Toward More Integrated Utilizations of Geostationary Satellite Data for Disaster Management and Risk Mitigation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genesis of Twin Tropical Cyclones As Revealed by a Global Mesoscale
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D13114, doi:10.1029/2012JD017450, 2012 Genesis of twin tropical cyclones as revealed by a global mesoscale model: The role of mixed Rossby gravity waves Bo-Wen Shen,1,2 Wei-Kuo Tao,2 Yuh-Lang Lin,3 and Arlene Laing4 Received 12 January 2012; revised 26 April 2012; accepted 29 May 2012; published 12 July 2012. [1] In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8–10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments -
Earthcare and Himawari-8 Aerosol Products
EarthCARE and Himawari-8 Aerosol Products Maki Kikuchi, H. Murakami, T. Nagao, M. Yoshida, T. Nio, Riko Oki (JAXA/EORC), M. Eisinger and T. Wehr (ESA/ESTEC), EarthCARE project members and Himawari-8 group members 14th July 2016 Contact: [email protected] EarthCARE Earth Observation Research Center 2 CPR Observation Instruments on EarthCARE MSI CPRCPR Cloud Profiling Radar BBR ATLIDATLID Atmospheric Lidar ATLID Copyright ESA MSIMSI Multi-Spectral Imager European Space Agency(ESA)/National Institute of Institutions Information and Communications Technology(NICT)/ BBRBBR Broadband Radiometer Japan Aerospace Exploration Agency(JAXA) Launch 2018 using Soyuz or Zenit (by ESA) Mission Duration 3-years Mass Approx. 2200kg Sun-synchronous sub-recurrent orbit Orbit Altitude: approx. 400km Mean Local Solar Time (Descending): 14:00 Synergetic Observation by 4 sensors Repeat Cycle 25 days Orbit Period 5552.7 seconds Semi Major Axis 6771.28 km Eccentricity 0.001283 3 Inclination 97.050° 285m Synergetic Observation by 4 Sensors on Global Scale •3‐dimensional structureGlobal simultaneous of aerosol observations and cloud of including vertical motion ‐ Cloud & aerosol profiles, 3D structure, with vertical motions •Radiation flux at top of‐ Radiation atmosphere flux at Top of Atmosphere (TOA) •Aerosol –cloud –radiation‐ Aerosol interactions‐Cloud‐Radiation interaction 4 ATLID ATLID Global Observation of Cloud and Atmospheric Lidar Aerosol Vertical Profile and Optical Properties 355nm High Spectral Resolution Lidar ATLID is a High Spectral Resolution Lidar (HSRL) developed by Instrument (HSRL) European Space Agency. - Rayleigh Channel Channel - Mie Channel(Cross-polarization) Different from the traditional Mie lidar, it has the capability to - Mie Channel (Co-polarization) separate Rayleigh scattering signal (originate from Sampling Horizontal : 285m / Vertical : 103m atmospheric molecules) and Mie scattering signal (originate Observation 3°Off Nadir(TBD) from aerosol and cloud) by high spectral resolution filter. -
February 2020 Ajet
AJET News & Events, Arts & Culture, Lifestyle, Community FEBRUARY 2020 Riding the Jiu-Jitsu Wave Working for the Kyoryokutai The Changing Colors of the Red and White Singing Battle Journey Through Magic Embarrassing Adventures of an Expat in Tokyo The Japanese Lifestyle & Culture Magazine Written by the International Community in Japan1 In response to ongoing global news, the team at Connect Magazine would like to acknowledge the devastating impact of the 2019-2020 bushfires in Australia. Our thoughts and support are with those suffering. 2 Since September 2019, the raging fires across the eastern and southeastern Australian coastal regions have burned over 17.9 million acres, destroyed over 2000 homes, and killed least 27 people. A billion animals have been caught in the fires, with some species now pushed to the brink of extinction. Skies are reddened from air heavy with smoke— smoke which can be seen 2,000km away in New Zealand and even from Chile, South America, which is more than 11,000km away. Currently, massive efforts are being taken to tackle the bushfires and protect people, animals, and homes in the vicinity. If you would like to be a part of this effort, here are some resources you can use to help: Country Fire Authority Country Fire Service Foundation In Victoria In South Australia New South Wales Rural The Australian Red Cross Fire Service Fire recovery and relief fund World Wildlife Fund GIVIT Caring for injured wildlife and Donating items requested by habitat restoration those affected The Animal Rescue Collective Craft Guild Making bedding and bandaging for injured animals. -
GLM Product Evaluation and Highlights of My Research at CICS
GLM Product Evaluation and Highlights of My Research at CICS Ryo Yoshida Satellite Program Division, Observation Department Japan Meteorological Agency (JMA) STAR Seminar, October 24, 2019 Overview of my research visit • “Japanese Government Short-Term Overseas Fellowship Program” sponsored by the National Personnel Authority of Japan • Period: Nov. 5, 2018 - Nov. 3, 2019 • NESDIS accepted me at CICS, based on the framework of the NESDIS-JMA high-level letter exchange on information exchange regarding GOES-R Series & Himawari-8/9 • Research topics: GLM & NOAA’s advanced efforts on satellites I deeply appreciate NESDIS’s giving me this great opportunity Japan Meteorological Agency 2 Contents 1. Overview of JMA and Himawari satellites 2. Highlights of my research at CICS 3. GLM product evaluation Japan Meteorological Agency 3 1. Overview of JMA and Himawari satellites Japan Meteorological Agency 4 What JMA is Japan’s national meteorological service, whose ultimate goals are Safety of transportation Prevention Development and mitigation and prosperity of natural of industry disasters International cooperation Japan Meteorological Agency prescribed by the Meteorological Service Act. 5 What JMA does • Weather observations • Weather forecasts and warnings • Aviation & marine weather services • Climate & global environment services • Monitoring seismic & volcanic activity & tsunamis Japan Meteorological Agency 6 JMA’s weather observation systems 16 radiosonde stations 33 wind profilers Upper air observations Geostationary satellites Observations -
Derivation of Atmospheric Aerosol and Cloud Parameters from the Satellite Sensors on Board Himawari 8-9, GCOM-C, Earthcare, and GOSAT2 Satellites
9-11 Oct. 2013, Melbourne 4th Asia/Oceania Meteorological Satellite Users' Conference Derivation of atmospheric aerosol and cloud parameters from the satellite sensors on board Himawari 8-9, GCOM-C, EarthCARE, and GOSAT2 satellites Teruyuki Nakajima ([email protected]) Surface solar radiation retrieval (1) PV system malfunction detection 2013 result (2011/7 ) EXAM system: Takenaka et al. (JGR 11) (2) Solar car race support DARWIN World Solar Challenge 3,000 km (WSC) in 2011 Tokai U. team Winner 2011-2012 ADELAIDE 2nd in 2013 HIMAWARI7 Next generation satellites AHI specs, JMA/ HIMAWARI-8/9 2016- 16 bands (1km, 2km) EarthCARE Full disk scan every 10min Rapid scan every 2.5 min 2009-, 2016- Aerosol and cloud GOSAT, GOSAT-II 20- monitoring GCOM-C CGOM/C-SGLI 250m, 11ch Current 2nd generation 500m, 2 ch imager 2015- 3rd generation back/forward view 1km, 4 ch Himawari-8&9 with polarization GOSAT2/FTS-SWIR FTS-TIR CAI2 NASA/ LARC Coarse aerosol correction Imaging Dynamics with aerosol ESA-JAXA/EarthCARE Radar Echo Aerosol forcing XCO2, XCH4 Doppler velocity NASA/LARC JMA Advisory Committee for Geostationary Satellite Data Use Members: T. Nakajima (Chair), R. Oki (JAXA), T. Koike, H. Shimoda, T. Takamura, Y. Takayabu, E. Nakakita, T.Y. Nakajima, K. Nakamura, Y. Honda WGs: T.Y. Nakajima (Atmosphere), Y. Honda (Earth surface) Data use exploitation and community supports Data distributions to research community (430GB/day nc) Algorithm developments and requests from foreign agencies and groups? Simulation data (Himawari -
Japan's Insurance Market 2020
Japan’s Insurance Market 2020 Japan’s Insurance Market 2020 Contents Page To Our Clients Masaaki Matsunaga President and Chief Executive The Toa Reinsurance Company, Limited 1 1. The Risks of Increasingly Severe Typhoons How Can We Effectively Handle Typhoons? Hironori Fudeyasu, Ph.D. Professor Faculty of Education, Yokohama National University 2 2. Modeling the Insights from the 2018 and 2019 Climatological Perils in Japan Margaret Joseph Model Product Manager, RMS 14 3. Life Insurance Underwriting Trends in Japan Naoyuki Tsukada, FALU, FUWJ Chief Underwriter, Manager, Underwriting Team, Life Underwriting & Planning Department The Toa Reinsurance Company, Limited 20 4. Trends in Japan’s Non-Life Insurance Industry Underwriting & Planning Department The Toa Reinsurance Company, Limited 25 5. Trends in Japan's Life Insurance Industry Life Underwriting & Planning Department The Toa Reinsurance Company, Limited 32 Company Overview 37 Supplemental Data: Results of Japanese Major Non-Life Insurance Companies for Fiscal 2019, Ended March 31, 2020 (Non-Consolidated Basis) 40 ©2020 The Toa Reinsurance Company, Limited. All rights reserved. The contents may be reproduced only with the written permission of The Toa Reinsurance Company, Limited. To Our Clients It gives me great pleasure to have the opportunity to welcome you to our brochure, ‘Japan’s Insurance Market 2020.’ It is encouraging to know that over the years our brochures have been well received even beyond our own industry’s boundaries as a source of useful, up-to-date information about Japan’s insurance market, as well as contributing to a wider interest in and understanding of our domestic market. During fiscal 2019, the year ended March 31, 2020, despite a moderate recovery trend in the first half, uncertainties concerning the world economy surged toward the end of the fiscal year, affected by the spread of COVID-19. -
Orbital Debris: a Chronology
NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................ -
An Introduction to Humanitarian Assistance and Disaster Relief (HADR) and Search and Rescue (SAR) Organizations in Taiwan
CENTER FOR EXCELLENCE IN DISASTER MANAGEMENT & HUMANITARIAN ASSISTANCE An Introduction to Humanitarian Assistance and Disaster Relief (HADR) and Search and Rescue (SAR) Organizations in Taiwan WWW.CFE-DMHA.ORG Contents Introduction ...........................................................................................................................2 Humanitarian Assistance and Disaster Relief (HADR) Organizations ..................................3 Search and Rescue (SAR) Organizations ..........................................................................18 Appendix A: Taiwan Foreign Disaster Relief Assistance ....................................................29 Appendix B: DOD/USINDOPACOM Disaster Relief in Taiwan ...........................................31 Appendix C: Taiwan Central Government Disaster Management Structure .......................34 An Introduction to Humanitarian Assistance and Disaster Relief (HADR) and Search and Rescue (SAR) Organizations in Taiwan 1 Introduction This information paper serves as an introduction to the major Humanitarian Assistance and Disaster Relief (HADR) and Search and Rescue (SAR) organizations in Taiwan and international organizations working with Taiwanese government organizations or non-governmental organizations (NGOs) in HADR. The paper is divided into two parts: The first section focuses on major International Non-Governmental Organizations (INGOs), and local NGO partners, as well as international Civil Society Organizations (CSOs) working in HADR in Taiwan or having provided -
Introduction of JMA Himawari Follow-On Satellites Program
Introduction of JMA Himawari follow-on satellites program Himawari-9 Kotaro BESSHO Satellite Program Division Himawari-8 Japan Meteorological Agency Himawari-8/9 Advanced Himawari Imager (AHI) Geostationary Around 140.7°E communication antennas position Attitude control 3-axis attitude-controlled geostationary satellite 1) Raw observation data transmission Ka-band, 18.1 - 18.4 GHz (downlink) 2) DCS (Data collection System) International channel 402.0 - 402.1 MHz (uplink) Domestic channel Communication 402.1 - 402.4 MHz (uplink) solar panel Transmission to ground segments Ka-band, 18.1 - 18.4 GHz (downlink) Himawari-8 began operation on 7 July 3) Telemetry and command 2015, replacing the previous MTSAT-2 Ku-band, 12.2 - 12.75 GHz (downlink) 13.75 - 14.5 GHz (uplink) operational satellite 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 MTSAT-1R operation standby MTSAT-2 standby operation standby Himawari-8 a package manufacture launch operation standby Himawari-9 purchase manufacture launch standby operation standby Himawari-8/-9 follow-on program • 2018: JMA started considering the next GEO satellite program The Implementation Plan of the Basic Plan on Space Policy: “By FY2023 Japan will start manufacturing the Geostationary Meteorological Satellites that will be the successors to Himawari-8 and -9, aiming to put them into operation in around FY2029”. Description of Japan’s geostationary meteorological satellites in the Implementation Plan revised in FY2017 Himawari-8/-9 -
Special Report Our Way Special Feature Our Platform Appendix Data Section
CEO Message Who We Are Special Report Our Way Special Feature Our Platform Appendix Data Section For a resilient and sustainable society Special Report Toward a Resilient and Sustainable Society Climate-Related Disclosure Strategy Strategy: Climate-Related Risks and Opportunities Climate change poses risks in such areas as rapid social and economic changes resulting from the increasing scale of natural disasters and the transition to a carbon-free society. While ensuring financial soundness and stable profits, the Group undertakes duties of insurance claims for damage caused Because climate change has a significant by natural disasters such as typhoons and floods in the form of insurance payments. At the same time, we are pursuing impact on society and industry, we recognize initiatives for disaster prevention and mitigation both in Japan and overseas. that disclosing the impact of climate change In addition, we are contributing to the realization of a resilient and sustainable society by promoting efforts to support the on business activities is essential for the development of new technologies to reduce the risk of climate change and efforts to reduce the environmental impact of our stability of society and the financial system. business activities. The MS&AD Insurance Group endorses Climate-Related Risks the Task Force on Climate-Related Financial Disclosures (TCFD) and promotes the Sometimes damage from natural disasters such as typhoons becomes huge and increases the amount of insurance payouts. If the impact disclosure of financial information. of climate change worsens major natural disasters, there is a risk that insurance payments will be large. The Group prepares for such payments through reinsurance, catastrophe bond arrangements and maintaining appropriate catastrophe reserves. -
Hi-Reliability Products for Space
Hi-Reliability Products for Space Introduction Rakon is one of the world’s largest solutions providers of high reliability frequency control products. Its high reliability solutions are found in Space, Defence and Industrial applications which require the most stringent performance criteria. This is why many government and commercial programmes use Rakon oscillators across the globe, in systems where high performance is required under the most demanding conditions. Rakon continuously develops state of the art frequency control products at the cutting edge of innovative technology. Industry Contribution Space Product Advantages Ê Rakon has a proven record of taking Space specifications and Ê Rakon space grade oscillators (Flight Models) are designed to creating high reliability and cost effective solutions in order to meet TID of 100 kRad, low dose rate (36 – 360 rad/h) as per meet the most demanding requirements. ESCC22900 and latch-up free up to LET of 60 MeV/mg/cm². Ê Rakon is involved in most of the scientific programmes Ê Rakon is among the top worldwide suppliers of Ultra Stable managed by the European Space Agency (ESA), and has OCXO for Space. The mini-USO (Ultra Stable Oscillator) offers supplied ESA qualified crystals since the 1980s. Rakon a guaranteed frequency stability vs. temperature of 0.1 ppb develops new products & technologies under funding from (-20 to +50°C) and short-term stability (Allan variance) of ESA and CNES (French National Centre for Space Studies). 5E-13 from 1 to 100 seconds. Ê As your strategic frequency control partner, Rakon can provide Ê For Low Earth Orbit (LEO) satellites & constellations, Rakon standard products or customised solutions, ranging from high offers RadHard COTS products (e.g. -
Securing Japan an Assessment of Japan´S Strategy for Space
Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology