A Literature and Interview Based Approach to Identify Less Known Understory Species for the Enrichment of Different Shade Stages of Agroforestry Systems in Panama
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Cloning of an O-Methyltransferase from Adventitious Roots of Carapichea Ipecacuanha
100605 (016) Biosci. Biotechnol. Biochem., 75 (1), 100605-1–7, 2011 Molecular Cloning of an O-Methyltransferase from Adventitious Roots of Carapichea ipecacuanha y Bo Eng CHEONG,1 Tomoya TAKEMURA,1 Kayo YOSHIMATSU,2 and Fumihiko SATO1; 1Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan 2Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan Received August 20, 2010; Accepted October 5, 2010; Online Publication, January 7, 2011 [doi:10.1271/bbb.100605] Carapichea ipecacuanha produces various emetine- industrial production.2) Whereas metabolic engineering type alkaloids, known as ipecac alkaloids, which have in alkaloid biosynthesis has also been explored to long been used as expectorants, emetics, and amebicides. improve both the quantity and the quality of several In this study, we isolated an O-methyltransferase cDNA alkaloids,3) biosynthetic enzymes and their genes in from this medicinal plant. The encoded protein ipecac alkaloids are still limited, except for the recent (CiOMT1) showed 98% sequence identity to IpeOMT2, isolation of glycosidases and O-methyltransferases.4,5) which catalyzes the 70-O-methylation of 70-O-demethyl- Ipecac alkaloids are synthesized from the condensa- cephaeline to form cephaeline at the penultimate step tion of dopamine derived from tyrosine, for isoquinoline ofAdvance emetine biosynthesis (Nomura and Kutchan, ViewJ. Biol. moieties, and from secologanin, as a monoterpenoid Chem., 285, 7722–7738 (2010)). Recombinant CiOMT1 molecule (Fig. 1). This Pictet-Spengler-type condensa- showed both 70-O-methylation and 60-O-methylation tion yields two epimers, (R)-N-deacetylipecoside and activities at the last two steps of emetine biosynthesis. -
Synopsis and Typification of Mexican and Central American
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2018 Band/Volume: 120B Autor(en)/Author(s): Berger Andreas Artikel/Article: Synopsis and typification of Mexican and Central American Palicourea (Rubiaceae: Palicoureeae), part I: The entomophilous species 59-140 ©Naturhistorisches Museum Wien, download unter www.zobodat.at Ann. Naturhist. Mus. Wien, B 120 59–140 Wien, Jänner 2018 Synopsis and typification of Mexican and Central American Palicourea (Rubiaceae: Palicoureeae), part I: The entomophilous species A. Berger* Abstract The prominent but complex genus Psychotria (Rubiaceae: Psychotrieae) is one of the largest genera of flow- ering plants and its generic circumscription has been controversial for a long time. Recent DNA-phyloge- netic studies in combination with a re-evaluation of morphological characters have led to a disintegration process that peaked in the segregation of hundreds of species into various genera within the new sister tribe Palicoureeae. These studies have also shown that species of Psychotria subg. Heteropsychotria are nested within Palicourea, which was traditionally separated by showing an ornithophilous (vs. entomophilous) pol- lination syndrome. In order to render the genera Palicourea and Psychotria monophyletic groups, all species of subg. Heteropsychotria have to be transferred to Palicourea and various authors and publications have provided some of the necessary combinations. In the course of ongoing research on biotic interactions and chemodiversity of the latter genus, the need for a comprehensive and modern compilation of species of Pali courea in its new circumscription became apparent. As first step towards such a synopsis, the entomophilous Mexican and Central American species (the traditional concept of Psychotria subg. -
Postprint: International Journal of Food Science and Technology 2019, 54
1 Postprint: International Journal of Food Science and Technology 2019, 54, 2 1566–1575 3 Polyphenols bioaccessibility and bioavailability assessment in ipecac infusion using a 4 combined assay of simulated in vitro digestion and Caco-2 cell model. 5 6 Takoua Ben Hlel a,b,*, Thays Borges c, Ascensión Rueda d, Issam Smaali a, M. Nejib Marzouki 7 a and Isabel Seiquer c 8 aLIP-MB laboratory (LR11ES24), National Institute of Applied Sciences and Technology, 9 Centre urbain nord de Tunis, B.P. 676 Cedex Tunis – 1080, University of Carthage, Tunisia. 10 bDepartment of Biology, Faculty of Tunis, University of Tunis El Manar, 11 Tunis, Tunisia 12 cDepartment of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del 13 Zaidín (CSIC), Camino del Jueves s/n, 18100 Armilla, Granada, Spain. 14 dInstitute of Nutrition and Food Technology José Mataix Verdú, Avenida del Conocimiento 15 s/n. Parque Tecnológico de la Salud, 18071 Armilla., Granada, Spain. 16 17 * Corresponding author: Takoua Ben Hlel. E-mail: [email protected]. Tel.: +216 18 53 831 961 19 Running title : Antioxidant potential of Ipecac infusion 20 1 21 Abstract: 22 In this report, we investigated for the first time the total polyphenols content (TPC) and 23 antioxidant activity before and after digestion of Carapichea ipecacuanha root infusion, 24 better known as ipecac, prepared at different concentrations. An in vitro digestion system 25 coupled to a Caco-2 cell model was applied to study the bioavailability of antioxidant 26 compounds. The ability of ipecac bioaccessible fractions to inhibit reactive oxygen species 27 (ROS) generation at cellular level was also evaluated. -
An Overview About the Chemical Composition and Biological Activity of Medicinal Species Found in the Brazilian Amazon
Journal of Applied Pharmaceutical Science Vol. 6 (12), pp. 233-238, December, 2016 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2016.601234 ISSN 2231-3354 An Overview about the chemical composition and Biological Activity of Medicinal species found in the Brazilian Amazon Fernanda Brum Pires1, Carolina Bolssoni Dolwitsch1, Valéria Dal Prá1, Débora Luana Monego2, Viviane Maria Schneider2, Roberta Fabrício Loose2, Marcella Emília Petra Schmidt2, Lucas P. Bressan2, Marcio Antônio Mazutti³, Marcelo Barcellos da Rosa1,2* 1Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. 2Post-Graduate Program in Chemistry, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. ³Department of Chemical Engineering, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. ABSTRACT ARTICLE INFO Article history: This paper presents an overview on the chemical composition and biological activity of plants found in the Received on: 20/05/2016 Brazilian Amazon – Bauhinia variegata, Cecropia obtusa, Cecropia palmata, Connarus perrottetti var. Revised on: 14/09/2016 angustifolius, Chrysobalanus icaco and Mansoa alliacea. The lack of information regarding these species, along Accepted on: 11/11/2016 with their importance given their pharmacological and nutritional use in Latin American folk medicine, justifies Available online: 28/12/2016 the demand for this study. However, various interesting and important actions, as antioxidant, antibacterial, Key words: cytotoxic, hypoglycemic, antifungal, antiangiogenic, antitumor, anti-inflammatory, antiulcer, and Biological activity, chemical chemopreventive have been modestly reported so far. In other words, these species can play a very important composition, Brazilian role in terms of biological and chemical activity, but their pharmacology is still poorly investigated. -
Herbariet Publ 2010-2019 (PDF)
Publikationer 2019 Amorim, B. S., Vasconcelos, T. N., Souza, G., Alves, M., Antonelli, A., & Lucas, E. (2019). Advanced understanding of phylogenetic relationships, morphological evolution and biogeographic history of the mega-diverse plant genus Myrcia and its relatives (Myrtaceae: Myrteae). Molecular phylogenetics and evolution, 138, 65-88. Anderson, C. (2019). Hiraea costaricensis and H. polyantha, Two New Species Of Malpighiaceae, and circumscription of H. quapara and H. smilacina. Edinburgh Journal of Botany, 1-16. Athanasiadis, A. (2019). Carlskottsbergia antarctica (Hooker fil. & Harv.) gen. & comb. nov., with a re-assessment of Synarthrophyton (Mesophyllaceae, Corallinales, Rhodophyta). Nova Hedwigia, 108(3-4), 291-320. Athanasiadis, A. (2019). Amphithallia, a genus with four-celled carpogonial branches and connecting filaments in the Corallinales (Rhodophyta). Marine Biology Research, 15(1), 13-25. Bandini, D., Oertel, B., Moreau, P. A., Thines, M., & Ploch, S. (2019). Three new hygrophilous species of Inocybe, subgenus Inocybe. Mycological Progress, 18(9), 1101-1119. Baranow, P., & Kolanowska, M. (2019, October). Sertifera hirtziana (Orchidaceae, Sobralieae), a new species from southeastern Ecuador. In Annales Botanici Fennici (Vol. 56, No. 4-6, pp. 205-209). Barboza, G. E., García, C. C., González, S. L., Scaldaferro, M., & Reyes, X. (2019). Four new species of Capsicum (Solanaceae) from the tropical Andes and an update on the phylogeny of the genus. PloS one, 14(1), e0209792. Barrett, C. F., McKain, M. R., Sinn, B. T., Ge, X. J., Zhang, Y., Antonelli, A., & Bacon, C. D. (2019). Ancient polyploidy and genome evolution in palms. Genome biology and evolution, 11(5), 1501-1511. Bernal, R., Bacon, C. D., Balslev, H., Hoorn, C., Bourlat, S. -
Phytochemical and In-Vitro Evaluation of Anti-Oxidant Activity of Mansoa Alliacea Leaves
Acta Scientific Pharmaceutical Sciences (ISSN: 2581-5423) Volume 4 Issue 10 October 2020 Research Article Phytochemical and In-Vitro Evaluation of Anti-oxidant Activity of Mansoa alliacea Leaves SK Ameenabee1, A Lakshmana Rao2, P Suguna Rani3, T Sandhya4, Received: August 13, 2020 N Teja5*, G Ashu5, V Bhavya Naga Vani6, CH Purna Durganjali6 and Published: September 10, 2020 N Pavani7 © All rights are reserved by N Teja., et al. 1Associate Professor, Department of Pharmacology, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 2Professor and Principal, Department of Pharmaceutical Analysis, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 3Department of Pharmacology, Sri Venkateswara University of Pharmaceutical Sciences, Tirupathi, India 4Department of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Viswavidhyalayam, Tirupathi, India 5Department of Pharmaceutics, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 6Department of Pharmaceutical Analysis, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 7Department of Pharmacy, V.V. Institute of Pharmaceutical Sciences, Guldavalleru, India *Corresponding Author: N Teja, Department of Pharmaceutics, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India. Abstract Mansoa alliacea Lam. (Family: Bignoniaceae) is a native plant from Amazonian basin in South America. Plant derivatives are used study was aimed to determine the pharmacognostic and phy- tochemicals present in Mansoa alliacea. Micro and Organoleptic characteristics of fresh and dried leaf samples had been examined. as an anti-inflammatory, anti-oxidant, antiseptic and anti-bacterial. The Physicochemical chemical variables have been done by using WHO suggested variables, preliminary phytochemical of leaf sample of the leaves of M. alliacea. had been performed to identify the presence of alkaloids, flavonoids, tannins and phenols, and quinones using the ethanolic extract Keywords: M. -
Download File
International Journal of Current Advanced Research ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: SJIF: 5.995 Available Online at www.journalijcar.org Volume 7; Issue 3(B); March 2018; Page No. 10523-10525 DOI: http://dx.doi.org/10.24327/ijcar.2018.10525.1787 Research Article MORPHOLOGICAL AND STEM ANATOMICAL CHARACTERIZATION OF TRIBE BIGNONIEAE DUMORT. (BIGNONIACEAE) IN KERALA Anish Babu V B1* and Antony V T2 1Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India 2Development, St. Berchmans College Changanassery, Kottayam, Kerala 686101 ARTICLE INFO ABSTRACT Article History: Stem anatomical studies of four species; clytostoma binatum, Mansoa alliacea, Doxantha Received 7th December, 2017 unguis cacti, Pyrostegia venusta coming under tribe. Bignonieae (Bignoniaceae) were Received in revised form 16st carried out and compared. Tribe Bignonieae shows anomalous secondary growth and January, 2018 Accepted 25th February, 2018 special phloem wedges. Taxonomic confirmation depends on morphological and floral Published online 28th March, 2018 features.Based on stem anatomical characters a diagnostic key prepared which can be used as supporting tool for taxonomic delimitation of species. Key words: Clytostoma binatum, Mansoa alliacea, Doxantha unguis cacti, Pyrostegia venusta Copyright©2018 Anish Babu V B and Antony V T. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. INTRODUCTION Specimens all species were collected in the flowering stage, studied their morphology, compared with authenticated Bignonieae largest tribe in the family Bignoniaceae. It consist [1] specimens and determined their taxonomic identity. Voucher 377 species and nearly half of the species in this family . -
Ethnopharmacology, Biological Activity and Chemical Characterization of Mansoa Alliacea
MOL2NET, 2017, 3, doi:10.3390/mol2net-03-04617 1 MOL2NET, International Conference Series on Multidisciplinary Sciences MDPI http://sciforum.net/conference/mol2net-03 Ethnopharmacology, biological activity and chemical characterization of Mansoa alliacea. A review about a promising plant from Amazonian region. Angélica Tasambay Salazar1,*, Laura Scalvenzi1, Andrea Stefany Piedra Lescano1, Matteo Radice1. 1 Universidad Estatal Amazónica, Km 2 ½ Via Napo (paso lateral), Puyo, Pastaza, Ecuador; E- Mail: [email protected]; [email protected]; [email protected]; [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +593 032-888-118 / 032-889-118112. Graphical Abstract Abstract. Mansoa alliacea is a native plant from Mansoa alliacea Amazonian basin and has great ancestral value for the local communities. M. alliacea is part of the traditional medicine for healers and shamans and has multiple uses due to the presence of several chemical constituents with important pharmacological properties. Plant derivatives are used as: antiseptic, diuretic, analgesic, antipyretic. Folk medicine is also related to the treatment of many diseases such as: reduction of blood pressure, against atherosclerosis, arthritis and rheumatism. Researches have also proven an appreciable antioxidant property, which revalue it for cosmetic purposes. Chemical composition of plant derivatives includes as main Traditional medicine compounds: diallyl disulphide, diallyl Magical and ritual uses Cold, fever trisulphide, alliin, allicin, propylallyl, divinyl Rheumatism Food, spice sulfide, diallyl sulfide, dimethyl sulfide, Antimalarial Muscle pain daucosterol, beta-sitosterol, fucosterol, Biological activities stigmasterol, iridoides and isothiocyanates, Antioxidant Antifungal naphthoquinones, alkaloids, saponins, flavones. Antibacterial Anti-inflammatory The present review includes ethnobotanical and Larvicidal Antiplasmodial pharmacological data that are related to the chemical composition of M. -
Assembly and Evolution of the Amazonian Biota and Its Environment: an Integrative Approach
Assembly and evolution of the Amazonian Biota and its environment: An integrative approach Lúcia G. Lohmann (Universidade de São Paulo) Joel Cracraft (American Museum of Natural History) FAPESP 2012/50260-6 NSF 1241066 !"#$%&'($)*+,#))$-#"$.#/+ Brazil Canada >/2?*"'2%$%*+%*+DF#+G$4)#+ >/2?*"'279+#5+C#"#/7#+ >/2?*"'2%$%*+B*%*"$)+%*+=#2H'+ United States >/2?*"'2%$%*+B*%*"$)+%#+G$"H+ 01*"2($/+34'*41+#5++ >/2?*"'2%$%*+K'7$%4$)++ ++6$74"$)+82'7#"9+ ++%*+,$1L2/$'+ ,279+>/2?*"'279+6*:+;#"<+ 34'*4+G$"$*/'*+K1N)2#+=#*)%2+ B2*)%+34'*41+#5++ ++6$74"$)+82'7#"9+ J/'.747#+6$(2#/$)+%*++ ++G*'O42'$'+%$+01$PQ/2$++ 32%%)*+C*//*''**++ ++D7$7*+>/2?*"'279+ Argentina 6$74"$)+82'7#"9+34'*41++ ++E#'+0/A*)*'+,#4/79+ ,I6J,KC&J/'.747#+D4L*"2#"++ %*+K/7#1#)#A2$M+C4(41H/+ 6*:+;#"<+!#7$/2($)+=$"%*/+ Great Britain >/2?*"'279+#5+32(@2A$/+ >/2?*"'279+#5+K%2/-4"A@+ >/2?*"'279+#5+,#)#"$%#+ The Amazon Basin • One of the most biodiverse areas on Earth but little is still known about the processes that led to such great diversity • Many uncertainties remain about its geological history, age of formation, and extension of its aquatic systems • Some models claim that the Amazon was established during the Miocene while others have established its origin in the Pleistocene • Broad Objective: Achieve a new evolutionary and environmental synthesis of Amazonia of 20 3 !""#$%&'(")"&)*+"$#,*&*(-.."$%")&*-..)&/01&&Meeting these scientific challenge calls for +$'"%1-#2"&*10))34+)*+5.+$-16&)'74+")&integrative cross-disciplinary studies PART I Characterization of Amazonian biodiversity - How is biodiversity spatially distributed across Amazonia? - How are species distributions organized into patterns of endemism? - What are the biotic and abiotic environmental associations with those diversity patterns? Herbaria with significant Amazonian collections !"#$%& '( )*+*,* - ./"012 3( - Existing Amazonian Plant Specimens: ca. -
Lahsun Bel (Mansoa Alliacea)
WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES Lal. World Journal of Pharmacy and Pharmaceutical Sciences SJIF Impact Factor 7.632 Volume 8, Issue 11, 308-316 Review Article ISSN 2278 – 4357 CRITICAL REVIEW OF ANUKTA DRAVYA “LAHSUN BEL (MANSOA ALLIACEA) Dr. Lal* India. ABSTRACT Article Received on 09 Sep. 2019, Medicinal plants are scientifically documented in Ayurvedic literature Revised on 30 Sep. 2019, based on the sound fundamentals of rasa (Taste), guna (Property), Accepted on 21 Oct. 2019, DOI: 10.20959/wjpps201911-14670 virya (Potency), vipaka (Metabolism) and prabhava (Specific action).Vedic to Samhita and Samhita to Nighantu Kala evidenced the chronological upgradation of medicinal plants. Inclusion of new *Corresponding Author Dr. Lal dravyas (Drugs) has been the tradition of Ayurveda. Nighantukaras India. especially played a great role in this respect e.g. However, many folklore and exotic plants existing in India have not been yet stated in Ayurvedic Samhitas or Nighantus, Such are turned as „anukta dravya’. These may include dravya like cissus rependa Vahl. (Pani bel), Mansoa alliacea Lam. (Lahsun bel) etc. Day by day important medicinal plants are depleting but fortunately we have dense folklore herbs which should be thoroughly explored, studied and included in Ayurvedic pharmacopeia. Mansoa alliacea (Lam.) is one of anukta dravya. Hence present study of this article review of Mansoa alliacea, uses of M. alliacea, ethnobotanical information are described. KEYWORDS: Mansoa alliacea, Anukta dravya, Lahsun bel. INTRODUCTION Mansoa alliacea Lam. (Family Bignoniaceae) is a native plant from Amazonian basin. This plant is mainly found in Southern America but it is also found tropical rain forest region in India. -
The One Hundred Tree Species Prioritized for Planting in the Tropics and Subtropics As Indicated by Database Mining
The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass LIMITED CIRCULATION Correct citation: Kindt R, Dawson IK, Lillesø J-PB, Muchugi A, Pedercini F, Roshetko JM, van Noordwijk M, Graudal L, Jamnadass R. 2021. The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining. Working Paper No. 312. World Agroforestry, Nairobi, Kenya. DOI http://dx.doi.org/10.5716/WP21001.PDF The titles of the Working Paper Series are intended to disseminate provisional results of agroforestry research and practices and to stimulate feedback from the scientific community. Other World Agroforestry publication series include Technical Manuals, Occasional Papers and the Trees for Change Series. Published by World Agroforestry (ICRAF) PO Box 30677, GPO 00100 Nairobi, Kenya Tel: +254(0)20 7224000, via USA +1 650 833 6645 Fax: +254(0)20 7224001, via USA +1 650 833 6646 Email: [email protected] Website: www.worldagroforestry.org © World Agroforestry 2021 Working Paper No. 312 The views expressed in this publication are those of the authors and not necessarily those of World Agroforestry. Articles appearing in this publication series may be quoted or reproduced without charge, provided the source is acknowledged. -
Atlas of Pollen and Plants Used by Bees
AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.