Archimedes - Wikipedia, the Free Encyclopedia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Archive of SID
Archive of SID T r kh-e Elm: Iranian Journal for the History of Science, 6 (2008), pp. 1-36 Two Beautiful Geometrical Theorems by Ab Sahl K h in a 17th Century Dutch Translation Jan P. Hogendijk University of Utrecht [email protected] Abstract (received: 21/09/2008 - accepted: 15/11/2008) This article is devoted to two theorems on tangent circles, which were discovered by the Iranian geometer Ab Sahl K h (4th century A.H.). The two theorems were inspired by the Book of Lemmas (ma kh dh t) attributed to Archimedes. K h 's original treatise is lost, but the two theorems are found in Na r al-D n s 's edition of the Lemmas of Archimedes. They then appeared in Latin translations in 1659 in London, and again in 1661 in Florence, and in 1695 in a revised Dutch version in Amsterdam. The present article compares the original Arabic version of K h 's theorems (in the presentation of s ) with the revised Dutch version. Keywords: K h , s , Archimedes, geometry, circles, 17th century Dutch mathematics Introduction Waijan ibn Rustam Ab Sahl K h was an Iranian geometer and astronomer, who ßourished in the second half of the 4th century A.H./ 10th century A.D. (for biographical data and a list of works of him, see sezgin, V, 314-321, VI, 218-219; Rosenfeld and Ihsano lu, 102-105; for a general analysis of his works, see Berggrenn). K h had an outstanding reputation among his contemporaries: he was even called the Master of his Age in the Art of Geometry (the Arabic term is shaykh asrihi f in at al-handasa; see Berggren, 178). -
An Introduction to Nonstandard Analysis 11
AN INTRODUCTION TO NONSTANDARD ANALYSIS ISAAC DAVIS Abstract. In this paper we give an introduction to nonstandard analysis, starting with an ultrapower construction of the hyperreals. We then demon- strate how theorems in standard analysis \transfer over" to nonstandard anal- ysis, and how theorems in standard analysis can be proven using theorems in nonstandard analysis. 1. Introduction For many centuries, early mathematicians and physicists would solve problems by considering infinitesimally small pieces of a shape, or movement along a path by an infinitesimal amount. Archimedes derived the formula for the area of a circle by thinking of a circle as a polygon with infinitely many infinitesimal sides [1]. In particular, the construction of calculus was first motivated by this intuitive notion of infinitesimal change. G.W. Leibniz's derivation of calculus made extensive use of “infinitesimal” numbers, which were both nonzero but small enough to add to any real number without changing it noticeably. Although intuitively clear, infinitesi- mals were ultimately rejected as mathematically unsound, and were replaced with the common -δ method of computing limits and derivatives. However, in 1960 Abraham Robinson developed nonstandard analysis, in which the reals are rigor- ously extended to include infinitesimal numbers and infinite numbers; this new extended field is called the field of hyperreal numbers. The goal was to create a system of analysis that was more intuitively appealing than standard analysis but without losing any of the rigor of standard analysis. In this paper, we will explore the construction and various uses of nonstandard analysis. In section 2 we will introduce the notion of an ultrafilter, which will allow us to do a typical ultrapower construction of the hyperreal numbers. -
Positional Notation Or Trigonometry [2, 13]
The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity. -
Archimedes' Principle
General Physics Lab Handbook by D.D.Venable, A.P.Batra, T.Hubsch, D.Walton & M.Kamal Archimedes’ Principle 1. Theory We are aware that some objects oat on some uids, submerged to diering extents: ice cubes oat in water almost completely submerged, while corks oat almost completely on the surface. Even the objects that sink appear to weigh less when they are submerged in the uid than when they are not. These eects are due to the existence of an upward ‘buoyant force’ that will act on the submerged object. This force is caused by the pressure in the uid being increased with depth below the surface, so that the pressure near the bottom of the object is greater than the pressure near the top. The dierence of these pressures results in the eective ‘buoyant force’, which is described by the Archimedes’ principle. According to this principle, the buoyant force FB on an object completely or partially submerged in a uid is equal to the weight of the uid that the (submerged part of the) object displaces: FB = mf g = f Vg . (1) where f is the density of the uid, mf and V are respectively mass and the volume of the displaced uid (which is equal to the volume of the submerged part of the object) and g is the gravitational acceleration constant. 2. Experiment Object: Use Archimedes’ principle to measure the densities of a given solid and a provided liquid. Apparatus: Solid (metal) and liquid (oil) samples, beaker, thread, balance, weights, stand, micrometer, calipers, PASCO Science Workshop Interface, Force Sensors and a Macintosh Computer. -
Historical Background Italy, Due to the Threat There from Throw the Entire Balance Over in the Following the Defeat of Hasdrubal Barca Hannibal
• The numerical superiority they enjoyed with their new mercenaries; • The superior quality of their legions, probably the finest in the Roman army; and, • Overconfidence bred from seven years of campaigning without a serious defeat. Had the Scipios actually faced only 35,000 Carthaginians with over 50,000 legionnaires and mercenaries as they believed, their chances for success would have been good. But Hasdrubal Barca had two additional detachments: 3,000 Numidian cavalry under Masinissa and 7,500 warriors under Indibilis. And Hasdrubal Barca also were unable to obtain more troops from had a trick up his sleeve that was to Historical Background Italy, due to the threat there from throw the entire balance over in the Following the defeat of Hasdrubal Barca Hannibal. Instead, the Scipios hired on a favor of Carthage. at Dertosa (see issue Nr. 4 of C3i for large body of 20,000 Celt-Iberian Dertosa Battle Module) by the Scipio mercenaries. The Celt-Iberians were a While Hasdrubal Barca observed the brothers in 215 BC, Carthage responded mix of those two peoples, found mainly Romans from his position at Amtorgis, by sending reinforcements. Two armies in the wilds of central Spain. They had a he ordered the forces of Hasdrubal were dispatched, one under Hasdrubal's reputation for ferocity and fighting skill. Gisgo, Masinissa and Indibilis to younger brother Mago, and another Both sides confidently planned to take concentrate at Mago Barca's camp under a political rival of the Barca clan, the offensive in 211 BC. near Castulo. Once these forces were Hasdrubal Gisgo. For the next three united, it appears he intended to move years (214-212 BC), the three Publius and Gnaeus Scipio knew that north against the Romans with his Carthaginian armies battled the two Hasdrubal Barca was encamped north combined forces. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
A Functional Equation Characterization of Archimedean Ordered Fields
A FUNCTIONAL EQUATION CHARACTERIZATION OF ARCHIMEDEAN ORDERED FIELDS RALPH HOWARD, VIRGINIA JOHNSON, AND GEORGE F. MCNULTY Abstract. We prove that an ordered field is Archimedean if and only if every continuous additive function from the field to itself is linear over the field. In 1821 Cauchy, [1], observed that any continuous function S on the real line that satisfies S(x + y) = S(x) + S(y) for all reals x and y is just multiplication by a constant. Another way to say this is that S is a linear operator on R, viewing R as a vector space over itself. The constant is evidently S(1). The displayed equation is Cauchy's functional equation and solutions to this equation are called additive. To see that Cauchy's result holds, note that only a small amount of work is needed to verify the following steps: first S(0) = 0, second S(−x) = −S(x), third S(nx) = S(x)n for all integers, and finally that S(r) = S(1)r for every rational number r. But then S and the function x 7! S(1)x are continuous functions that agree on a dense set (the rationals) and therefore are equal. So Cauchy's result follows, in part, from the fact that the rationals are dense in the reals. In 1875 Darboux, in [2], extended Cauchy's result by noting that if an additive function is continuous at just one point, then it is continuous everywhere. Therefore the conclusion of Cauchy's theorem holds under the weaker hypothesis that S is just continuous at a single point. -
Mathematicians
MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus -
Archimedes of Syracuse
5 MARCH 2020 Engineering: Archimedes of Syracuse Professor Edith Hall Archimedes and Hiero II’s Syracuse Archimedes was and remains the most famous person from Syracuse, Sicily, in history. He belonged to the prosperous and sophisticated culture which the dominantly Greek population had built in the east of the island. The civilisation of the whole of ancient Sicily and South Italy was called by the Romans ‘Magna Graecia’ or ‘Great Greece’. The citis of Magna Graecia began to be annexed by the Roman Republic from 327 BCE, and most of Sicily was conquered by 272. But Syracuse, a large and magnificent kingdom, the size of Athens and a major player in the politics of the Mediterranean world throughout antiquity, succeeded in staying independent until 212. This was because its kings were allies of Rome in the face of the constant threat from Carthage. Archimedes was born into this free and vibrant port city in about 287 BCE, and as far as we know lived there all his life. When he was about twelve, the formidable Hiero II came to the throne, and there followed more than half a century of peace in the city, despite momentous power struggles going on as the Romans clashed with the Carthaginians and Greeks beyond Syracuse’s borders. Hiero encouraged arts and sciences, massively expanding the famous theatre. Archimedes’ background enabled him to fulfil his huge inborn intellectual talents to the full. His father was an astronomer named Pheidias. He was probably sent to study as a young man to Alexandria, home of the famous library, where he seems to have became close friend and correspondent of the great geographer and astonomer Eratosthenes, later to become Chief Librarian. -
A Centennial Celebration of Two Great Scholars: Heiberg's
A Centennial Celebration of Two Great Scholars: Heiberg’s Translation of the Lost Palimpsest of Archimedes—1907 Heath’s Publication on Euclid’s Elements—1908 Shirley B. Gray he 1998 auction of the “lost” palimp- tains four illuminated sest of Archimedes, followed by col- plates, presumably of laborative work centered at the Walters Matthew, Mark, Luke, Art Museum, the palimpsest’s newest and John. caretaker, remind Notices readers of Heiberg was emi- Tthe herculean contributions of two great classical nently qualified for scholars. Working one century ago, Johan Ludvig support from a foun- Heiberg and Sir Thomas Little Heath were busily dation. His stature as a engaged in virtually “running the table” of great scholar in the interna- mathematics bequeathed from antiquity. Only tional community was World War I and a depleted supply of manuscripts such that the University forced them to take a break. In 2008 we as math- of Oxford had awarded ematicians should honor their watershed efforts to him an honorary doc- make the cornerstones of our discipline available Johan Ludvig Heiberg. torate of literature in Photo courtesy of to even mathematically challenged readers. The Danish Royal Society. 1904. His background in languages and his pub- Heiberg lications were impressive. His first language was In 1906 the Carlsberg Foundation awarded 300 Danish but he frequently published in German. kroner to Johan Ludvig Heiberg (1854–1928), a He had publications in Latin as well as Arabic. But classical philologist at the University of Copenha- his true passion was classical Greek. In his first gen, to journey to Constantinople (present day Is- position as a schoolmaster and principal, Heiberg tanbul) to investigate a palimpsest that previously insisted that his students learn Greek and Greek had been in the library of the Metochion, i.e., the mathematics—in Greek. -
General Disclaimer One Or More of the Following Statements May Affect
https://ntrs.nasa.gov/search.jsp?R=19710025504 2020-03-11T22:36:49+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) 6 X t B ICC"m date: July 16, 1971 955 L'Enfant Plaza North, S. W Washington, D. C. 20024 to Distribution B71 07023 from. J. W. Head suhiecf Derivation of Topographic Feature Names in the Apollo 15 Landing Region - Case 340 ABSTRACT The topographic features in the region of the Apollo 15 landing site (Figure 1) are named for a number of philosophers, explorers and scientists (astronomers in particular) representing periods throughout recorded history. It is of particular interest that several of the individuals were responsible for specific discoveries, observations, or inventions which considerably advanced the study and under- standing of the moon (for instance, Hadley designed the first large reflecting telescope; Beer published classic maps and explanations of the moon's surface). -
A Glimpse Into the Roman Finances of the Second Punic War Through
Letter Geochemical Perspectives Letters the history of the western world. Carthage was a colony founded next to modern Tunis in the 8th century BC by Phoenician merchants. During the 3rd century BC its empire expanded westward into southern Spain and Sardinia, two major silver producers of the West Mediterranean. Meanwhile, Rome’s grip had tight- © 2016 European Association of Geochemistry ened over the central and southern Italian peninsula. The Punic Wars marked the beginning of Rome’s imperial expansion and ended the time of Carthage. A glimpse into the Roman finances The First Punic War (264 BC–241 BC), conducted by a network of alliances in Sicily, ended up with Rome prevailing over Carthage. A consequence of this of the Second Punic War conflict was the Mercenary War (240 BC–237 BC) between Carthage and its through silver isotopes unpaid mercenaries, which Rome helped to quell, again at great cost to Carthage. Hostilities between the two cities resumed in 219 BC when Hannibal seized the F. Albarède1,2*, J. Blichert-Toft1,2, M. Rivoal1, P. Telouk1 Spanish city of Saguntum, a Roman ally. At the outbreak of the Second Punic War, Hannibal crossed the Alps into the Po plain and inflicted devastating mili- tary defeats on the Roman legions in a quick sequence of major battles, the Trebia (December 218 BC), Lake Trasimene (June 217 BC), and Cannae (August 216 BC). As a measure of the extent of the disaster, it was claimed that more than 100,000 Abstract doi: 10.7185/geochemlet.1613 Roman soldiers and Italian allies lost their lives in these three battles, including The defeat of Hannibal’s armies at the culmination of the Second Punic War (218 BC–201 three consuls.