Horizontal Gene Transfer Is More Frequent with Increased Heterotrophy and Contributes to Parasite Adaptation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
An Overview About the Chemical Composition and Biological Activity of Medicinal Species Found in the Brazilian Amazon
Journal of Applied Pharmaceutical Science Vol. 6 (12), pp. 233-238, December, 2016 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2016.601234 ISSN 2231-3354 An Overview about the chemical composition and Biological Activity of Medicinal species found in the Brazilian Amazon Fernanda Brum Pires1, Carolina Bolssoni Dolwitsch1, Valéria Dal Prá1, Débora Luana Monego2, Viviane Maria Schneider2, Roberta Fabrício Loose2, Marcella Emília Petra Schmidt2, Lucas P. Bressan2, Marcio Antônio Mazutti³, Marcelo Barcellos da Rosa1,2* 1Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. 2Post-Graduate Program in Chemistry, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. ³Department of Chemical Engineering, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. ABSTRACT ARTICLE INFO Article history: This paper presents an overview on the chemical composition and biological activity of plants found in the Received on: 20/05/2016 Brazilian Amazon – Bauhinia variegata, Cecropia obtusa, Cecropia palmata, Connarus perrottetti var. Revised on: 14/09/2016 angustifolius, Chrysobalanus icaco and Mansoa alliacea. The lack of information regarding these species, along Accepted on: 11/11/2016 with their importance given their pharmacological and nutritional use in Latin American folk medicine, justifies Available online: 28/12/2016 the demand for this study. However, various interesting and important actions, as antioxidant, antibacterial, Key words: cytotoxic, hypoglycemic, antifungal, antiangiogenic, antitumor, anti-inflammatory, antiulcer, and Biological activity, chemical chemopreventive have been modestly reported so far. In other words, these species can play a very important composition, Brazilian role in terms of biological and chemical activity, but their pharmacology is still poorly investigated. -
Phytochemical and In-Vitro Evaluation of Anti-Oxidant Activity of Mansoa Alliacea Leaves
Acta Scientific Pharmaceutical Sciences (ISSN: 2581-5423) Volume 4 Issue 10 October 2020 Research Article Phytochemical and In-Vitro Evaluation of Anti-oxidant Activity of Mansoa alliacea Leaves SK Ameenabee1, A Lakshmana Rao2, P Suguna Rani3, T Sandhya4, Received: August 13, 2020 N Teja5*, G Ashu5, V Bhavya Naga Vani6, CH Purna Durganjali6 and Published: September 10, 2020 N Pavani7 © All rights are reserved by N Teja., et al. 1Associate Professor, Department of Pharmacology, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 2Professor and Principal, Department of Pharmaceutical Analysis, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 3Department of Pharmacology, Sri Venkateswara University of Pharmaceutical Sciences, Tirupathi, India 4Department of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Viswavidhyalayam, Tirupathi, India 5Department of Pharmaceutics, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 6Department of Pharmaceutical Analysis, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 7Department of Pharmacy, V.V. Institute of Pharmaceutical Sciences, Guldavalleru, India *Corresponding Author: N Teja, Department of Pharmaceutics, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India. Abstract Mansoa alliacea Lam. (Family: Bignoniaceae) is a native plant from Amazonian basin in South America. Plant derivatives are used study was aimed to determine the pharmacognostic and phy- tochemicals present in Mansoa alliacea. Micro and Organoleptic characteristics of fresh and dried leaf samples had been examined. as an anti-inflammatory, anti-oxidant, antiseptic and anti-bacterial. The Physicochemical chemical variables have been done by using WHO suggested variables, preliminary phytochemical of leaf sample of the leaves of M. alliacea. had been performed to identify the presence of alkaloids, flavonoids, tannins and phenols, and quinones using the ethanolic extract Keywords: M. -
Ethnopharmacology, Biological Activity and Chemical Characterization of Mansoa Alliacea
MOL2NET, 2017, 3, doi:10.3390/mol2net-03-04617 1 MOL2NET, International Conference Series on Multidisciplinary Sciences MDPI http://sciforum.net/conference/mol2net-03 Ethnopharmacology, biological activity and chemical characterization of Mansoa alliacea. A review about a promising plant from Amazonian region. Angélica Tasambay Salazar1,*, Laura Scalvenzi1, Andrea Stefany Piedra Lescano1, Matteo Radice1. 1 Universidad Estatal Amazónica, Km 2 ½ Via Napo (paso lateral), Puyo, Pastaza, Ecuador; E- Mail: [email protected]; [email protected]; [email protected]; [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +593 032-888-118 / 032-889-118112. Graphical Abstract Abstract. Mansoa alliacea is a native plant from Mansoa alliacea Amazonian basin and has great ancestral value for the local communities. M. alliacea is part of the traditional medicine for healers and shamans and has multiple uses due to the presence of several chemical constituents with important pharmacological properties. Plant derivatives are used as: antiseptic, diuretic, analgesic, antipyretic. Folk medicine is also related to the treatment of many diseases such as: reduction of blood pressure, against atherosclerosis, arthritis and rheumatism. Researches have also proven an appreciable antioxidant property, which revalue it for cosmetic purposes. Chemical composition of plant derivatives includes as main Traditional medicine compounds: diallyl disulphide, diallyl Magical and ritual uses Cold, fever trisulphide, alliin, allicin, propylallyl, divinyl Rheumatism Food, spice sulfide, diallyl sulfide, dimethyl sulfide, Antimalarial Muscle pain daucosterol, beta-sitosterol, fucosterol, Biological activities stigmasterol, iridoides and isothiocyanates, Antioxidant Antifungal naphthoquinones, alkaloids, saponins, flavones. Antibacterial Anti-inflammatory The present review includes ethnobotanical and Larvicidal Antiplasmodial pharmacological data that are related to the chemical composition of M. -
Assembly and Evolution of the Amazonian Biota and Its Environment: an Integrative Approach
Assembly and evolution of the Amazonian Biota and its environment: An integrative approach Lúcia G. Lohmann (Universidade de São Paulo) Joel Cracraft (American Museum of Natural History) FAPESP 2012/50260-6 NSF 1241066 !"#$%&'($)*+,#))$-#"$.#/+ Brazil Canada >/2?*"'2%$%*+%*+DF#+G$4)#+ >/2?*"'279+#5+C#"#/7#+ >/2?*"'2%$%*+B*%*"$)+%*+=#2H'+ United States >/2?*"'2%$%*+B*%*"$)+%#+G$"H+ 01*"2($/+34'*41+#5++ >/2?*"'2%$%*+K'7$%4$)++ ++6$74"$)+82'7#"9+ ++%*+,$1L2/$'+ ,279+>/2?*"'279+6*:+;#"<+ 34'*4+G$"$*/'*+K1N)2#+=#*)%2+ B2*)%+34'*41+#5++ ++6$74"$)+82'7#"9+ J/'.747#+6$(2#/$)+%*++ ++G*'O42'$'+%$+01$PQ/2$++ 32%%)*+C*//*''**++ ++D7$7*+>/2?*"'279+ Argentina 6$74"$)+82'7#"9+34'*41++ ++E#'+0/A*)*'+,#4/79+ ,I6J,KC&J/'.747#+D4L*"2#"++ %*+K/7#1#)#A2$M+C4(41H/+ 6*:+;#"<+!#7$/2($)+=$"%*/+ Great Britain >/2?*"'279+#5+32(@2A$/+ >/2?*"'279+#5+K%2/-4"A@+ >/2?*"'279+#5+,#)#"$%#+ The Amazon Basin • One of the most biodiverse areas on Earth but little is still known about the processes that led to such great diversity • Many uncertainties remain about its geological history, age of formation, and extension of its aquatic systems • Some models claim that the Amazon was established during the Miocene while others have established its origin in the Pleistocene • Broad Objective: Achieve a new evolutionary and environmental synthesis of Amazonia of 20 3 !""#$%&'(")"&)*+"$#,*&*(-.."$%")&*-..)&/01&&Meeting these scientific challenge calls for +$'"%1-#2"&*10))34+)*+5.+$-16&)'74+")&integrative cross-disciplinary studies PART I Characterization of Amazonian biodiversity - How is biodiversity spatially distributed across Amazonia? - How are species distributions organized into patterns of endemism? - What are the biotic and abiotic environmental associations with those diversity patterns? Herbaria with significant Amazonian collections !"#$%& '( )*+*,* - ./"012 3( - Existing Amazonian Plant Specimens: ca. -
Lahsun Bel (Mansoa Alliacea)
WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES Lal. World Journal of Pharmacy and Pharmaceutical Sciences SJIF Impact Factor 7.632 Volume 8, Issue 11, 308-316 Review Article ISSN 2278 – 4357 CRITICAL REVIEW OF ANUKTA DRAVYA “LAHSUN BEL (MANSOA ALLIACEA) Dr. Lal* India. ABSTRACT Article Received on 09 Sep. 2019, Medicinal plants are scientifically documented in Ayurvedic literature Revised on 30 Sep. 2019, based on the sound fundamentals of rasa (Taste), guna (Property), Accepted on 21 Oct. 2019, DOI: 10.20959/wjpps201911-14670 virya (Potency), vipaka (Metabolism) and prabhava (Specific action).Vedic to Samhita and Samhita to Nighantu Kala evidenced the chronological upgradation of medicinal plants. Inclusion of new *Corresponding Author Dr. Lal dravyas (Drugs) has been the tradition of Ayurveda. Nighantukaras India. especially played a great role in this respect e.g. However, many folklore and exotic plants existing in India have not been yet stated in Ayurvedic Samhitas or Nighantus, Such are turned as „anukta dravya’. These may include dravya like cissus rependa Vahl. (Pani bel), Mansoa alliacea Lam. (Lahsun bel) etc. Day by day important medicinal plants are depleting but fortunately we have dense folklore herbs which should be thoroughly explored, studied and included in Ayurvedic pharmacopeia. Mansoa alliacea (Lam.) is one of anukta dravya. Hence present study of this article review of Mansoa alliacea, uses of M. alliacea, ethnobotanical information are described. KEYWORDS: Mansoa alliacea, Anukta dravya, Lahsun bel. INTRODUCTION Mansoa alliacea Lam. (Family Bignoniaceae) is a native plant from Amazonian basin. This plant is mainly found in Southern America but it is also found tropical rain forest region in India. -
CHARACTERIZATION of SCROPHULARIACEAE BASED on GROSS MORPHOLOGY and PETIOLE ANATOMY *Saikat Naskar PG Department of Botany, Barasat Govt
Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2015 Vol. 4 (4) October-December, pp. 121-126/Naskar Research Article CHARACTERIZATION OF SCROPHULARIACEAE BASED ON GROSS MORPHOLOGY AND PETIOLE ANATOMY *Saikat Naskar PG Department of Botany, Barasat Govt. College, Barasat, Kolkata- 700124 *Author for Correspondence ABSTRACT The family Scrophulariaceae s.l. has been treated differently by different taxonomists. In modern phylogenetic based classifications many traditional members of Scrophulariaceae have been placed under different families. Therefore in the present study gross morphological and petiole anatomical characters have been used to characterize the family Scrophulariaceae s.l. to understand the morphological and petiole anatomical distinctness among the families which are disintegrated from Scrophulariaceae s.l. INTRODUCTION Scrophulariaceae is considered as a problem family. It was treated variously by plant taxonomists. Scrophulariaceae s.l. is the largest family under Lamiales and has worldwide distribution from tropical to temperate regions. This family is recognisable by its bilaterally symmetric flowers, axile placentation with numerous ovules, capsular fruits and seed with endosperm. But, Scrophulariaceae shares these important morphological characters with related families. Due to absence of any morphological synapomorphic characters the monophyly of this family was in question. Bentham (1876) classified Scrophulariaceae into three subfamilies, viz. Pseudosolaneae, Antirrhinoideae and Rhinanthoideae where Pseudosolaneae was defined as a link with Solanaceae. Pennell (1935) suggested that the similarity of Scrophulariaceae with Solanaceae is actually derived independently within Scrophulariaceae. Therefore he eliminated subfamily Pseudosolaneaea and placed its genera to Antirrhinoideae. Melchior (1964) the included the families Orobanchaceae, Globulariaceae, Selaginaceae, Plantaginaceae and Lentibulariaceae within Scrophulariaceae. -
Horizontal Gene Transfer Is More Frequent with Increased
Horizontal gene transfer is more frequent with PNAS PLUS increased heterotrophy and contributes to parasite adaptation Zhenzhen Yanga,b,c,1, Yeting Zhangb,c,d,1,2, Eric K. Wafulab,c, Loren A. Honaasa,b,c,3, Paula E. Ralphb, Sam Jonesa,b, Christopher R. Clarkee, Siming Liuf, Chun Sug, Huiting Zhanga,b, Naomi S. Altmanh,i, Stephan C. Schusteri,j, Michael P. Timkog, John I. Yoderf, James H. Westwoode, and Claude W. dePamphilisa,b,c,d,i,4 aIntercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; bDepartment of Biology, The Pennsylvania State University, University Park, PA 16802; cInstitute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; dIntercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; eDepartment of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; fDepartment of Plant Sciences, University of California, Davis, CA 95616; gDepartment of Biology, University of Virginia, Charlottesville, VA 22904; hDepartment of Statistics, The Pennsylvania State University, University Park, PA 16802; iHuck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; and jDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved September 20, 2016 (received for review June 7, 2016) Horizontal gene transfer (HGT) is the transfer of genetic material diverse angiosperm lineages (13, 14) and widespread incorpo- across species boundaries and has been a driving force in prokaryotic ration of fragments or entire mitochondrial genomes from algae evolution. -
Horizontal Gene Transfer Is More Frequent with Increased Heterotrophy and Contributes to Parasite Adaptation
Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation Zhenzhen Yanga,b,c,1, Yeting Zhangb,c,d,1,2, Eric K. Wafulab,c, Loren A. Honaasa,b,c,3, Paula E. Ralphb, Sam Jonesa,b, Christopher R. Clarkee, Siming Liuf, Chun Sug, Huiting Zhanga,b, Naomi S. Altmanh,i, Stephan C. Schusteri,j, Michael P. Timkog, John I. Yoderf, James H. Westwoode, and Claude W. dePamphilisa,b,c,d,i,4 aIntercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; bDepartment of Biology, The Pennsylvania State University, University Park, PA 16802; cInstitute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; dIntercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; eDepartment of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; fDepartment of Plant Sciences, University of California, Davis, CA 95616; gDepartment of Biology, University of Virginia, Charlottesville, VA 22904; hDepartment of Statistics, The Pennsylvania State University, University Park, PA 16802; iHuck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; and jDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved September 20, 2016 (received for review June 7, 2016) Horizontal gene transfer (HGT) is the transfer of genetic material diverse angiosperm lineages (13, 14) and widespread incorpo- across species boundaries and has been a driving force in prokaryotic ration of fragments or entire mitochondrial genomes from algae evolution. -
Lamiales – Synoptical Classification Vers
Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. -
The Linderniaceae and Gratiolaceae Are Further Lineages Distinct from the Scrophulariaceae (Lamiales)
Research Paper 1 The Linderniaceae and Gratiolaceae are further Lineages Distinct from the Scrophulariaceae (Lamiales) R. Rahmanzadeh1, K. Müller2, E. Fischer3, D. Bartels1, and T. Borsch2 1 Institut für Molekulare Physiologie und Biotechnologie der Pflanzen, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany 2 Nees-Institut für Biodiversität der Pflanzen, Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany 3 Institut für Integrierte Naturwissenschaften ± Biologie, Universität Koblenz-Landau, Universitätsstraûe 1, 56070 Koblenz, Germany Received: July 14, 2004; Accepted: September 22, 2004 Abstract: The Lamiales are one of the largest orders of angio- Traditionally, Craterostigma, Lindernia and their relatives have sperms, with about 22000 species. The Scrophulariaceae, as been treated as members of the family Scrophulariaceae in the one of their most important families, has recently been shown order Lamiales (e.g., Takhtajan,1997). Although it is well estab- to be polyphyletic. As a consequence, this family was re-classi- lished that the Plocospermataceae and Oleaceae are their first fied and several groups of former scrophulariaceous genera branching families (Bremer et al., 2002; Hilu et al., 2003; Soltis now belong to different families, such as the Calceolariaceae, et al., 2000), little is known about the evolutionary diversifica- Plantaginaceae, or Phrymaceae. In the present study, relation- tion of most of the orders diversity. The Lamiales branching ships of the genera Craterostigma, Lindernia and its allies, hith- above the Plocospermataceae and Oleaceae are called ªcore erto classified within the Scrophulariaceae, were analyzed. Se- Lamialesº in the following text. The most recent classification quences of the chloroplast trnK intron and the matK gene by the Angiosperm Phylogeny Group (APG2, 2003) recognizes (~ 2.5 kb) were generated for representatives of all major line- 20 families. -
Rehmannia Glutinosa Plant Monograph Dr
HomeGrown Herbalist School of Botanical Medicine HomeGrownHerbalist.net Copyright © 2020 HomeGrown Herbalist, LLC Disclaimer This presentation is for entertainment and educational purposes only. The author is not a physician and the contents of this presentation should not be viewed or taken as medical advice. The views expressed are the opinions of the author only and should not be taken as an endorsement of any product or practice. Herbs can and do interact with pharmaceuticals. No herb or herbal product should be taken without consulting a qualified physician. The author and publisher disclaim any liability arising directly or indirectly from the use of this information or any product, plant or practice mentioned herein. Don’t run with scissors. Don’t immerse your head in a bucket of water for a prolonged period of time. Don’t give your bank account number to deposed Nigerian princes on the internet. Don’t stick your finger in a pencil sharpener. Don’t read very small type without proper magnification……. Copyright © 2014 HomeGrown Herbalist, LLC Copyright Copyright © 2021 HomeGrown Herbalist, LLC All rights reserved, including the right to reproduce this information or any portion thereof in any form whatsoever. For information, address HomeGrown Herbalist, LLC, PO Box 81, Buhl, ID 83316 Giving this document to people who haven’t paid for it is stealing. Stealing is bad. Don’t be bad. Copyright © 2021 HomeGrown Herbalist, LLC Rehmannia glutinosa Plant Monograph Dr. Patrick Jones Copyright © 2021 HomeGrown Herbalist, LLC Dr. Patrick