Assembly and Evolution of the Amazonian Biota and Its Environment: an Integrative Approach

Total Page:16

File Type:pdf, Size:1020Kb

Assembly and Evolution of the Amazonian Biota and Its Environment: an Integrative Approach Assembly and evolution of the Amazonian Biota and its environment: An integrative approach Lúcia G. Lohmann (Universidade de São Paulo) Joel Cracraft (American Museum of Natural History) FAPESP 2012/50260-6 NSF 1241066 !"#$%&'($)*+,#))$-#"$.#/+ Brazil Canada >/2?*"'2%$%*+%*+DF#+G$4)#+ >/2?*"'279+#5+C#"#/7#+ >/2?*"'2%$%*+B*%*"$)+%*+=#2H'+ United States >/2?*"'2%$%*+B*%*"$)+%#+G$"H+ 01*"2($/+34'*41+#5++ >/2?*"'2%$%*+K'7$%4$)++ ++6$74"$)+82'7#"9+ ++%*+,$1L2/$'+ ,279+>/2?*"'279+6*:+;#"<+ 34'*4+G$"$*/'*+K1N)2#+=#*)%2+ B2*)%+34'*41+#5++ ++6$74"$)+82'7#"9+ J/'.747#+6$(2#/$)+%*++ ++G*'O42'$'+%$+01$PQ/2$++ 32%%)*+C*//*''**++ ++D7$7*+>/2?*"'279+ Argentina 6$74"$)+82'7#"9+34'*41++ ++E#'+0/A*)*'+,#4/79+ ,I6J,KC&J/'.747#+D4L*"2#"++ %*+K/7#1#)#A2$M+C4(41H/+ 6*:+;#"<+!#7$/2($)+=$"%*/+ Great Britain >/2?*"'279+#5+32(@2A$/+ >/2?*"'279+#5+K%2/-4"A@+ >/2?*"'279+#5+,#)#"$%#+ The Amazon Basin • One of the most biodiverse areas on Earth but little is still known about the processes that led to such great diversity • Many uncertainties remain about its geological history, age of formation, and extension of its aquatic systems • Some models claim that the Amazon was established during the Miocene while others have established its origin in the Pleistocene • Broad Objective: Achieve a new evolutionary and environmental synthesis of Amazonia of 20 3 !""#$%&'(")"&)*+"$#,*&*(-.."$%")&*-..)&/01&&Meeting these scientific challenge calls for +$'"%1-#2"&*10))34+)*+5.+$-16&)'74+")&integrative cross-disciplinary studies PART I Characterization of Amazonian biodiversity - How is biodiversity spatially distributed across Amazonia? - How are species distributions organized into patterns of endemism? - What are the biotic and abiotic environmental associations with those diversity patterns? Herbaria with significant Amazonian collections !"#$%& '( )*+*,* - ./"012 3( - Existing Amazonian Plant Specimens: ca. 1.5 million - Collection Density: 0.15-0.20 specimens/km2 (contrast with England: ca. 28 specimens/km2) Digitizing Specimens Aggregating Data Data Limitations - Misidentified specimens - Specimens without coordinates - Specimens with wrong coordinates Vertebrate Data sets • There are at least 400.000 records of vertebrates from Amazonia available at GBIF, of these: Birds = 170.000 records Primates = 6.000 records (31.000 georeferrenced) (2.000 georeferrenced) Collaborating Institutions • AMNH hold ca. 67.000 specimens • FMNH holds ca. 58.000 • INPA, Museu Goeldi, MZUSP & other Brazilian collaborators Amphilophium Arrabidaea Arrabidaea paniculatum affinis rego Arrabidaea Anemopaegma Adenocalymma chica laeve bracteatum What are the patterns of diversity and endemism within groups? Are those patterns congruent across groups? Do these patterns relate to the environmental history of Amazonia? Data sets will be made available through Sinbiota and through “The Evolutionary Atlas of Amazonian Biodiversity” a WebPortal that is being constructed as part of this project Atlas of Amazonian Biodiversity Main Goals: • To communicate what is known and what is not known about Amazonian biodiversity and evolution. • To inspire people to understand this incredible landscape and its plant and animal life from an evolutionary perspective. PART II Phylogenetic and phylogeographic history of selected Amazonian taxa - What has been the evolutionary history of the Amazonian biota and how was it generated? - Selected Organisms: i. Butterflies (selected clades of Nymphalidae & Riodinidae) ii. Primates (Callicebus, Cacajao, Chiropotes, Mico, Saimiri, Saguinus) iii. Birds (selected clades of Amazonian birds) iv. Plants (Bignoniaceae & Lecythidaceae) Mimetic butterflies Advantages of this system: - Well-sampled across their ranges - Well-understood from a systematic perspective - Geographically variable with congruent distributions - Recently-enough diverged to allow for plausible molecular- clock estimates !"#$(<&=$><($ -?(""(,,((&;*+*(&.")@($,)*A4 !"#$%&'$()*+,&-./01!234 5+$)"+&678+,&-19/!:.;34 Phylogenetic relationships of the butterfly family Nymphalidae based on nDNA & mtDNA data (Wahlberg et al. 2009) ;7BC+D)EA&F+"+)"+( ?$)B(&0*G>D))")& !"#$$"%&'()'% !"*$$$")+,-.%&'()/("-.('%012-3% H("7,&!"#$%&'$() !"#$"%&'()'% !"24'-"#$$"-.('%012-3% Phylogeography and speciation in Heliconius hermathena (Lepidoptera; Nymphalidae; Heliconiini) in Amazonian sand forests (“campinaranas”) Selected Neotropical Monkeys - Estimate temporal and spatial diversification patterns of selected genera, especially: (a) Callicebus (b) Cacajao (c) Chiropotes (d) Mico (e) Saimiri (f) Saguinus - Correlate diversification patterns to physical barriers along the geographic distribution of taxa Jean Boubli (University of Salford, UK) Horácio Schneider & Iracilda Sampaio (UFPA) Phylogeny of the New World Titi Monkeys (Callicebus) • Sampling • 15 species • 73 individuals J. Boubli et al. (2014, MPE) Putting our results into perspectives .$/0%1,2$% orquatu "3% T !"#$% &'"()%*)+,-% <"=$'%>?@%AB4% C))$'%>?@%AB4Group torquatus% 4,5$'6$07$% 1 enus 8.9:;% G 1 torquatus 8.86 6.60 11.14 Group personatus ersonatus 2 personatus 7.04 4.70 Group9.09P donacophilus 2 3 donacophilus 3.69 2.39 5.04 enus 4 cupreus-moloch 2.07 3 1.44 2.72G ! Group cupreus Mico – Callithrix 5.96 3.83 8.59 4 Cebus – Sapajus 6 3.13 9.35 ‘New’ Cacajao -Chiropotes 6.91 4.56 9.34 Lagothrix-Brachyteles 9.53 6.10 Genus 13.44 Leontopithecus – Callimico/Cebuella/ 13.55 9.86 17.27 Mico/Callithrix Group molochDrawings by Stephen Nash ! !"#$%#"&'"()*+,-.)-"/-)0$" 1)**.2"342.0-45)6"6)7,*" Molecular Phylogenetics and Evolution xxx (2014) xxx–xxx Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Spatial and temporal patterns of diversification on the Amazon: A test of the riverine hypothesis for all diurnal primates of Rio Negro and Rio Branco in Brazil a,b, b c,d c,e Jean P. Boubli ⇑, Camila Ribas , Jessica W. Lynch Alfaro , Michael E. Alfaro , Maria Nazareth F. da Silva b, Gabriela M. Pinho f, Izeni P. Farias f a School of Environment and Life Sciences, 315 Peel Building, University of Salford, Salford M5 4WT, UK b Instituto Nacional de Pesquisas da Amazonia INPA, Manaus, Brazil c Institute for Society and Genetics, 1321 Rolfe Hall, University of California, Los Angeles, CA 90095, USA d Department of Anthropology, University of California, Los Angeles, CA 90095, USA e Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA f Universidade Federal do Amazonas, Laboratório de Evolução e Genética Animal, Manaus, AM, Brazil article info abstract Article history: The role of Amazonian rivers as drivers of speciation through vicariance remains controversial. Here we Received 1 October 2013 explore the riverine hypothesis by comparing spatial and temporal concordances in pattern of diversifi- Revised 27 August 2014 cation for all diurnal primates of Rio Negro and its largest tributary, Rio Branco. We built a comprehensive Accepted 9 September 2014 comparative phylogenetic timetree to identify sister lineages of primates based on mitochondrial cyto- Available online xxxx chrome b DNA sequences from 94 samples, including 19 of the 20 species of diurnal primates from our study region and 17 related taxa from elsewhere. Of the ten primate genera found in this region, three Keywords: had populations on opposite banks of Rio Negro that formed reciprocally monophyletic clades, with Amazonia roughly similar divergence times (Cebus: 1.85 Ma, HPD 95% 1.19–2.62; Callicebus: 0.83 Ma HPD 95% Platyrrhini Phylogeography 0.36–1.32, Cacajao: 1.09 Ma, 95% HPD 0.58–1.77). This also coincided with time of divergence of several River barrier allopatric species of Amazonian birds separated by this river as reported by other authors. Our data offer Riverine hypothesis support for the riverine hypothesis and for a Plio-Pleistocene time of origin for Amazonian drainage sys- Vicariance tem. We showed that Rio Branco was an important geographical barrier, limiting the distribution of six primate genera: Cacajao, Callicebus, Cebus to the west and Pithecia, Saguinus, Sapajus to the east. The role of this river as a vicariant agent however, was less clear. For example, Chiropotes sagulata on the left bank of the Rio Branco formed a clade with C. chiropotes from the Amazonas Department of Venezuela, north of Rio Branco headwaters, with C. israelita on the right bank of the Rio Branco as the sister taxon to C. chi- ropotes + C. sagulata. Although we showed that the formation of the Rio Negro was important in driving diversification in some of our studied taxa, future studies including more extensive sampling of markers across the genome would help determine what processes contributed to the evolutionary history of the remaining primate genera. Ó 2014 Elsevier Inc. All rights reserved. 1. Introduction New World, with the greatest concentration in the Amazon Basin. The origins of such high species diversity remain poorly under- Of the more than 685 taxa (species and subspecies) of recog- stood. One of the first proponents of a mechanism to account for nized primates (Mittermeier et al., 2013) approximately one third the high primate species diversity in Amazonia was the British nat- (164 taxa, 20 genera, 5 families; Paglia et al., 2012) are found in the uralist Alfred R. Wallace. While on a collecting expedition to Brazil in the mid 19th century, Wallace noticed that primate species on opposite banks of large Amazonian rivers substituted one another Corresponding author at: School of Environment
Recommended publications
  • Tansley Review Evolution of Development of Vascular Cambia and Secondary Growth
    New Phytologist Review Tansley review Evolution of development of vascular cambia and secondary growth Author for correspondence: Rachel Spicer1 and Andrew Groover2 Andrew Groover 1The Rowland Institute at Harvard, Cambridge, MA, USA; 2Institute of Forest Genetics, Pacific Tel: +1 530 759 1738 Email: [email protected] Southwest Research Station, USDA Forest Service, Davis, CA, USA Received: 29 December 2009 Accepted: 14 February 2010 Contents Summary 577 V. Evolution of development approaches for the study 587 of secondary vascular growth I. Introduction 577 VI. Conclusions 589 II. Generalized function of vascular cambia and their 578 developmental and evolutionary origins Acknowledgements 589 III. Variation in secondary vascular growth in angiosperms 581 References 589 IV. Genes and mechanisms regulating secondary vascular 584 growth and their evolutionary origins Summary New Phytologist (2010) 186: 577–592 Secondary growth from vascular cambia results in radial, woody growth of stems. doi: 10.1111/j.1469-8137.2010.03236.x The innovation of secondary vascular development during plant evolution allowed the production of novel plant forms ranging from massive forest trees to flexible, Key words: forest trees, genomics, Populus, woody lianas. We present examples of the extensive phylogenetic variation in sec- wood anatomy, wood formation. ondary vascular growth and discuss current knowledge of genes that regulate the development of vascular cambia and woody tissues. From these foundations, we propose strategies for genomics-based research in the evolution of development, which is a next logical step in the study of secondary growth. I. Introduction this pattern characterizes most extant forest trees, significant variation exists among taxa, ranging from extinct woody Secondary vascular growth provides a means of radially lycopods and horsetails with unifacial cambia (Cichan & thickening and strengthening plant axes initiated during Taylor, 1990; Willis & McElwain, 2002), to angiosperms primary, or apical growth.
    [Show full text]
  • An Overview About the Chemical Composition and Biological Activity of Medicinal Species Found in the Brazilian Amazon
    Journal of Applied Pharmaceutical Science Vol. 6 (12), pp. 233-238, December, 2016 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2016.601234 ISSN 2231-3354 An Overview about the chemical composition and Biological Activity of Medicinal species found in the Brazilian Amazon Fernanda Brum Pires1, Carolina Bolssoni Dolwitsch1, Valéria Dal Prá1, Débora Luana Monego2, Viviane Maria Schneider2, Roberta Fabrício Loose2, Marcella Emília Petra Schmidt2, Lucas P. Bressan2, Marcio Antônio Mazutti³, Marcelo Barcellos da Rosa1,2* 1Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. 2Post-Graduate Program in Chemistry, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. ³Department of Chemical Engineering, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. ABSTRACT ARTICLE INFO Article history: This paper presents an overview on the chemical composition and biological activity of plants found in the Received on: 20/05/2016 Brazilian Amazon – Bauhinia variegata, Cecropia obtusa, Cecropia palmata, Connarus perrottetti var. Revised on: 14/09/2016 angustifolius, Chrysobalanus icaco and Mansoa alliacea. The lack of information regarding these species, along Accepted on: 11/11/2016 with their importance given their pharmacological and nutritional use in Latin American folk medicine, justifies Available online: 28/12/2016 the demand for this study. However, various interesting and important actions, as antioxidant, antibacterial, Key words: cytotoxic, hypoglycemic, antifungal, antiangiogenic, antitumor, anti-inflammatory, antiulcer, and Biological activity, chemical chemopreventive have been modestly reported so far. In other words, these species can play a very important composition, Brazilian role in terms of biological and chemical activity, but their pharmacology is still poorly investigated.
    [Show full text]
  • Phytochemical and In-Vitro Evaluation of Anti-Oxidant Activity of Mansoa Alliacea Leaves
    Acta Scientific Pharmaceutical Sciences (ISSN: 2581-5423) Volume 4 Issue 10 October 2020 Research Article Phytochemical and In-Vitro Evaluation of Anti-oxidant Activity of Mansoa alliacea Leaves SK Ameenabee1, A Lakshmana Rao2, P Suguna Rani3, T Sandhya4, Received: August 13, 2020 N Teja5*, G Ashu5, V Bhavya Naga Vani6, CH Purna Durganjali6 and Published: September 10, 2020 N Pavani7 © All rights are reserved by N Teja., et al. 1Associate Professor, Department of Pharmacology, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 2Professor and Principal, Department of Pharmaceutical Analysis, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 3Department of Pharmacology, Sri Venkateswara University of Pharmaceutical Sciences, Tirupathi, India 4Department of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Viswavidhyalayam, Tirupathi, India 5Department of Pharmaceutics, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 6Department of Pharmaceutical Analysis, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 7Department of Pharmacy, V.V. Institute of Pharmaceutical Sciences, Guldavalleru, India *Corresponding Author: N Teja, Department of Pharmaceutics, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India. Abstract Mansoa alliacea Lam. (Family: Bignoniaceae) is a native plant from Amazonian basin in South America. Plant derivatives are used study was aimed to determine the pharmacognostic and phy- tochemicals present in Mansoa alliacea. Micro and Organoleptic characteristics of fresh and dried leaf samples had been examined. as an anti-inflammatory, anti-oxidant, antiseptic and anti-bacterial. The Physicochemical chemical variables have been done by using WHO suggested variables, preliminary phytochemical of leaf sample of the leaves of M. alliacea. had been performed to identify the presence of alkaloids, flavonoids, tannins and phenols, and quinones using the ethanolic extract Keywords: M.
    [Show full text]
  • Pollen Morphology of Fridericia Mart. (Bignoniaceae) from Brazilian Forest Fragments
    Braz. J. Bot (2014) 37(1):83–94 DOI 10.1007/s40415-013-0042-1 Pollen morphology of Fridericia Mart. (Bignoniaceae) from Brazilian forest fragments Cintia Neves de Souza • Eduardo Custo´dio Gasparino Received: 18 October 2013 / Accepted: 3 December 2013 / Published online: 17 December 2013 Ó Botanical Society of Sao Paulo 2013 Abstract A pollen morphology study of 10 Brazilian Introduction native species of Fridericia (Bignoniaceae) from forest fragments was performed using light microscopy and The fragmentation process of forest habitats has increased scanning electron microscopy, in search of new characters in most ecosystems particularly in the tropics, so this has that might increase knowledge of pollen morphology of the caused, in general, the loss of the biodiversity (Turner species, and also to help the taxonomic characterization of 1996; Myers et al. 2000). The northwestern of Sa˜o Paulo the genus. The pollen grains were acetolysed, measured, State, Brazil, is a region consisting of vegetation that photographed, and described qualitatively. The quantitative includes small fragments of semideciduous forest and large data were analyzed by descriptive statistics and multivar- areas of Cerrado (Kronka et al. 1993). This structure is a iate statistics. Non-acetolysed pollen grains were observed result of fragmentation in natural forest (Atlantic Forest of under scanning electron microscopy for further details of Brazil), which currently only take up 5 % of the original exine and pollen surface. The pollen grains are isopolar, forest
    [Show full text]
  • Ethnopharmacology, Biological Activity and Chemical Characterization of Mansoa Alliacea
    MOL2NET, 2017, 3, doi:10.3390/mol2net-03-04617 1 MOL2NET, International Conference Series on Multidisciplinary Sciences MDPI http://sciforum.net/conference/mol2net-03 Ethnopharmacology, biological activity and chemical characterization of Mansoa alliacea. A review about a promising plant from Amazonian region. Angélica Tasambay Salazar1,*, Laura Scalvenzi1, Andrea Stefany Piedra Lescano1, Matteo Radice1. 1 Universidad Estatal Amazónica, Km 2 ½ Via Napo (paso lateral), Puyo, Pastaza, Ecuador; E- Mail: [email protected]; [email protected]; [email protected]; [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +593 032-888-118 / 032-889-118112. Graphical Abstract Abstract. Mansoa alliacea is a native plant from Mansoa alliacea Amazonian basin and has great ancestral value for the local communities. M. alliacea is part of the traditional medicine for healers and shamans and has multiple uses due to the presence of several chemical constituents with important pharmacological properties. Plant derivatives are used as: antiseptic, diuretic, analgesic, antipyretic. Folk medicine is also related to the treatment of many diseases such as: reduction of blood pressure, against atherosclerosis, arthritis and rheumatism. Researches have also proven an appreciable antioxidant property, which revalue it for cosmetic purposes. Chemical composition of plant derivatives includes as main Traditional medicine compounds: diallyl disulphide, diallyl Magical and ritual uses Cold, fever trisulphide, alliin, allicin, propylallyl, divinyl Rheumatism Food, spice sulfide, diallyl sulfide, dimethyl sulfide, Antimalarial Muscle pain daucosterol, beta-sitosterol, fucosterol, Biological activities stigmasterol, iridoides and isothiocyanates, Antioxidant Antifungal naphthoquinones, alkaloids, saponins, flavones. Antibacterial Anti-inflammatory The present review includes ethnobotanical and Larvicidal Antiplasmodial pharmacological data that are related to the chemical composition of M.
    [Show full text]
  • Lahsun Bel (Mansoa Alliacea)
    WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES Lal. World Journal of Pharmacy and Pharmaceutical Sciences SJIF Impact Factor 7.632 Volume 8, Issue 11, 308-316 Review Article ISSN 2278 – 4357 CRITICAL REVIEW OF ANUKTA DRAVYA “LAHSUN BEL (MANSOA ALLIACEA) Dr. Lal* India. ABSTRACT Article Received on 09 Sep. 2019, Medicinal plants are scientifically documented in Ayurvedic literature Revised on 30 Sep. 2019, based on the sound fundamentals of rasa (Taste), guna (Property), Accepted on 21 Oct. 2019, DOI: 10.20959/wjpps201911-14670 virya (Potency), vipaka (Metabolism) and prabhava (Specific action).Vedic to Samhita and Samhita to Nighantu Kala evidenced the chronological upgradation of medicinal plants. Inclusion of new *Corresponding Author Dr. Lal dravyas (Drugs) has been the tradition of Ayurveda. Nighantukaras India. especially played a great role in this respect e.g. However, many folklore and exotic plants existing in India have not been yet stated in Ayurvedic Samhitas or Nighantus, Such are turned as „anukta dravya’. These may include dravya like cissus rependa Vahl. (Pani bel), Mansoa alliacea Lam. (Lahsun bel) etc. Day by day important medicinal plants are depleting but fortunately we have dense folklore herbs which should be thoroughly explored, studied and included in Ayurvedic pharmacopeia. Mansoa alliacea (Lam.) is one of anukta dravya. Hence present study of this article review of Mansoa alliacea, uses of M. alliacea, ethnobotanical information are described. KEYWORDS: Mansoa alliacea, Anukta dravya, Lahsun bel. INTRODUCTION Mansoa alliacea Lam. (Family Bignoniaceae) is a native plant from Amazonian basin. This plant is mainly found in Southern America but it is also found tropical rain forest region in India.
    [Show full text]
  • Mansoa Alliacea Extract Presents Antinociceptive Effect in a Chronic
    Neurochemistry International 122 (2019) 157–169 Contents lists available at ScienceDirect Neurochemistry International journal homepage: www.elsevier.com/locate/neuint Mansoa alliacea extract presents antinociceptive effect in a chronic inflammatory pain model in mice through opioid mechanisms T Fernanda Regina Hamanna,1, Indiara Bruscoa,1, Gabriela de Campos Severoa, ∗ Leandro Machado de Carvalhob, Henrique Faccinb, Luciana Gobob, Sara Marchesan Oliveiraa, , ∗∗ Maribel Antonello Rubina,c, a Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil b Chemistry Graduate Program, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil c Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil ARTICLE INFO ABSTRACT Keywords: In some chronic disorders, as in arthritis, the inflammatory pain persists beyond the inflammation control be- Allodynia coming pathological. Its treatment shows limited efficacy and adverse effects which compromises patients' Hyperalgesia quality of life. Mansoa alliacea, known as ‘cipo alho’, is popularly used as analgesic and others species of this CFA genus show anti-inflammatory actions. We investigated the anti-inflammatory and antinociceptive potential of Arthritis M. alliacea extract in an inflammatory pain model which presents inflammatory characteristics similar to those Cipo-alho caused by arthritis, through of the intraplantar injection of complete Freund's adjuvant (CFA) in mice. The extract chromatographic analysis revealed the presence of ρ-coumaric, ferulic and chlorogenic acids, luteolin, and apigenin. The treatment with M. alliacea prevented and reversed the CFA-induced mechanical allodynia with maximum inhibition (Imax) of 100% and 90 ± 10%, respectively.
    [Show full text]
  • Redalyc.Initial Growth of Mansoa Alliacea (Bignoniaceae), Species of Interest in the Amazon Region of Ecuador
    Cuban Journal of Agricultural Science ISSN: 0864-0408 [email protected] Instituto de Ciencia Animal Cuba Abril, R.; Ruiz, T.; Alonso, J.; Cabrera, Génova Initial growth of Mansoa alliacea (Bignoniaceae), species of interest in the Amazon region of Ecuador Cuban Journal of Agricultural Science, vol. 50, núm. 4, 2016, pp. 673-682 Instituto de Ciencia Animal San José de las Lajas, Cuba Available in: https://www.redalyc.org/articulo.oa?id=653768177001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Cuban Journal of Agricultural Science, Volume 50, Number 4, 2016. 50th Anniversary. 673 Initial growth of Mansoa alliacea (Bignoniaceae), species of interest in the Amazon region of Ecuador Crecimiento inicial de Mansoa alliacea (Bignoniaceae), especie de interés en la región amazónica del Ecuador R.Abril1, T.Ruiz2, J.Alonso2 and Génova Cabrera3 1Universidad Estatal Amazónica, Departamento de Ciencias de la Vida, carrera de Ingeniería Ambiental km 2 ½ Vía a Napo, Pastaza, Ecuador 2Instituto de Ciencia Animal, Apartado Postal 24, San José de las Lajas, Mayabeque, Cuba 3PRAGROS, km 2 ½ vía a Tarqui, Pastaza, Ecuador Email: [email protected] In order to know the growth characteristics of Mansoa alliaceae, Para conocer las características de crecimiento de Mansoa alliaceae the initial growth up to 320 days were recorded, from the se registró el crecimiento inicial hasta los 320 días, desde la aparición appearance of the shoot in the height of the plant, stem diameter, del brote en las medidas altura de la planta, diámetro del tallo, en las in which linear and nonlinear models were evaluated.
    [Show full text]
  • Dimensions of Biodiversity
    Dimensions of Biodiversity NATIONAL SCIENCE FOUNDATION CO-FUNDED BY 2010–2015 PROJECTS Introduction 4 Project Abstracts 2015 8 Project Updates 2014 30 Project Updates 2013 42 Project Updates 2012 56 Project Updates 2011 72 Project Updates 2010 88 FRONT COVER IMAGES A B f g h i k j C l m o n q p r D E IMAGE CREDIT THIS PAGE FRONT COVER a MBARI & d Steven Haddock f Steven Haddock k Steven Haddock o Carolyn Wessinger Peter Girguis e Carolyn g Erin Tripp l Lauren Schiebelhut p Steven Litaker b James Lendemer Wessinger h Marty Condon m Lawrence Smart q Sahand Pirbadian & c Matthew L. Lewis i Marty Condon n Verity Salmon Moh El-Naggar j Niklaus Grünwald r Marty Condon FIELD SITES Argentina France Singapore Australia French Guiana South Africa Bahamas French Polynesia Suriname Belize Germany Spain Bermuda Iceland Sweden Bolivia Japan Switzerland Brazil Madagascar Tahiti Canada Malaysia Taiwan China Mexico Thailand Colombia Norway Trinidad Costa Rica Palau United States Czech Republic Panama United Kingdom Dominican Peru Venezuela Republic Philippines Labrador Sea Ecuador Poland North Atlantic Finland Puerto Rico Ocean Russia North Pacific Ocean Saudi Arabia COLLABORATORS Argentina Finland Palau Australia France Panama Brazil Germany Peru Canada Guam Russia INTERNATIONAL PARTNERS Chile India South Africa China Brazil China Indonesia Sri Lanka (NSFC) (FAPESP) Colombia Japan Sweden Costa Rica Kenya United Denmark Malaysia Kingdom Ecuador Mexico ACKNOWLEDGMENTS Many NSF staff members, too numerous to We thank Mina Ta and Matthew Pepper for mention individually, assisted in the development their graphic design contribution to the abstract and implementation of the Dimensions of booklet.
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]
  • Desarrollo De APP Como Herramienta Para La Conservación Y Preservación De La Flora Y Fauna Presente En El Campus De La Universidad Del Magdalena; Colombia
    Desarrollo de APP como herramienta para la conservación y preservación de la flora y fauna presente en el campus de la Universidad del Magdalena; Colombia THALEL JOSE BOBB MANRIQUE JOSE ALTAMAR MOLINA Universidad Magdalena Facultad de Ciencias Básicas Programa de Biología Programa de Ingenieria de sistemas Santa Marta, Colombia 2020 Desarrollo de APP como herramienta para la conservación y preservación de la flora y fauna presente en el campus de la Universidad del Magdalena; Colombia THALEL JOSE BOBB MANRIQUE Trabajo presentado como requisito parcial para optar al título de: BIÓLOGO Director (a): MSc. Willinton Andrés Barranco Pérez Línea de Investigación: Conservación y biodiversidad Grupo de Investigación: Grupo de Investigación en Ecología Neotropical (GIEN) Universidad del Magdalena Facultad de Ciencias Básicas programa de Biología Santa Marta, Colombia 2020 Nota de aceptación: Aprobado por el Consejo de Programa en cumplimiento de los requisitos exigidos por la Universidad del Magdalena para optar al título de (Biólogo) Jurado Jurado Santa Marta, ____ de ____del ________ AGRADECIMIENTOS Agradecimientos especiales al magister especialista Willinton Andrés Barranco Pérez por su paciencia a lo largo del proceso de desarrollo del aplicativo móvil y su guía en el proceso de elaboración de los textos necesarios para llevar adelante este proyecto. A mi familiares por la paciencia prestada en mi proceso de formación y todos los problemas que les he ocasionado a lo largo de mi proyecto personal. Resumen El estudio de la biodiversidad tiene
    [Show full text]
  • Anatomy of Flowering Plants
    This page intentionally left blank Anatomy of Flowering Plants Understanding plant anatomy is not only fundamental to the study of plant systematics and palaeobotany, but is also an essential part of evolutionary biology, physiology, ecology, and the rapidly expanding science of developmental genetics. In the third edition of her successful textbook, Paula Rudall provides a comprehensive yet succinct introduction to the anatomy of flowering plants. Thoroughly revised and updated throughout, the book covers all aspects of comparative plant structure and development, arranged in a series of chapters on the stem, root, leaf, flower, seed and fruit. Internal structures are described using magnification aids from the simple hand-lens to the electron microscope. Numerous references to recent topical literature are included, and new illustrations reflect a wide range of flowering plant species. The phylogenetic context of plant names has also been updated as a result of improved understanding of the relationships among flowering plants. This clearly written text is ideal for students studying a wide range of courses in botany and plant science, and is also an excellent resource for professional and amateur horticulturists. Paula Rudall is Head of Micromorphology(Plant Anatomy and Palynology) at the Royal Botanic Gardens, Kew. She has published more than 150 peer-reviewed papers, using comparative floral and pollen morphology, anatomy and embryology to explore evolution across seed plants. Anatomy of Flowering Plants An Introduction to Structure and Development PAULA J. RUDALL CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521692458 © Paula J.
    [Show full text]