Mansoa Alliacea

Total Page:16

File Type:pdf, Size:1020Kb

Mansoa Alliacea Amazon Blend Clinical Information AJO SACHA (mansoa alliacea) is a wild jungle garlic said to have originated in the Amazon rainforest, ​ ​ but it has since spread to several other parts of the world with similar climates. It has been used by indigenous communities for centuries as a “spiritual” plant capable of driving away evil spirits, clearing 1,13 negative energy from the mind and body, and used for good luck. ​ Ajo Sacha contains several of the ​ 3,4 main sulfur compounds that garlic does, such as allicin and ursolic acid. ​ These compounds have ​ been well documented within evidence based literature demonstrating antimicrobial, anti-inflammatory, and antioxidant properties, as well as cellular protective actions in the lungs, kidneys, liver, and brain. Clinical Efficacy and Research Related to Ajo Sacha Antimicrobial effects. Antimicrobial actions against plant viruses, fungi, and bacteria have been ​ reported which may explain why traditionally Ajo Sacha has been used to treat colds, flu, pneumonia 5,6,10 and other upper respiratory infections. ​ An in-vitro assay study in 2005 showed that the antifungal ​ action of the Ajo Sacha leaf extract was as potent as a commonly used antifungal drug, clotrimazole, at 11 very low doses. ​ The presence of coumarins in the Ajo Sacha plant, along with its phenolic content, is ​ 12 associated with the medicinal actions attributed to this plant. ​ Studies have cited several popular ​ medicinal uses for the treatment of cough, nausea, fever, diarrhea, among others.4,12,13,14 ​ Anti-inflammatory effects. A study performed in 2009 showed that the essential oil of this species is ​ composed of various sulfur compounds, which showed anti-inflammatory activity and may be 4 responsible for the medicinal actions of the plant. ​ Ajo Sacha has also been shown to inhibit COX, ​ which is an enzyme required in the inflammatory process. Inhibition of COX can provide relief from the symptoms of inflammation and pain as demonstrated through Ajo Sacha’s use for the treatment of 7 arthritis and rheumatism. M​ ore recent reports show that Ajo Sacha’s anti-inflammatory actions can also ​ be explained by the plant’s ability to regulate the immune system and decrease the production of immune cells that cause inflammation.1,8 ​ Antioxidant effects. Several studies have reported very strong antioxidant actions and attributed them ​ 3,9,14 to isolated and tested organosulfur compounds, ursolic acid, and anthocyanin. ​ The sulfur ​ ​ compounds in Ajo Sacha have been reported to lower cholesterol and have antioxidant effects in both humans and animals.2,8,10 ​ Cellular Protective effects. Ajo sacha is a rich source of a well-known natural terpene, called ursolic ​ acid, which has been documented with cellular protective actions in the lungs, kidneys, liver and brain.3 ​ Under physiological concentrations in mice, ursolic acid has been shown to induce programmed cell death in defective red blood cells, reduce muscle atrophy while stimulating muscular growth, shown potential for cardioprotection, and induce neural regeneration after sciatic nerve injury.10,15 16, 17 ​ SANGRE DE GRADO (croton lechleri) is a medium-sized tree found in many regions of South ​ America. It is often called "Dragon's Blood" due to a red latex or sap that is extracted upon felling the ​ tree and scoring the bark. This latex is the primary part of Sangre de Grado used for medicinal purposes due to the protective antioxidant phenols and anti-inflammatory compounds found within.22,23 ​ ​ Reviews of these chemical constituents of the sap have been widely published and scientists have attributed many of the biologically active properties of the sap to two main “active” constituents: an 18-21 alkaloid named taspine and a lignan named dimethylcedrusine. A​ purified constituent of sangre de ​ ​ ​ ​ grado known as crofelemer (Mytesi, formerly Fulyzaq and SP-303) is an FDA-approved drug for the 18,22 treatment of non-infectious diarrhea in HIV and AIDS patients receiving antiretroviral drugs. F​ or ​ centuries, the sap has been painted on wounds to stop bleeding, accelerate healing, and to seal and protect injuries from infection. It is used externally by indigenous tribes and local people in Peru for wounds, fractures, and hemorrhoids, internally for gastrointestinal problems such as hemorrhoids.19-21 ​ Clinical Efficacy and Research Related to Sangre de Grado Antibacterial and Antiviral effects. Several phenolic compounds and diterpenes, as well as the ​ 24-26 essential oil from the plant, have demonstrated antibacterial activity in animal studies. ​ A​ ntiviral ​ effects have also been seen with Sangre de Grado extracts and may be related to viral penetration of ​ ​ the cell membrane. Crofelemer demonstrates broad in vitro activity against DNA and RNA viruses, including respiratory syncytial virus, influenza A, parainfluenza virus, herpesvirus types 1 and 2, and 27-29 hepatitis A and B. ​ T​ he mechanism of sangre de grado's antibacterial effects is unclear. ​ Analgesic effects. In vitro and animal research suggests that Sangre de Grado sap blocks the ​ activation of sensory afferent nerves at the prejunctional and postjunctional levels, leading to relief of pain, burning, and itching caused by neurogenic inflammation.19,30,31 ​ Anti-inflammatory effects. The alkaloid constituent taspine, isolated from Sangre de Grado, has ​ demonstrated anti-inflammatory effects in animal models of pain and inflammation, with anti-inflammatory activity similar to or greater than indomethacin, an FDA approved nonsteroidal anti-inflammatory drug (NSAID).19,32 ​ Gastrointestinal effects. Animal research suggests that Sangre de Grado promotes the healing of ​ gastric ulcers. This may be explained by reduced gene expression of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), interleukin (IL)-1beta, IL-6, and cyclooxygenase-2 (COX-2), which has been demonstrated in the gastric 19,31 epithelium of rats with acetic-acid induced ulcers treated with sangre de grado sap. C​ rofelemer, a ​ purified constituent of Sangre de Grado, has been approved by the FDA for symptomatic relief of 37,38 noninfectious diarrhea in patients with HIV/AIDS who are receiving antiretroviral therapy. C​ linical ​ studies have been conducted in acute infectious diarrhea, diarrhea in patients with HIV, and diarrhea-predominant irritable bowel syndrome (IBS).27,36,37 ​ Immunomodulating effects. In vitro research shows that Sangre de Grado acts as an ​ immunomodulator (a substance that stimulates or suppresses the immune system to help the body fight infection or other disease) by inhibiting both classical and alternative complementary pathways which inhibit the proliferation of activated T cells.33 ​ Wound-healing effects. The wound-healing effects of Sangre de Grado may be due to a variety of ​ factors. These include the antimicrobial, anti-inflammatory, and protein-binding properties of polyphenol constituents; the antioxidant properties of procyanidin constituents; and the ability of the sap to cover 19 the wound, preventing infection from surface microbes. ​ With respect to specific constituents, the ​ alkaloid taspine and the lignan dimethylcedrusine appear to play a role in wound healing.34,19,35 ​ CANNABIDIOL (CBD) Cannabis is one of the first plants to have been used as a medicine and for religious ceremonies, the 43 first accounts of its use for these purposes stretching back 5000 years. ​ Cannabis contains over 400 ​ 39 different chemicals, known as cannabinoids, making it a complex plant. ​ The chemical that leads to the ​ psychoactive “high” associated with cannabis, delta-9-tetrahydrocannabinol (THC), is only one of over 40 400 found in the plant. ​ While THC can be controversial due to its psychoactive properties, research is ​ beginning to show therapeutic potential with cannabidiol (CBD). Cannabidiol makes up around 40% of 40 cannabis extracts, and unlike THC, does not cause a psychoactive high. ​ According to the World ​ ​ Health Organization, CBD exhibits no effects indicative of any abuse or dependence potential in 41 humans. ​ As of June 2018, the only legal form of CBD that is FDA approved is Epidiolex, a ​ 42 prescription medication used to treat certain seizure disorders. ​ There is also evidence that CBD may ​ ​ be a useful treatment for a number of other medical conditions. However, this research is considerably less advanced than for treatment of epilepsy. For most indications, there is only pre-clinical evidence, while for some there is a combination of pre-clinical and limited clinical evidence. The range of conditions for which CBD has been assessed is diverse, consistent with its antioxidant, ​ anti-inflammatory, anticonvulsant, and neuroprotective qualities.54-56 ​ Clinical Efficacy and Research Related to Cannibidiol Antiepileptic effects: The clinical use of CBD is most advanced in the treatment of epilepsy. In clinical ​ trials, CBD has been demonstrated as an effective treatment for at least some forms of epilepsy, with one pure CBD product (Epidiolex®). The use of CBD for this purpose is based on a number of studies 41,46 in animals dating back to the 1970s. ​ These studies demonstrated the anti-seizure activity of ​ 47,48 cannabidiol in a number of animal models. ​ Based on this research, cannabidiol has been tested in ​ patients with epilepsy and a variety of syndromes, including Dravet, Lennox-Gastaut, Sturge-Weber, and tuberous sclerosis complex.49-53 ​ Anti-inflammatory effects:
Recommended publications
  • An Overview About the Chemical Composition and Biological Activity of Medicinal Species Found in the Brazilian Amazon
    Journal of Applied Pharmaceutical Science Vol. 6 (12), pp. 233-238, December, 2016 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2016.601234 ISSN 2231-3354 An Overview about the chemical composition and Biological Activity of Medicinal species found in the Brazilian Amazon Fernanda Brum Pires1, Carolina Bolssoni Dolwitsch1, Valéria Dal Prá1, Débora Luana Monego2, Viviane Maria Schneider2, Roberta Fabrício Loose2, Marcella Emília Petra Schmidt2, Lucas P. Bressan2, Marcio Antônio Mazutti³, Marcelo Barcellos da Rosa1,2* 1Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. 2Post-Graduate Program in Chemistry, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. ³Department of Chemical Engineering, Federal University of Santa Maria, Camobi Campus, Santa Maria, RS, 97105-900, Brazil. ABSTRACT ARTICLE INFO Article history: This paper presents an overview on the chemical composition and biological activity of plants found in the Received on: 20/05/2016 Brazilian Amazon – Bauhinia variegata, Cecropia obtusa, Cecropia palmata, Connarus perrottetti var. Revised on: 14/09/2016 angustifolius, Chrysobalanus icaco and Mansoa alliacea. The lack of information regarding these species, along Accepted on: 11/11/2016 with their importance given their pharmacological and nutritional use in Latin American folk medicine, justifies Available online: 28/12/2016 the demand for this study. However, various interesting and important actions, as antioxidant, antibacterial, Key words: cytotoxic, hypoglycemic, antifungal, antiangiogenic, antitumor, anti-inflammatory, antiulcer, and Biological activity, chemical chemopreventive have been modestly reported so far. In other words, these species can play a very important composition, Brazilian role in terms of biological and chemical activity, but their pharmacology is still poorly investigated.
    [Show full text]
  • Phytochemical and In-Vitro Evaluation of Anti-Oxidant Activity of Mansoa Alliacea Leaves
    Acta Scientific Pharmaceutical Sciences (ISSN: 2581-5423) Volume 4 Issue 10 October 2020 Research Article Phytochemical and In-Vitro Evaluation of Anti-oxidant Activity of Mansoa alliacea Leaves SK Ameenabee1, A Lakshmana Rao2, P Suguna Rani3, T Sandhya4, Received: August 13, 2020 N Teja5*, G Ashu5, V Bhavya Naga Vani6, CH Purna Durganjali6 and Published: September 10, 2020 N Pavani7 © All rights are reserved by N Teja., et al. 1Associate Professor, Department of Pharmacology, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 2Professor and Principal, Department of Pharmaceutical Analysis, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 3Department of Pharmacology, Sri Venkateswara University of Pharmaceutical Sciences, Tirupathi, India 4Department of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Viswavidhyalayam, Tirupathi, India 5Department of Pharmaceutics, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 6Department of Pharmaceutical Analysis, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India 7Department of Pharmacy, V.V. Institute of Pharmaceutical Sciences, Guldavalleru, India *Corresponding Author: N Teja, Department of Pharmaceutics, V.V. Institute of Pharmaceutical Sciences, Gudlavalleru, India. Abstract Mansoa alliacea Lam. (Family: Bignoniaceae) is a native plant from Amazonian basin in South America. Plant derivatives are used study was aimed to determine the pharmacognostic and phy- tochemicals present in Mansoa alliacea. Micro and Organoleptic characteristics of fresh and dried leaf samples had been examined. as an anti-inflammatory, anti-oxidant, antiseptic and anti-bacterial. The Physicochemical chemical variables have been done by using WHO suggested variables, preliminary phytochemical of leaf sample of the leaves of M. alliacea. had been performed to identify the presence of alkaloids, flavonoids, tannins and phenols, and quinones using the ethanolic extract Keywords: M.
    [Show full text]
  • Ethnopharmacology, Biological Activity and Chemical Characterization of Mansoa Alliacea
    MOL2NET, 2017, 3, doi:10.3390/mol2net-03-04617 1 MOL2NET, International Conference Series on Multidisciplinary Sciences MDPI http://sciforum.net/conference/mol2net-03 Ethnopharmacology, biological activity and chemical characterization of Mansoa alliacea. A review about a promising plant from Amazonian region. Angélica Tasambay Salazar1,*, Laura Scalvenzi1, Andrea Stefany Piedra Lescano1, Matteo Radice1. 1 Universidad Estatal Amazónica, Km 2 ½ Via Napo (paso lateral), Puyo, Pastaza, Ecuador; E- Mail: [email protected]; [email protected]; [email protected]; [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +593 032-888-118 / 032-889-118112. Graphical Abstract Abstract. Mansoa alliacea is a native plant from Mansoa alliacea Amazonian basin and has great ancestral value for the local communities. M. alliacea is part of the traditional medicine for healers and shamans and has multiple uses due to the presence of several chemical constituents with important pharmacological properties. Plant derivatives are used as: antiseptic, diuretic, analgesic, antipyretic. Folk medicine is also related to the treatment of many diseases such as: reduction of blood pressure, against atherosclerosis, arthritis and rheumatism. Researches have also proven an appreciable antioxidant property, which revalue it for cosmetic purposes. Chemical composition of plant derivatives includes as main Traditional medicine compounds: diallyl disulphide, diallyl Magical and ritual uses Cold, fever trisulphide, alliin, allicin, propylallyl, divinyl Rheumatism Food, spice sulfide, diallyl sulfide, dimethyl sulfide, Antimalarial Muscle pain daucosterol, beta-sitosterol, fucosterol, Biological activities stigmasterol, iridoides and isothiocyanates, Antioxidant Antifungal naphthoquinones, alkaloids, saponins, flavones. Antibacterial Anti-inflammatory The present review includes ethnobotanical and Larvicidal Antiplasmodial pharmacological data that are related to the chemical composition of M.
    [Show full text]
  • Assembly and Evolution of the Amazonian Biota and Its Environment: an Integrative Approach
    Assembly and evolution of the Amazonian Biota and its environment: An integrative approach Lúcia G. Lohmann (Universidade de São Paulo) Joel Cracraft (American Museum of Natural History) FAPESP 2012/50260-6 NSF 1241066 !"#$%&'($)*+,#))$-#"$.#/+ Brazil Canada >/2?*"'2%$%*+%*+DF#+G$4)#+ >/2?*"'279+#5+C#"#/7#+ >/2?*"'2%$%*+B*%*"$)+%*+=#2H'+ United States >/2?*"'2%$%*+B*%*"$)+%#+G$"H+ 01*"2($/+34'*41+#5++ >/2?*"'2%$%*+K'7$%4$)++ ++6$74"$)+82'7#"9+ ++%*+,$1L2/$'+ ,279+>/2?*"'279+6*:+;#"<+ 34'*4+G$"$*/'*+K1N)2#+=#*)%2+ B2*)%+34'*41+#5++ ++6$74"$)+82'7#"9+ J/'.747#+6$(2#/$)+%*++ ++G*'O42'$'+%$+01$PQ/2$++ 32%%)*+C*//*''**++ ++D7$7*+>/2?*"'279+ Argentina 6$74"$)+82'7#"9+34'*41++ ++E#'+0/A*)*'+,#4/79+ ,I6J,KC&J/'.747#+D4L*"2#"++ %*+K/7#1#)#A2$M+C4(41H/+ 6*:+;#"<+!#7$/2($)+=$"%*/+ Great Britain >/2?*"'279+#5+32(@2A$/+ >/2?*"'279+#5+K%2/-4"A@+ >/2?*"'279+#5+,#)#"$%#+ The Amazon Basin • One of the most biodiverse areas on Earth but little is still known about the processes that led to such great diversity • Many uncertainties remain about its geological history, age of formation, and extension of its aquatic systems • Some models claim that the Amazon was established during the Miocene while others have established its origin in the Pleistocene • Broad Objective: Achieve a new evolutionary and environmental synthesis of Amazonia of 20 3 !""#$%&'(")"&)*+"$#,*&*(-.."$%")&*-..)&/01&&Meeting these scientific challenge calls for +$'"%1-#2"&*10))34+)*+5.+$-16&)'74+")&integrative cross-disciplinary studies PART I Characterization of Amazonian biodiversity - How is biodiversity spatially distributed across Amazonia? - How are species distributions organized into patterns of endemism? - What are the biotic and abiotic environmental associations with those diversity patterns? Herbaria with significant Amazonian collections !"#$%& '( )*+*,* - ./"012 3( - Existing Amazonian Plant Specimens: ca.
    [Show full text]
  • Lahsun Bel (Mansoa Alliacea)
    WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES Lal. World Journal of Pharmacy and Pharmaceutical Sciences SJIF Impact Factor 7.632 Volume 8, Issue 11, 308-316 Review Article ISSN 2278 – 4357 CRITICAL REVIEW OF ANUKTA DRAVYA “LAHSUN BEL (MANSOA ALLIACEA) Dr. Lal* India. ABSTRACT Article Received on 09 Sep. 2019, Medicinal plants are scientifically documented in Ayurvedic literature Revised on 30 Sep. 2019, based on the sound fundamentals of rasa (Taste), guna (Property), Accepted on 21 Oct. 2019, DOI: 10.20959/wjpps201911-14670 virya (Potency), vipaka (Metabolism) and prabhava (Specific action).Vedic to Samhita and Samhita to Nighantu Kala evidenced the chronological upgradation of medicinal plants. Inclusion of new *Corresponding Author Dr. Lal dravyas (Drugs) has been the tradition of Ayurveda. Nighantukaras India. especially played a great role in this respect e.g. However, many folklore and exotic plants existing in India have not been yet stated in Ayurvedic Samhitas or Nighantus, Such are turned as „anukta dravya’. These may include dravya like cissus rependa Vahl. (Pani bel), Mansoa alliacea Lam. (Lahsun bel) etc. Day by day important medicinal plants are depleting but fortunately we have dense folklore herbs which should be thoroughly explored, studied and included in Ayurvedic pharmacopeia. Mansoa alliacea (Lam.) is one of anukta dravya. Hence present study of this article review of Mansoa alliacea, uses of M. alliacea, ethnobotanical information are described. KEYWORDS: Mansoa alliacea, Anukta dravya, Lahsun bel. INTRODUCTION Mansoa alliacea Lam. (Family Bignoniaceae) is a native plant from Amazonian basin. This plant is mainly found in Southern America but it is also found tropical rain forest region in India.
    [Show full text]
  • Mansoa Alliacea Extract Presents Antinociceptive Effect in a Chronic
    Neurochemistry International 122 (2019) 157–169 Contents lists available at ScienceDirect Neurochemistry International journal homepage: www.elsevier.com/locate/neuint Mansoa alliacea extract presents antinociceptive effect in a chronic inflammatory pain model in mice through opioid mechanisms T Fernanda Regina Hamanna,1, Indiara Bruscoa,1, Gabriela de Campos Severoa, ∗ Leandro Machado de Carvalhob, Henrique Faccinb, Luciana Gobob, Sara Marchesan Oliveiraa, , ∗∗ Maribel Antonello Rubina,c, a Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil b Chemistry Graduate Program, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil c Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil ARTICLE INFO ABSTRACT Keywords: In some chronic disorders, as in arthritis, the inflammatory pain persists beyond the inflammation control be- Allodynia coming pathological. Its treatment shows limited efficacy and adverse effects which compromises patients' Hyperalgesia quality of life. Mansoa alliacea, known as ‘cipo alho’, is popularly used as analgesic and others species of this CFA genus show anti-inflammatory actions. We investigated the anti-inflammatory and antinociceptive potential of Arthritis M. alliacea extract in an inflammatory pain model which presents inflammatory characteristics similar to those Cipo-alho caused by arthritis, through of the intraplantar injection of complete Freund's adjuvant (CFA) in mice. The extract chromatographic analysis revealed the presence of ρ-coumaric, ferulic and chlorogenic acids, luteolin, and apigenin. The treatment with M. alliacea prevented and reversed the CFA-induced mechanical allodynia with maximum inhibition (Imax) of 100% and 90 ± 10%, respectively.
    [Show full text]
  • Redalyc.Initial Growth of Mansoa Alliacea (Bignoniaceae), Species of Interest in the Amazon Region of Ecuador
    Cuban Journal of Agricultural Science ISSN: 0864-0408 [email protected] Instituto de Ciencia Animal Cuba Abril, R.; Ruiz, T.; Alonso, J.; Cabrera, Génova Initial growth of Mansoa alliacea (Bignoniaceae), species of interest in the Amazon region of Ecuador Cuban Journal of Agricultural Science, vol. 50, núm. 4, 2016, pp. 673-682 Instituto de Ciencia Animal San José de las Lajas, Cuba Available in: https://www.redalyc.org/articulo.oa?id=653768177001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Cuban Journal of Agricultural Science, Volume 50, Number 4, 2016. 50th Anniversary. 673 Initial growth of Mansoa alliacea (Bignoniaceae), species of interest in the Amazon region of Ecuador Crecimiento inicial de Mansoa alliacea (Bignoniaceae), especie de interés en la región amazónica del Ecuador R.Abril1, T.Ruiz2, J.Alonso2 and Génova Cabrera3 1Universidad Estatal Amazónica, Departamento de Ciencias de la Vida, carrera de Ingeniería Ambiental km 2 ½ Vía a Napo, Pastaza, Ecuador 2Instituto de Ciencia Animal, Apartado Postal 24, San José de las Lajas, Mayabeque, Cuba 3PRAGROS, km 2 ½ vía a Tarqui, Pastaza, Ecuador Email: [email protected] In order to know the growth characteristics of Mansoa alliaceae, Para conocer las características de crecimiento de Mansoa alliaceae the initial growth up to 320 days were recorded, from the se registró el crecimiento inicial hasta los 320 días, desde la aparición appearance of the shoot in the height of the plant, stem diameter, del brote en las medidas altura de la planta, diámetro del tallo, en las in which linear and nonlinear models were evaluated.
    [Show full text]
  • Horizontal Gene Transfer Is More Frequent with Increased Heterotrophy and Contributes to Parasite Adaptation
    Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation Zhenzhen Yanga,b,c,1, Yeting Zhangb,c,d,1,2, Eric K. Wafulab,c, Loren A. Honaasa,b,c,3, Paula E. Ralphb, Sam Jonesa,b, Christopher R. Clarkee, Siming Liuf, Chun Sug, Huiting Zhanga,b, Naomi S. Altmanh,i, Stephan C. Schusteri,j, Michael P. Timkog, John I. Yoderf, James H. Westwoode, and Claude W. dePamphilisa,b,c,d,i,4 aIntercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; bDepartment of Biology, The Pennsylvania State University, University Park, PA 16802; cInstitute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; dIntercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; eDepartment of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; fDepartment of Plant Sciences, University of California, Davis, CA 95616; gDepartment of Biology, University of Virginia, Charlottesville, VA 22904; hDepartment of Statistics, The Pennsylvania State University, University Park, PA 16802; iHuck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; and jDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved September 20, 2016 (received for review June 7, 2016) Horizontal gene transfer (HGT) is the transfer of genetic material diverse angiosperm lineages (13, 14) and widespread incorpo- across species boundaries and has been a driving force in prokaryotic ration of fragments or entire mitochondrial genomes from algae evolution.
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]
  • Horizontal Gene Transfer Is More Frequent with Increased Heterotrophy and Contributes to Parasite Adaptation
    Horizontal gene transfer is more frequent with PNAS PLUS increased heterotrophy and contributes to parasite adaptation Zhenzhen Yanga,b,c,1, Yeting Zhangb,c,d,1,2, Eric K. Wafulab,c, Loren A. Honaasa,b,c,3, Paula E. Ralphb, Sam Jonesa,b, Christopher R. Clarkee, Siming Liuf, Chun Sug, Huiting Zhanga,b, Naomi S. Altmanh,i, Stephan C. Schusteri,j, Michael P. Timkog, John I. Yoderf, James H. Westwoode, and Claude W. dePamphilisa,b,c,d,i,4 aIntercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; bDepartment of Biology, The Pennsylvania State University, University Park, PA 16802; cInstitute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; dIntercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; eDepartment of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; fDepartment of Plant Sciences, University of California, Davis, CA 95616; gDepartment of Biology, University of Virginia, Charlottesville, VA 22904; hDepartment of Statistics, The Pennsylvania State University, University Park, PA 16802; iHuck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; and jDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved September 20, 2016 (received for review June 7, 2016) Horizontal gene transfer (HGT) is the transfer of genetic material diverse angiosperm lineages (13, 14) and widespread incorpo- across species boundaries and has been a driving force in prokaryotic ration of fragments or entire mitochondrial genomes from algae evolution.
    [Show full text]
  • A Literature and Interview Based Approach to Identify Less Known Understory Species for the Enrichment of Different Shade Stages of Agroforestry Systems in Panama
    Institute of Silviculture A Literature and Interview Based Approach to Identify Less Known Understory Species for the Enrichment of Different Shade Stages of Agroforestry Systems in Panama Master’s Thesis at the Institute of Silviculture, Technische Universität München Submitted by Ludgera Ewers Freising, 24 January 2013 1st Examiner: Prof. Dr. Dr. Michael Weber 2nd Examiner: Dr. Bernd Stimm Supervisor: Dipl.-Ing. silv. Carola Paul _____________________________________________________________________Acknowledgements Acknowledgements There are several persons who contributed to this Master’s Thesis in one or another way which I would like to thank sincerely: Prof. Dr. Dr. Weber of the Institute of Silviculture at Technische Universität München for offering the supervision of the thesis and accepting the topic. Dr. Stimm for agreeing to be the second examiner. The company Forest Finance for financial support, the provision of valuable contacts and the very friendly assistance in Panama. The experts for taking their time to patiently answer the detailed question- naire and thereby providing crucial information for the investigation. Friends in Panama and different countries in the world for helping me out with translations and corrections, especially Fernando Lopez, Yariv Kav, Johanna Schmid-Lindner, María Isabel Paredes Saénz, Andrea Ewers and Therese Hertel. My family for mental and financial support. Special thanks to Dipl.-Ing. silv. Carola Paul for feedback, input and ideas, motivating words and generally for the very committed, professional yet per- sonal supervision of this thesis. iii iv ________________________________________________________________________Abstract- English Abstract - English The increasing world population and rising living standards demand more agricultural areas for food and energy production, because existing agricultu- ral areas are not sufficient anymore while at the same time land is degraded at an accelerating rate.
    [Show full text]
  • Plant Press, Vol. 20, No. 1
    Department of Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 20 - No. 1 January-March 2017 Botany Profile Wood Anatomy Climbs Back to the Smithsonian By Marcelo R. Pace he Smithsonian Institution hosts the anatomy lab of the Department of Bignoniaceae with over 300 species), a the second largest wood collection Botany is inspired by the extraordinary ladder (as in Schnella, Leguminosae), Tin the U.S. and one of the larg- stem anatomy of lianas (woody vines). successive cambia with visible con- est in the world, with 5,000 microscopic Unlike stems of trees whose wood is rigid centric rings of xylem and phloem (as slides and over 42,500 specimens from and able to sustain enormous organisms in several Caryophyllales, Menisper- 3,000 genera. Such a remarkable wood such as the Californian redwoods (Sequoia maceae, Convolvulaceae), or even a foot collection exists thanks to a proud lineage sempervirens, Cupressaceae), the stems (as in Serjania laruotteana, Sapindaceae, of plant anatomists who have worked of lianas are flexible and pliable. Indeed, which has a compound vascular cylin- at Smithsonian’s National Museum of unlike trees they tend to get more flexible der). Illustrations as early as the pre- Natural History, including Richard Eyde, as they develop (Rowe et al. 2004 J. Plant Hispanic Aztec civilization in Mexico Edward Ayensu, and especially William Growth Regul. 23: 108-128) and this is at seem to have made calendars inspired Stern. the very core of the lianescent habit. by the anatomy of lianas, such as the Stern was an accomplished wood first page of the Codex Fejérváry-Mayer anatomist who significantly increased wisting and twirling is critical to (see photo on page 10).
    [Show full text]