Relativistic Spacetime Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:0911.0334V2 [Gr-Qc] 4 Jul 2020
Classical Physics: Spacetime and Fields Nikodem Poplawski Department of Mathematics and Physics, University of New Haven, CT, USA Preface We present a self-contained introduction to the classical theory of spacetime and fields. This expo- sition is based on the most general principles: the principle of general covariance (relativity) and the principle of least action. The order of the exposition is: 1. Spacetime (principle of general covariance and tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors); 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field, action for particles). In this order, a particle is a special case of a field existing in spacetime, and classical mechanics can be derived from field theory. I dedicate this book to my Parents: Bo_zennaPop lawska and Janusz Pop lawski. I am also grateful to Chris Cox for inspiring this book. The Laws of Physics are simple, beautiful, and universal. arXiv:0911.0334v2 [gr-qc] 4 Jul 2020 1 Contents 1 Spacetime 5 1.1 Principle of general covariance and tensors . 5 1.1.1 Vectors . 5 1.1.2 Tensors . 6 1.1.3 Densities . 7 1.1.4 Contraction . 7 1.1.5 Kronecker and Levi-Civita symbols . 8 1.1.6 Dual densities . 8 1.1.7 Covariant integrals . 9 1.1.8 Antisymmetric derivatives . 9 1.2 Affine connection . 10 1.2.1 Covariant differentiation of tensors . 10 1.2.2 Parallel transport . 11 1.2.3 Torsion tensor . 11 1.2.4 Covariant differentiation of densities . -
Metric–Affine Gauge Theory of Gravity II. Exact Solutions Abstract
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Metric–affine gauge theory of gravity II. Exact solutions Friedrich W. Hehl∗ and Alfredo Mac´ıas† Departamento de F´ısica Universidad Aut´onoma Metropolitana–Iztapalapa Apartado Postal 55–534, C.P. 09340, M´exico, D.F., Mexico Abstract In continuing our series on metric-affine gravity (see Gronwald, IJMP D6 (1997) 263 for Part I), we review the exact solutions of this theory. file magexac7.tex, 1999-04-09 Typeset using REVTEX ∗E-mail: [email protected]. Permanent address: Institute for Theoretical Physics, University of Cologne, D–50923 K¨oln, Germany †E-mail: [email protected] 1 I. METRIC–AFFINE GRAVITY (MAG) In 1976, a new metric–affine theory of gravitation was published [16]. In this model, k the metric gij and the linear (sometimes also called affine) connection Γij were considered to be independent gravitational field variables. The metric carries 10 and the connection 64 independent components. Although nowadays more general Lagrangians are considered, like the one in Eq.(10), the original Lagrangian density of metric–affine gravity reads √ g = − gij Ric (Γ,∂Γ) + βQQ . (1) VGR0 2κ ij i j h i The Ricci tensor Ric ij depends only on the connection but not on the metric, whereas the Weyl covector Q := gkl g /4 depends on both. Here represents the covariant i − ∇i kl ∇i k derivative with respect to the connection Γij , furthermore g =detgkl, κ is Einstein’s gravitational constant, and β a dimensionless coupling constant. -
Research Article Weyl-Invariant Extension of the Metric-Affine Gravity
CORE Metadata, citation and similar papers at core.ac.uk Provided by Open Access Repository Hindawi Publishing Corporation Advances in High Energy Physics Volume 2015, Article ID 902396, 7 pages http://dx.doi.org/10.1155/2015/902396 Research Article Weyl-Invariant Extension of the Metric-Affine Gravity R. Vazirian,1 M. R. Tanhayi,2 and Z. A. Motahar3 1 Plasma Physics Research Center, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran 2Department of Physics, Islamic Azad University, Central Tehran Branch, Tehran 8683114676, Iran 3Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence should be addressed to M. R. Tanhayi; [email protected] Received 30 September 2014; Accepted 28 November 2014 Academic Editor: Anastasios Petkou Copyright © 2015 R. Vazirian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3. Metric-affine geometry provides a nontrivial extension of the general relativity where the metric and connection are treated as the two independent fundamental quantities in constructing the spacetime (with nonvanishing torsion and nonmetricity). In this paper,westudythegenericformofactioninthisformalismandthenconstructtheWeyl-invariantversionofthistheory.Itisshown that, in Weitzenbock¨ space, the obtained Weyl-invariant action can cover the conformally invariant teleparallel action. Finally, the related field equations are obtained in the general case. 1. Introduction with the metric and torsion-free condition is relaxed; thus, in addition to Christoffel symbols, the affine connection would Extended theories of gravity have become a field of interest contain an antisymmetric part and nonmetric terms as well. -
A Comparison of Differential Calculus and Differential Geometry in Two
1 A Two-Dimensional Comparison of Differential Calculus and Differential Geometry Andrew Grossfield, Ph.D Vaughn College of Aeronautics and Technology Abstract and Introduction: Plane geometry is mainly the study of the properties of polygons and circles. Differential geometry is the study of curves that can be locally approximated by straight line segments. Differential calculus is the study of functions. These functions of calculus can be viewed as single-valued branches of curves in a coordinate system where the horizontal variable controls the vertical variable. In both studies the derivative multiplies incremental changes in the horizontal variable to yield incremental changes in the vertical variable and both studies possess the same rules of differentiation and integration. It seems that the two studies should be identical, that is, isomorphic. And, yet, students should be aware of important differences. In differential geometry, the horizontal and vertical units have the same dimensional units. In differential calculus the horizontal and vertical units are usually different, e.g., height vs. time. There are differences in the two studies with respect to the distance between points. In differential geometry, the Pythagorean slant distance formula prevails, while in the 2- dimensional plane of differential calculus there is no concept of slant distance. The derivative has a different meaning in each of the two subjects. In differential geometry, the slope of the tangent line determines the direction of the tangent line; that is, the angle with the horizontal axis. In differential calculus, there is no concept of direction; instead, the derivative describes a rate of change. In differential geometry the line described by the equation y = x subtends an angle, α, of 45° with the horizontal, but in calculus the linear relation, h = t, bears no concept of direction. -
Spacetime and Geometry: an Introduction to General Relativity Pdf, Epub, Ebook
SPACETIME AND GEOMETRY: AN INTRODUCTION TO GENERAL RELATIVITY PDF, EPUB, EBOOK Sean M. Carroll,John E. Neely,Richard R. Kibbe | 513 pages | 28 Sep 2003 | Pearson Education (US) | 9780805387322 | English | New Jersey, United States Spacetime and Geometry: An Introduction to General Relativity PDF Book Likewise an explorer from region IV could have a brief look at region I before perishing. Mathematics Kronecker delta Levi-Civita symbol metric tensor nonmetricity tensor Christoffel symbols Ricci curvature Riemann curvature tensor Weyl tensor torsion tensor. Thorne, John Archibald Wheeler Gravitation. When using coordinate transformations as described above, the new coordinate system will often appear to have oblique axes compared to the old system. Indeed, they find some remarkable new regions of spacetime! In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress—energy tensor representing matter, for instance. Views Read Edit View history. Modern cosmological models are a bit more complicated, but retain those features. I was misled even lied to by JG on math. Bitte versuchen Sie es erneut. Considering the number of things I did not know it was a good idea to postpone reading this section until now. Tuesday, 25 February Einstein's equation. So I decided to test the flatness idea in two dimensions Principles of Cosmology and Gravitation. It was supposed to be impossible to travel between regions I and IV of the Kruskal diagram and here Carroll -
SPINORS and SPACE–TIME ANISOTROPY
Sergiu Vacaru and Panayiotis Stavrinos SPINORS and SPACE{TIME ANISOTROPY University of Athens ————————————————— c Sergiu Vacaru and Panyiotis Stavrinos ii - i ABOUT THE BOOK This is the first monograph on the geometry of anisotropic spinor spaces and its applications in modern physics. The main subjects are the theory of grav- ity and matter fields in spaces provided with off–diagonal metrics and asso- ciated anholonomic frames and nonlinear connection structures, the algebra and geometry of distinguished anisotropic Clifford and spinor spaces, their extension to spaces of higher order anisotropy and the geometry of gravity and gauge theories with anisotropic spinor variables. The book summarizes the authors’ results and can be also considered as a pedagogical survey on the mentioned subjects. ii - iii ABOUT THE AUTHORS Sergiu Ion Vacaru was born in 1958 in the Republic of Moldova. He was educated at the Universities of the former URSS (in Tomsk, Moscow, Dubna and Kiev) and reveived his PhD in theoretical physics in 1994 at ”Al. I. Cuza” University, Ia¸si, Romania. He was employed as principal senior researcher, as- sociate and full professor and obtained a number of NATO/UNESCO grants and fellowships at various academic institutions in R. Moldova, Romania, Germany, United Kingdom, Italy, Portugal and USA. He has published in English two scientific monographs, a university text–book and more than hundred scientific works (in English, Russian and Romanian) on (super) gravity and string theories, extra–dimension and brane gravity, black hole physics and cosmolgy, exact solutions of Einstein equations, spinors and twistors, anistoropic stochastic and kinetic processes and thermodynamics in curved spaces, generalized Finsler (super) geometry and gauge gravity, quantum field and geometric methods in condensed matter physics. -
Arxiv:Cond-Mat/0006280V1 19 Jun 2000 H Ulda Group Euclidean the Fdsoain.Frhroe H Oino Ilcto Shgl Dissip Highly Is Dislocation Point of the Motion Damping)
Dislocation theory as a 3-dimensional translation gauge theory∗ Markus Lazar† Max-Planck-Institut f¨ur Metallforschung Institut f¨ur Physik D–70569 Stuttgart, Germany (November 1, 2018) We consider the static elastoplastic theory of dislocations in an elastoplastic ma- terial. We use a Yang-Mills type Lagrangian (the teleparallel equivalent of Hilbert- Einstein Lagrangian) and some Lagrangians with anisotropic constitutive laws. The translational part of the generalized affine connection is utilized to describe the the- ory of elastoplasticity in the framework of a translation gauge theory. We obtain a system of Yang-Mills field equations which express the balance of force and moment. Keywords: Dislocation theory; force stress; moment stress to appear in Annalen der Physik (2000) I. INTRODUCTION The field theory of defects in crystals has an old history. First, Kondo [1] and Bilby et al. [2] described independently a dislocation theory in the language of differential geometry. They proved the equivalence of dislocation density to Cartan’s torsion. Kr¨oner and Seeger [3,4] completed this theory to a non-linear theory of elasticity with dislocations and internal stress. Recent develop- ments of this theory are given in [5,6]. The first step towards a gauge theory of defects had been taken by Turski [7]. He derived the equilibrium equations by means of a variational principle. Edelen et al. [8,9] developed a theory of dislocations and disclinations as a gauge theory of the Euclidean group SO(3)×⊃ T (3) and a pure dislocation theory as a translational or T (3)-gauge theory. Unfortunately, they did not distinguish between disclinations in solid and in liquid crystals. -
Can One Design a Geometry Engine? on the (Un) Decidability of Affine
Noname manuscript No. (will be inserted by the editor) Can one design a geometry engine? On the (un)decidability of certain affine Euclidean geometries Johann A. Makowsky Received: June 4, 2018/ Accepted: date Abstract We survey the status of decidabilty of the consequence relation in various ax- iomatizations of Euclidean geometry. We draw attention to a widely overlooked result by Martin Ziegler from 1980, which proves Tarski’s conjecture on the undecidability of finitely axiomatizable theories of fields. We elaborate on how to use Ziegler’s theorem to show that the consequence relations for the first order theory of the Hilbert plane and the Euclidean plane are undecidable. As new results we add: (A) The first order consequence relations for Wu’s orthogonal and metric geometries (Wen- Ts¨un Wu, 1984), and for the axiomatization of Origami geometry (J. Justin 1986, H. Huzita 1991) are undecidable. It was already known that the universal theory of Hilbert planes and Wu’s orthogonal geom- etry is decidable. We show here using elementary model theoretic tools that (B) the universal first order consequences of any geometric theory T of Pappian planes which is consistent with the analytic geometry of the reals is decidable. The techniques used were all known to experts in mathematical logic and geometry in the past but no detailed proofs are easily accessible for practitioners of symbolic computation or automated theorem proving. Keywords Euclidean Geometry · Automated Theorem Proving · Undecidability arXiv:1712.07474v3 [cs.SC] 1 Jun 2018 J.A. Makowsky Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel E-mail: [email protected] 2 J.A. -
SEMISIMPLE WEAKLY SYMMETRIC PSEUDO–RIEMANNIAN MANIFOLDS 1. Introduction There Have Been a Number of Important Extensions of Th
SEMISIMPLE WEAKLY SYMMETRIC PSEUDO{RIEMANNIAN MANIFOLDS ZHIQI CHEN AND JOSEPH A. WOLF Abstract. We develop the classification of weakly symmetric pseudo{riemannian manifolds G=H where G is a semisimple Lie group and H is a reductive subgroup. We derive the classification from the cases where G is compact, and then we discuss the (isotropy) representation of H on the tangent space of G=H and the signature of the invariant pseudo{riemannian metric. As a consequence we obtain the classification of semisimple weakly symmetric manifolds of Lorentz signature (n − 1; 1) and trans{lorentzian signature (n − 2; 2). 1. Introduction There have been a number of important extensions of the theory of riemannian symmetric spaces. Weakly symmetric spaces, introduced by A. Selberg [8], play key roles in number theory, riemannian geometry and harmonic analysis. See [11]. Pseudo{riemannian symmetric spaces, including semisimple symmetric spaces, play central but complementary roles in number theory, differential geometry and relativity, Lie group representation theory and harmonic analysis. Much of the activity there has been on the Lorentz cases, which are of particular interest in physics. Here we study the classification of weakly symmetric pseudo{ riemannian manifolds G=H where G is a semisimple Lie group and H is a reductive subgroup. We apply the result to obtain explicit listings for metrics of riemannian (Table 5.1), lorentzian (Table 5.2) and trans{ lorentzian (Table 5.3) signature. The pseudo{riemannian symmetric case was analyzed extensively in the classical paper of M. Berger [1]. Our analysis in the weakly symmetric setting starts with the classifications of Kr¨amer[6], Brion [2], Mikityuk [7] and Yakimova [16, 17] for the weakly symmetric riemannian manifolds. -
Finite Projective Geometries 243
FINITE PROJECTÎVEGEOMETRIES* BY OSWALD VEBLEN and W. H. BUSSEY By means of such a generalized conception of geometry as is inevitably suggested by the recent and wide-spread researches in the foundations of that science, there is given in § 1 a definition of a class of tactical configurations which includes many well known configurations as well as many new ones. In § 2 there is developed a method for the construction of these configurations which is proved to furnish all configurations that satisfy the definition. In §§ 4-8 the configurations are shown to have a geometrical theory identical in most of its general theorems with ordinary projective geometry and thus to afford a treatment of finite linear group theory analogous to the ordinary theory of collineations. In § 9 reference is made to other definitions of some of the configurations included in the class defined in § 1. § 1. Synthetic definition. By a finite projective geometry is meant a set of elements which, for sugges- tiveness, are called points, subject to the following five conditions : I. The set contains a finite number ( > 2 ) of points. It contains subsets called lines, each of which contains at least three points. II. If A and B are distinct points, there is one and only one line that contains A and B. HI. If A, B, C are non-collinear points and if a line I contains a point D of the line AB and a point E of the line BC, but does not contain A, B, or C, then the line I contains a point F of the line CA (Fig. -
Geometry: Euclid and Beyond, by Robin Hartshorne, Springer-Verlag, New York, 2000, Xi+526 Pp., $49.95, ISBN 0-387-98650-2
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 39, Number 4, Pages 563{571 S 0273-0979(02)00949-7 Article electronically published on July 9, 2002 Geometry: Euclid and beyond, by Robin Hartshorne, Springer-Verlag, New York, 2000, xi+526 pp., $49.95, ISBN 0-387-98650-2 1. Introduction The first geometers were men and women who reflected on their experiences while doing such activities as building small shelters and bridges, making pots, weaving cloth, building altars, designing decorations, or gazing into the heavens for portentous signs or navigational aides. Main aspects of geometry emerged from three strands of early human activity that seem to have occurred in most cultures: art/patterns, navigation/stargazing, and building structures. These strands developed more or less independently into varying studies and practices that eventually were woven into what we now call geometry. Art/Patterns: To produce decorations for their weaving, pottery, and other objects, early artists experimented with symmetries and repeating patterns. Later the study of symmetries of patterns led to tilings, group theory, crystallography, finite geometries, and in modern times to security codes and digital picture com- pactifications. Early artists also explored various methods of representing existing objects and living things. These explorations led to the study of perspective and then projective geometry and descriptive geometry, and (in the 20th century) to computer-aided graphics, the study of computer vision in robotics, and computer- generated movies (for example, Toy Story ). Navigation/Stargazing: For astrological, religious, agricultural, and other purposes, ancient humans attempted to understand the movement of heavenly bod- ies (stars, planets, Sun, and Moon) in the apparently hemispherical sky. -
Riemann's Contribution to Differential Geometry
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematics 9 (1982) l-18 RIEMANN'S CONTRIBUTION TO DIFFERENTIAL GEOMETRY BY ESTHER PORTNOY UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801 SUMMARIES In order to make a reasonable assessment of the significance of Riemann's role in the history of dif- ferential geometry, not unduly influenced by his rep- utation as a great mathematician, we must examine the contents of his geometric writings and consider the response of other mathematicians in the years immedi- ately following their publication. Pour juger adkquatement le role de Riemann dans le developpement de la geometric differentielle sans etre influence outre mesure par sa reputation de trks grand mathematicien, nous devons &udier le contenu de ses travaux en geometric et prendre en consideration les reactions des autres mathematiciens au tours de trois an&es qui suivirent leur publication. Urn Riemann's Einfluss auf die Entwicklung der Differentialgeometrie richtig einzuschZtzen, ohne sich von seinem Ruf als bedeutender Mathematiker iiberm;issig beeindrucken zu lassen, ist es notwendig den Inhalt seiner geometrischen Schriften und die Haltung zeitgen&sischer Mathematiker unmittelbar nach ihrer Verijffentlichung zu untersuchen. On June 10, 1854, Georg Friedrich Bernhard Riemann read his probationary lecture, "iber die Hypothesen welche der Geometrie zu Grunde liegen," before the Philosophical Faculty at Gdttingen ill. His biographer, Dedekind [1892, 5491, reported that Riemann had worked hard to make the lecture understandable to nonmathematicians in the audience, and that the result was a masterpiece of presentation, in which the ideas were set forth clearly without the aid of analytic techniques.