Riemann's Contribution to Differential Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein. -
LOOKING BACKWARD: from EULER to RIEMANN 11 at the Age of 24
LOOKING BACKWARD: FROM EULER TO RIEMANN ATHANASE PAPADOPOULOS Il est des hommes auxquels on ne doit pas adresser d’´eloges, si l’on ne suppose pas qu’ils ont le goˆut assez peu d´elicat pour goˆuter les louanges qui viennent d’en bas. (Jules Tannery, [241] p. 102) Abstract. We survey the main ideas in the early history of the subjects on which Riemann worked and that led to some of his most important discoveries. The subjects discussed include the theory of functions of a complex variable, elliptic and Abelian integrals, the hypergeometric series, the zeta function, topology, differential geometry, integration, and the notion of space. We shall see that among Riemann’s predecessors in all these fields, one name occupies a prominent place, this is Leonhard Euler. The final version of this paper will appear in the book From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017. AMS Mathematics Subject Classification: 01-02, 01A55, 01A67, 26A42, 30- 03, 33C05, 00A30. Keywords: Bernhard Riemann, function of a complex variable, space, Rie- mannian geometry, trigonometric series, zeta function, differential geometry, elliptic integral, elliptic function, Abelian integral, Abelian function, hy- pergeometric function, topology, Riemann surface, Leonhard Euler, space, integration. Contents 1. Introduction 2 2. Functions 10 3. Elliptic integrals 21 arXiv:1710.03982v1 [math.HO] 11 Oct 2017 4. Abelian functions 30 5. Hypergeometric series 32 6. The zeta function 34 7. On space 41 8. Topology 47 9. Differential geometry 63 10. Trigonometric series 69 11. Integration 79 12. Conclusion 81 References 85 Date: October 12, 2017. -
Riemannian Geometry and the General Theory of Relativity
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1967 Riemannian geometry and the general theory of relativity Marie McBride Vanisko The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Vanisko, Marie McBride, "Riemannian geometry and the general theory of relativity" (1967). Graduate Student Theses, Dissertations, & Professional Papers. 8075. https://scholarworks.umt.edu/etd/8075 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. p m TH3 OmERAl THEORY OF RELATIVITY By Marie McBride Vanisko B.A., Carroll College, 1965 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MOKT/JTA 1967 Approved by: Chairman, Board of Examiners D e a ^ Graduante school V AUG 8 1967, Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. V W Number: EP38876 All rights reserved INFORMATION TO ALL USERS The quality of this reproduotion is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missir^ pages, these will be noted. Also, if matedal had to be removed, a note will indicate the deletion. UMT Oi*MMtion neiitNna UMi EP38876 Published ProQuest LLQ (2013). -
The Birth of Hyperbolic Geometry Carl Friederich Gauss
The Birth of Hyperbolic Geometry Carl Friederich Gauss • There is some evidence to suggest that Gauss began studying the problem of the fifth postulate as early as 1789, when he was 12. We know in letters that he had done substantial work of the course of many years: Carl Friederich Gauss • “On the supposition that Euclidean geometry is not valid, it is easy to show that similar figures do not exist; in that case, the angles of an equilateral triangle vary with the side in which I see no absurdity at all. The angle is a function of the side and the sides are functions of the angle, a function which, of course, at the same time involves a constant length. It seems somewhat of a paradox to say that a constant length could be given a priori as it were, but in this again I see nothing inconsistent. Indeed it would be desirable that Euclidean geometry were not valid, for then we should possess a general a priori standard of measure.“ – Letter to Gerling, 1816 Carl Friederich Gauss • "I am convinced more and more that the necessary truth of our geometry cannot be demonstrated, at least not by the human intellect to the human understanding. Perhaps in another world, we may gain other insights into the nature of space which at present are unattainable to us. Until then we must consider geometry as of equal rank not with arithmetic, which is purely a priori, but with mechanics.“ –Letter to Olbers, 1817 Carl Friederich Gauss • " There is no doubt that it can be rigorously established that the sum of the angles of a rectilinear triangle cannot exceed 180°. -
Riemannian Geometry Learning for Disease Progression Modelling Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman
Riemannian geometry learning for disease progression modelling Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman To cite this version: Maxime Louis, Raphäel Couronné, Igor Koval, Benjamin Charlier, Stanley Durrleman. Riemannian geometry learning for disease progression modelling. 2019. hal-02079820v2 HAL Id: hal-02079820 https://hal.archives-ouvertes.fr/hal-02079820v2 Preprint submitted on 17 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Riemannian geometry learning for disease progression modelling Maxime Louis1;2, Rapha¨elCouronn´e1;2, Igor Koval1;2, Benjamin Charlier1;3, and Stanley Durrleman1;2 1 Sorbonne Universit´es,UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM) 2 Inria Paris, Aramis project-team, 75013, Paris, France 3 Institut Montpelli`erainAlexander Grothendieck, CNRS, Univ. Montpellier Abstract. The analysis of longitudinal trajectories is a longstanding problem in medical imaging which is often tackled in the context of Riemannian geometry: the set of observations is assumed to lie on an a priori known Riemannian manifold. When dealing with high-dimensional or complex data, it is in general not possible to design a Riemannian geometry of relevance. In this paper, we perform Riemannian manifold learning in association with the statistical task of longitudinal trajectory analysis. -
An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity
An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity Leonor Godinho and Jos´eNat´ario Lisbon, 2004 Contents Chapter 1. Differentiable Manifolds 3 1. Topological Manifolds 3 2. Differentiable Manifolds 9 3. Differentiable Maps 13 4. Tangent Space 15 5. Immersions and Embeddings 22 6. Vector Fields 26 7. Lie Groups 33 8. Orientability 45 9. Manifolds with Boundary 48 10. Notes on Chapter 1 51 Chapter 2. Differential Forms 57 1. Tensors 57 2. Tensor Fields 64 3. Differential Forms 66 4. Integration on Manifolds 72 5. Stokes Theorem 75 6. Orientation and Volume Forms 78 7. Notes on Chapter 2 80 Chapter 3. Riemannian Manifolds 87 1. Riemannian Manifolds 87 2. Affine Connections 94 3. Levi-Civita Connection 98 4. Minimizing Properties of Geodesics 104 5. Hopf-Rinow Theorem 111 6. Notes on Chapter 3 114 Chapter 4. Curvature 115 1. Curvature 115 2. Cartan’s Structure Equations 122 3. Gauss-Bonnet Theorem 131 4. Manifolds of Constant Curvature 137 5. Isometric Immersions 144 6. Notes on Chapter 4 150 1 2 CONTENTS Chapter 5. Geometric Mechanics 151 1. Mechanical Systems 151 2. Holonomic Constraints 160 3. Rigid Body 164 4. Non-Holonomic Constraints 177 5. Lagrangian Mechanics 186 6. Hamiltonian Mechanics 194 7. Completely Integrable Systems 203 8. Notes on Chapter 5 209 Chapter 6. Relativity 211 1. Galileo Spacetime 211 2. Special Relativity 213 3. The Cartan Connection 223 4. General Relativity 224 5. The Schwarzschild Solution 229 6. Cosmology 240 7. Causality 245 8. Singularity Theorem 253 9. Notes on Chapter 6 263 Bibliography 265 Index 267 CHAPTER 1 Differentiable Manifolds This chapter introduces the basic notions of differential geometry. -
A Comparison of Differential Calculus and Differential Geometry in Two
1 A Two-Dimensional Comparison of Differential Calculus and Differential Geometry Andrew Grossfield, Ph.D Vaughn College of Aeronautics and Technology Abstract and Introduction: Plane geometry is mainly the study of the properties of polygons and circles. Differential geometry is the study of curves that can be locally approximated by straight line segments. Differential calculus is the study of functions. These functions of calculus can be viewed as single-valued branches of curves in a coordinate system where the horizontal variable controls the vertical variable. In both studies the derivative multiplies incremental changes in the horizontal variable to yield incremental changes in the vertical variable and both studies possess the same rules of differentiation and integration. It seems that the two studies should be identical, that is, isomorphic. And, yet, students should be aware of important differences. In differential geometry, the horizontal and vertical units have the same dimensional units. In differential calculus the horizontal and vertical units are usually different, e.g., height vs. time. There are differences in the two studies with respect to the distance between points. In differential geometry, the Pythagorean slant distance formula prevails, while in the 2- dimensional plane of differential calculus there is no concept of slant distance. The derivative has a different meaning in each of the two subjects. In differential geometry, the slope of the tangent line determines the direction of the tangent line; that is, the angle with the horizontal axis. In differential calculus, there is no concept of direction; instead, the derivative describes a rate of change. In differential geometry the line described by the equation y = x subtends an angle, α, of 45° with the horizontal, but in calculus the linear relation, h = t, bears no concept of direction. -
Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md
International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 157 ISSN 2229-5518 Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md. Abdul Halim Sajal Saha Md Shafiqul Islam Abstract-In the paper some aspects of Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields are focused. The purpose of this paper is to develop the theory of manifolds equipped with Riemannian metric. I have developed some theorems on torsion and Riemannian curvature tensors using affine connection. A Theorem 1.20 named “Fundamental Theorem of Pseudo-Riemannian Geometry” has been established on Riemannian geometry using tensors with metric. The main tools used in the theorem of pseudo Riemannian are tensors fields defined on a Riemannian manifold. Keywords: Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields. —————————— —————————— I. Introduction (c) { } is a family of open sets which covers , that is, 푖 = . Riemannian manifold is a pair ( , g) consisting of smooth 푈 푀 manifold and Riemannian metric g. A manifold may carry a (d) ⋃ is푈 푖푖 a homeomorphism푀 from onto an open subset of 푀 ′ further structure if it is endowed with a metric tensor, which is a 푖 . 푖 푖 휑 푈 푈 natural generation푀 of the inner product between two vectors in 푛 ℝ to an arbitrary manifold. Riemannian metrics, affine (e) Given and such that , the map = connections,푛 parallel transport, curvature tensors, torsion tensors, ( ( ) killingℝ vector fields and conformal killing vector fields play from푖 푗 ) to 푖 푗 is infinitely푖푗 −1 푈 푈 푈 ∩ 푈 ≠ ∅ 휓 important role to develop the theorem of Riemannian manifolds. -
Bernhard Riemann 1826-1866
Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden. -
Simply-Riemann-1588263529. Print
Simply Riemann Simply Riemann JEREMY GRAY SIMPLY CHARLY NEW YORK Copyright © 2020 by Jeremy Gray Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-21-6 Brought to you by http://simplycharly.com Contents Praise for Simply Riemann vii Other Great Lives x Series Editor's Foreword xi Preface xii Introduction 1 1. Riemann's life and times 7 2. Geometry 41 3. Complex functions 64 4. Primes and the zeta function 87 5. Minimal surfaces 97 6. Real functions 108 7. And another thing . 124 8. Riemann's Legacy 126 References 143 Suggested Reading 150 About the Author 152 A Word from the Publisher 153 Praise for Simply Riemann “Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity.Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures “Very few mathematicians have exercised an influence on the later development of their science comparable to Riemann’s whose work reshaped whole fields and created new ones. -
Riemann and Partial Differential Equations. a Road to Geometry and Physics
Riemann and Partial Differential Equations. A road to Geometry and Physics Juan Luis Vazquez´ Departamento de Matematicas´ Universidad Autonoma´ de Madrid “Jornada Riemann”, Barcelona, February 2008 “Jornada Riemann”, Barcelona, February 20081 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Outline 1 Mathematics, Physics and PDEs Origins of differential calculus XVIII century Modern times 2 G. F. B. Riemann 3 Riemmann, complex variables and 2-D fluids 4 Riemmann and Geometry 5 Riemmann and the PDEs of Physics Picture gallery “Jornada Riemann”, Barcelona, February 20082 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Mathematics, Physics and PDEs Outline 1 Mathematics, Physics and PDEs Origins of differential calculus XVIII century Modern times 2 G. F. B. Riemann 3 Riemmann, complex variables and 2-D fluids 4 Riemmann and Geometry 5 Riemmann and the PDEs of Physics Picture gallery “Jornada Riemann”, Barcelona, February 20083 Juan Luis Vazquez´ (Univ. Autonoma´ de Madrid) Riemann and Partial Differential Equations / 38 Mathematics, Physics and PDEs Origins of differential calculus Differential Equations. The Origins The Differential World, i.e, the world of derivatives, was invented / discovered in the XVII century, almost at the same time that Modern Science (then called Natural Philosophy), was born. We owe it to the great Founding Fathers, Galileo, Descartes, Leibnitz and Newton. Motivation came from the desire to understand Motion, Mechanics and Geometry. Newton formulated Mechanics in terms of ODEs, by concentrating on the movement of particles. The main magic formula is d2x dx m = F(t; x; ) dt2 dt though he would write dots and not derivatives Leibnitz style. -
Relativistic Spacetime Structure
Relativistic Spacetime Structure Samuel C. Fletcher∗ Department of Philosophy University of Minnesota, Twin Cities & Munich Center for Mathematical Philosophy Ludwig Maximilian University of Munich August 12, 2019 Abstract I survey from a modern perspective what spacetime structure there is according to the general theory of relativity, and what of it determines what else. I describe in some detail both the “standard” and various alternative answers to these questions. Besides bringing many underexplored topics to the attention of philosophers of physics and of science, metaphysicians of science, and foundationally minded physicists, I also aim to cast other, more familiar ones in a new light. 1 Introduction and Scope In the broadest sense, spacetime structure consists in the totality of relations between events and processes described in a spacetime theory, including distance, duration, motion, and (more gener- ally) change. A spacetime theory can attribute more or less such structure, and some parts of that structure may determine other parts. The nature of these structures and their relations of determi- nation bear on the interpretation of the theory—what the world would be like if the theory were true (North, 2009). For example, the structures of spacetime might be taken as its ontological or conceptual posits, and the determination relations might indicate which of these structures is more fundamental (North, 2018). Different perspectives on these questions might also reveal structural similarities with other spacetime theories, providing the resources to articulate how the picture of the world that that theory provides is different (if at all) from what came before, and might be different from what is yet to come.1 ∗Juliusz Doboszewski, Laurenz Hudetz, Eleanor Knox, J.