M.S. in astronomy from Yale in 1975, and his Ph.D. in astronomy also from Yale in 1978. Hirshfeld previously published Parallax: The Race to Measure the Cosmos, (Henry Holt & Co., 2002); The Electric Life of Michael Faraday, (Walker & Co., 2006); and the Astronomy Activity and Laboratory Manual, (Jones & Bartlett Publishers, 2008). He is also the lead author of two reference books in astronomy: Sky Catalogue 2000.0, Vol. 1: Stars to Magnitude 8.0 (Cambridge U.P. and Sky Publishing Corp., 1982 and 1991); and Sky Catalogue 2000.0, Vol. 2: Double Stars, Variable Stars and Nonstellar Objects (Cam- bridge U.P. and Sky Publishing Corp., 1985). Apart from books, he has written articles on the history of astrophysics, on ancient Greek measurements of the solar system, and biographies of astronomers like James Bradley. This book is divided into two parts: Master of Thought (six Chapters), and A Palimpsest’s Tale (eight Chapters). -
The Distribution of Prime Numbers on the Square Root Spiral
The Distribution of Prime Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 EtGermanytlingen, Germany ------------------------------ contribution from “ The Number Spiral “ by - Robert Sachs - ------------------------------ 30. June 2007 Abstract : Prime Numbers accumulate on defined spiral graphs, which run through the Square Root Spiral. These spiral graphs can be assigned to different spiral-systems, in which all spiral-graphs have the same direction of rotation and the same “second difference” between the numbers, which lie on these spiral-graphs. A mathematical analysis shows, that these spiral-graphs are caused exclusively by quadratic polynomials. For example the well known Euler Polynomial x2+x+41 appears on the Square Root Spiral in the form of three spiral-graphs, which are defined by three different quadratic polynomials. All natural numbers, divisible by a certain prime factor, also lie on defined spiral graphs on the Square Root Spiral ( or “Spiral of Theodorus”, or “Wurzelspirale” ). And the Square Numbers 4, 9, 16, 25, 36 … even form a highly three-symmetrical system of three spiral graphs, which divides the square root spiral into three equal areas. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. To learn more about these amazing facts, see my detailed introduction to the Square Root Spiral : “ The ordered distribution of natural numbers on the Square Root Spiral “ With the help of the “Number-Spiral” , described by Mr. Robert Sachs, a comparison can be drawn between the Square Root Spiral and the Ulam Spiral. With the kind permission of Mr Robert Sachs, I show some sections of his webside : www.numberspiral.com in this study. -
Did Archimedes Do Calculus?
Did Archimedes Do Calculus? Jeff Powers jeff[email protected] Grand Rapids Community College 143 Bostwick Ave NE Grand Rapids, MI 49503 March 30, 2020 1 Introduction The works of Archimedes (c. 287–212 BCE) read like modern mathemat- ics: fully-formed, to the point, and clever. Heath calls them “monuments of mathematical exposition” that are “so impressive in their perfection as to create a feeling akin to awe in the mind of the reader” [14]. Many histories of the calculus begin with Archimedes, and they highlight the parallels between his discoveries and results that are found today by limits, infinite series, and integration techniques, even going so far as to assert that the differences in approaches may be more in words than in ideas [4]. A student may wonder why, if Archimedes’ discoveries are so novel and modern in style, he is not credited with the discovery of the calculus. Historians award that distinc- tion unequivocally to Newton and Leibniz, who lived nearly two millennia after Archimedes. To investigate whether Archimedes should instead be ac- knowledged as the first mathematician to “do calculus,” we will explore three aspects of his work that are related to the calculus: his mechanical method, which anticipates integration techniques; his quadrature of the parabola, which demonstrates how to handle infinite series; and his investigations into spirals, which involve properties of tangent lines. As a whole, ancient Greek mathematicians banned infinity from their formal demonstrations, because at the time the concept was not grounded on any logical basis. Intuition often failed when considering questions of the infinite and how to divide the continuum, as exemplified by Zeno’s famous paradoxes which, to some, have since been resolved by modern formulations of the calculus [4]. -
Archimedes of Syracuse: Solving Problems and Applied Mathematics
Archimedes of Syracuse: Solving Problems and Applied Mathematics Archimedes of Syracuse: Solving Problems and Applied Mathematics Waseda University, SILS, History of Mathematics Archimedes of Syracuse: Solving Problems and Applied Mathematics Domenico Fetti, “Archimedes,” 1620. Archimedes of Syracuse: Solving Problems and Applied Mathematics Outline Introduction Archimedes’ Works Measurement of the circle Archimedes of Syracuse: Solving Problems and Applied Mathematics Introduction What we know about Archimedes (c. 287-212) I He himself tells us, in various writings, that his father was an astronomer and one of his short works is addressed to the young prince of Syracuse (now in Sicily). He is reported to be related to king Hiero II (of Syracuse). I He apparently lived and worked in Syracuse and corresponded with other mathematicians, mostly in Alexandria. I A number of his mechanical writings are preserved in Doric Greek, the dialect of ancient Sicily. I There are a number of reports that Archimedes was killed, in his 70s, when the Romans conquered Syracuse, 212 BCE. I There are many legends about him, but it is difficult to sift the truth from the fantasy. Archimedes of Syracuse: Solving Problems and Applied Mathematics Introduction The legend of Archimedes, 1 I Already in antiquity, Archimedes was seen as the iconographic image of the brilliant scientist (like an ancient Einstein). I Archimedes is said to have been a gifted engineer as well as a mathematician, however, few of his mechanical works survive. I He is reported to have invented a planetarium that could model, or predict, the positions of the sun, moon and planets. I There is the famous story of him discovering the principle of density (specific weight) while taking a bath. -
Steps Towards the Analysis of Geometric Decorative Motifs Using Shape-Matching Techniques
Bridges 2012: Mathematics, Music, Art, Architecture, Culture Steps Towards the Analysis of Geometric Decorative Motifs Using Shape-matching Techniques Alice Humphrey and Michael Hann School of Design • University of Leeds Leeds • LS2 9JT • UK Abstract The classification of geometric decorative motifs has tended to emphasise the geometric by comparing the decoration to mathematically perfect constructions. Focussing on spirals as exemplars, this paper proposes that additional information may be gleaned from historic decoration on the assumption that such decoration often does not conform exactly to mathematically correct constructions. Shape-matching analysis methods combined with the analysis of stylistic variables are put forward as a means of comparing cultures; in particular, of looking for evidence of cultural diffusion and studying the manner and rate of evolution of geometric motifs. Introduction Spiral decoration is geographically widespread and long-established with the earliest known occurrence dating back to the Palaeolithic period [1: 10]. Formal geometric approximation techniques for spirals possibly date back to Theodorus in the fifth century BCE [2] and Vitruvius’ manual of the first century CE presented geometric constructions for spirals to be used in architectural decoration. Consideration of decorative spirals as a tool for studying cultural diffusion dates back to the late-nineteenth century; cultural contact routes across Europe have been proposed on the basis of similarities in spiral decoration [3: 141-2]. These early comparison systems did not tend to employ formal typologies, instead working from subjective identification of the co-occurrence of similar motifs to infer links. That these proposed links have sometimes been shown by improved dating techniques, to be false [4], supports the case for more precise and formalised typologies as a basis for cultural comparison.