Representations of Bits and and OR Gates Using Switches

Total Page:16

File Type:pdf, Size:1020Kb

Representations of Bits and and OR Gates Using Switches Representations of bits Table 3-1 Physical states representing bits in different computer logic and memory technologies. State Representing Bit Technology 0 1 Pneumatic logic Fluid at low pressure Fluid at high pressure Relay logic Circuit open Circuit closed Complementary metal-oxide 0–1.5 V 3.5–5.0 V semiconductor (CMOS) logic Transistor-transistor logic (TTL) 0–0.8 V 2.0–5.0 V Fiber optics Light off Light on Dynamic memory Capacitor discharged Capacitor charged Nonvolatile, erasable memory Electrons trapped Electrons released Bipolar read-only memory Fuse blown Fuse intact Bubble memory No magnetic bubble Bubble present Magnetic tape or disk Flux direction “north” Flux direction “south” Polymer memory Molecule in state A Molecule in state B Read-only compact disc No pit Pit Rewriteable compact disc Dye in crystalline state Dye in noncrystalline state Not all logic representations are suitable for logic gates. Logic device must outputs that are of the same type as its inputs. October 3, 2002 EE 121: Digital Design Laboratory Lecture 3 { 1 AND and OR gates using switches Single-pole single-throw (SPST) switches are either normally open (n.o.) or normally closed (n.c.). Normally-open switches can be used to build AND and OR gates. AND gate: serial connection: OR gate: parallel connection: + + V− LED V− LED AB AB October 3, 2002 EE 121: Digital Design Laboratory Lecture 3 { 2 MOS transistors Logic levels for CMOS circuits have wide range, from > 12 Vdownto»1V. Often 5 V is used for compatibility with older logic families (TTL). 5.0 V Logic 1 (HIGH) 3.5 V undefined logic level 1.5 V Logic 0 (LOW) 0.0 V Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e MOS transistors are voltage-controlled resistances that we use as switches. VIN Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e n-type transistors are normally open; p-type transistors are normally closed. Voltage-controlled resistance: − drain increase V ==> decrease R Voltage-controlled resistance: gate gs ds Vgs decrease Vgs ==> decrease Rds + + source source ≥ gate V Note: normally, Vgs 0 drain gs ≤ − Note: normally, Vgs 0 Copyright © 2000 by Prentice Hall, Inc. Copyright © 2000 by Prentice Hall, Inc. October 3, 2002Digital Design Principles and Practices, EE3/e 121: Digital Design LaboratoryDigital Design Principles and Practices, 3/e Lecture 3 { 3 CMOS inverter Schematic, function table, and logic symbol: VDD = +5.0 V VDD = +5.0 V Copyright © 2000 by Prentice Hall, Inc. (a) Digital Design Principles and Practices, 3/e Q2 on when (b) VIN Q1 Q2 V OUT (p-channel) Q2 VIN is low (p-channel) 0.0 (L) off on 5.0 (H) VOUT 5.0 (H) on off 0.0 (L) Q1 VOUT on when VIN (n-channel) Q1 VIN is high VIN (n-channel) (c) IN OUT Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e Switch view of CMOS inverter: VDD = +5.0 V VDD = +5.0 V (a) (b) VIN = L VOUT = H VIN = H VOUT = L Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e October 3, 2002 EE 121: Digital Design Laboratory Lecture 3 { 4 CMOS NAND Schematic, function table, and logic symbol: VDD Copyright © 2000 by Prentice Hall, Inc. (a) Digital Design Principles and Practices, 3/e (b) A B Q1 Q2 Q3 Q4 Z Q2 Q4 L L off on off on H L H off on on off H Z H L on off off on H H H on off on off L A Q1 A B Q3 (c) Z B Switch models for CMOS NAND gate: V V V (a) DD (b) DD (c) DD Z = H Z = H Z = L A = L A = H A = H B = L B = L B = H Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e October 3, 2002 EE 121: Digital Design Laboratory Lecture 3 { 5 CMOS NOR V (a) DD A Q2 (b) A B Q1 Q2 Q3 Q4 Z L L off on off on H L H off on on off L B Q4 H L on off off on L H H on off on off L Z A Q1 Q3 (c) Z B Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e NAND and NOR are dual Boolean functions (to be discussed later). Their logic circuits are dual circuits. Performance of NAND or NOR is not the same because pMOS and nMOS transistors have di®erent characteristics. CMOS NAND gates are faster than NOR gates because of series connnection of n-channel transistors has higher conductance than series connection of p-channel transistors. October 3, 2002 EE 121: Digital Design Laboratory Lecture 3 { 6 n-input NAND and NOR V (a)DD (b) A B C Q1 Q2 Q3 Q4 Q5 Q6 Z Q2 Q4 Q6 L L L off on off on off on H L L H off on off on on off H L H L off on on off off on H L H H off on on off on off H Z H L L on off off on off on H H L H on off off on on off H H H L on off on off off on H A Q1 H H H on off on off on off L B Q3 (c) A B Z C Q5 C Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e This implementation of n-input NAND or NOR uses n pairs of transistors. Unfortunately, delay increases with the number of inputs: delay ¼ a + bn2 October 3, 2002 EE 121: Digital Design Laboratory Lecture 3 { 7 Large fan-in gates For a large number of inputs, it is faster to use multiple gates. Example: 8-input NAND might be faster using three small gate delays. I1 I1 I2 I2 I3 I3 I4 I4 OUT OUT I5 I5 I6 I6 I7 I7 I8 I8 Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e Note the tradeo® between speed and cost: 22 transistors vs. 16 transistors. Cost is proportional to the number of transistors or area in integrated circuit. October 3, 2002 EE 121: Digital Design Laboratory Lecture 3 { 8 CMOS AND-OR-INVERT The circuit below uses two AND gates (2 ¢ 6=12T) and one NOR gate (4T). A B Z C D Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e This logic function can be implemented directly using 8 transistors. V Copyright © 2000 by Prentice Hall, Inc. DD Digital Design Principles and Practices, 3/e (a) (b) A B C D Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Z A Q2 Q4 L L L L off on off on off on off on H L L L H off on off on off on on off H B L L H L off on off on on off off on H L L H H off on off on on off on off L L H L L off on on off off on off on H Q6 Q8 L H L H off on on off off on on off H L H H L off on on off on off off on H Z L H H H off on on off on off on off L H L L L on off off on off on off on H H L L H on off off on off on on off H C Q5 Q3 H L H L on off off on on off off on H H L H H on off off on on off on off L H H L L on off on off off on off on L H H L H on off on off off on on off L D Q7 Q1 H H H L on off on off on off off on L H H H H on off on off on off on off L October 3, 2002 EE 121: Digital Design Laboratory Lecture 3 { 9 CMOS steady-state electrical behavior VDD = +5.0 V Copyright © 2000 by Prentice Hall, Inc. (a) Digital Design Principles and Practices, 3/e (b) VIN Q1 Q2 V OUT Q2 (p-channel) 0.0 (L) off on 5.0 (H) 5.0 (H) on off 0.0 (L) VOUT Q1 VIN (n-channel) (c) IN OUT VOUT 5.0 HIGH V 3.5 CC VOHmin HIGH High-state undefined DC noise margin 0.7 VCC VIHmin 1.5 ABNORMAL V LOW 0.3 VCC ILmax LOW Low-state 0 V IN V DC noise margin 0 1.5 3.5 5.0 0 OLmax LOWundefined HIGH Copyright © 2000 by Prentice Hall, Inc. Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e Digital Design Principles and Practices, 3/e October 3, 2002 EE 121: Digital Design Laboratory Lecture 3 { 10 Resistive loads, nonideal inputs (a) VCC (b) VCC "sourcing current" CMOS CMOS inverter inverter Rp Rp resistive > 1 MΩ load VOLmax VOHmin VIN VIN I I R OLmax resistive R OHmax n load n > 1 MΩ "sinking current" Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e Output voltage will di®er from ideal high or low if too much output current. The voltage shift may not matter for analog applications (LEDs). But the output should not also be connected to inputs of CMOS gates.
Recommended publications
  • Engineering Transcriptional Control and Synthetic Gene Circuits in Cell Free Systems
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2012 Engineering Transcriptional Control and Synthetic Gene Circuits in Cell Free systems Sukanya Iyer University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biotechnology Commons Recommended Citation Iyer, Sukanya, "Engineering Transcriptional Control and Synthetic Gene Circuits in Cell Free systems. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1586 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Sukanya Iyer entitled "Engineering Transcriptional Control and Synthetic Gene Circuits in Cell Free systems." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Life Sciences. Mitchel J. Doktycz, Major Professor We have read this dissertation and recommend its acceptance: Michael L. Simpson, Albrecht G. von Arnim, Barry D. Bruce, Jennifer L. Morrell-Falvey Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Engineering Transcriptional Control and Synthetic Gene Circuits in Cell Free systems A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Sukanya Iyer December 2012 Copyright © 2012 by Sukanya Iyer.
    [Show full text]
  • CSE Yet, Please Do Well! Logical Connectives
    administrivia Course web: http://www.cs.washington.edu/311 Office hours: 12 office hours each week Me/James: MW 10:30-11:30/2:30-3:30pm or by appointment TA Section: Start next week Call me: Shayan Don’t: Actually call me. Homework #1: Will be posted today, due next Friday by midnight (Oct 9th) Gradescope! (stay tuned) Extra credit: Not required to get a 4.0. Counts separately. In total, may raise grade by ~0.1 Don’t be shy (raise your hand in the back)! Do space out your participation. If you are not CSE yet, please do well! logical connectives p q p q p p T T T T F T F F F T F T F NOT F F F AND p q p q p q p q T T T T T F T F T T F T F T T F T T F F F F F F OR XOR 푝 → 푞 • “If p, then q” is a promise: p q p q F F T • Whenever p is true, then q is true F T T • Ask “has the promise been broken” T F F T T T If it’s raining, then I have my umbrella. related implications • Implication: p q • Converse: q p • Contrapositive: q p • Inverse: p q How do these relate to each other? How to see this? 푝 ↔ 푞 • p iff q • p is equivalent to q • p implies q and q implies p p q p q Let’s think about fruits A fruit is an apple only if it is either red or green and a fruit is not red and green.
    [Show full text]
  • Digital IC Listing
    BELS Digital IC Report Package BELS Unit PartName Type Location ID # Price Type CMOS 74HC00, Quad 2-Input NAND Gate DIP-14 3 - A 500 0.24 74HCT00, Quad 2-Input NAND Gate DIP-14 3 - A 501 0.36 74HC02, Quad 2 Input NOR DIP-14 3 - A 417 0.24 74HC04, Hex Inverter, buffered DIP-14 3 - A 418 0.24 74HC04, Hex Inverter (buffered) DIP-14 3 - A 511 0.24 74HCT04, Hex Inverter (Open Collector) DIP-14 3 - A 512 0.36 74HC08, Quad 2 Input AND Gate DIP-14 3 - A 408 0.24 74HC10, Triple 3-Input NAND DIP-14 3 - A 419 0.31 74HC32, Quad OR DIP-14 3 - B 409 0.24 74HC32, Quad 2-Input OR Gates DIP-14 3 - B 543 0.24 74HC138, 3-line to 8-line decoder / demultiplexer DIP-16 3 - C 603 1.05 74HCT139, Dual 2-line to 4-line decoders / demultiplexers DIP-16 3 - C 605 0.86 74HC154, 4-16 line decoder/demulitplexer, 0.3 wide DIP - Small none 445 1.49 74HC154W, 4-16 line decoder/demultiplexer, 0.6wide DIP none 446 1.86 74HC190, Synchronous 4-Bit Up/Down Decade and Binary Counters DIP-16 3 - D 637 74HCT240, Octal Buffers and Line Drivers w/ 3-State outputs DIP-20 3 - D 643 1.04 74HC244, Octal Buffers And Line Drivers w/ 3-State outputs DIP-20 3 - D 647 1.43 74HCT245, Octal Bus Transceivers w/ 3-State outputs DIP-20 3 - D 649 1.13 74HCT273, Octal D-Type Flip-Flops w/ Clear DIP-20 3 - D 658 1.35 74HCT373, Octal Transparent D-Type Latches w/ 3-State outputs DIP-20 3 - E 666 1.35 74HCT377, Octal D-Type Flip-Flops w/ Clock Enable DIP-20 3 - E 669 1.50 74HCT573, Octal Transparent D-Type Latches w/ 3-State outputs DIP-20 3 - E 674 0.88 Type CMOS CD4000 Series CD4001, Quad 2-input
    [Show full text]
  • The Equation for the 3-Input XOR Gate Is Derived As Follows
    The equation for the 3-input XOR gate is derived as follows The last four product terms in the above derivation are the four 1-minterms in the 3-input XOR truth table. For 3 or more inputs, the XOR gate has a value of 1when there is an odd number of 1’s in the inputs, otherwise, it is a 0. Notice also that the truth tables for the 3-input XOR and XNOR gates are identical. It turns out that for an even number of inputs, XOR is the inverse of XNOR, but for an odd number of inputs, XOR is equal to XNOR. All these gates can be interconnected together to form large complex circuits which we call networks. These networks can be described graphically using circuit diagrams, with Boolean expressions or with truth tables. 3.2 Describing Logic Circuits Algebraically Any logic circuit, no matter how complex, may be completely described using the Boolean operations previously defined, because of the OR gate, AND gate, and NOT circuit are the basic building blocks of digital systems. For example consider the circuit shown in Figure 1.3(c). The circuit has three inputs, A, B, and C, and a single output, x. Utilizing the Boolean expression for each gate, we can easily determine the expression for the output. The expression for the AND gate output is written A B. This AND output is connected as an input to the OR gate along with C, another input. The OR gate operates on its inputs such that its output is the OR sum of the inputs.
    [Show full text]
  • Hardware Abstract the Logic Gates References Results Transistors Through the Years Acknowledgements
    The Practical Applications of Logic Gates in Computer Science Courses Presenters: Arash Mahmoudian, Ashley Moser Sponsored by Prof. Heda Samimi ABSTRACT THE LOGIC GATES Logic gates are binary operators used to simulate electronic gates for design of circuits virtually before building them with-real components. These gates are used as an instrumental foundation for digital computers; They help the user control a computer or similar device by controlling the decision making for the hardware. A gate takes in OR GATE AND GATE NOT GATE an input, then it produces an algorithm as to how The OR gate is a logic gate with at least two An AND gate is a consists of at least two A NOT gate, also known as an inverter, has to handle the output. This process prevents the inputs and only one output that performs what inputs and one output that performs what is just a single input with rather simple behavior. user from having to include a microprocessor for is known as logical disjunction, meaning that known as logical conjunction, meaning that A NOT gate performs what is known as logical negation, which means that if its input is true, decision this making. Six of the logic gates used the output of this gate is true when any of its the output of this gate is false if one or more of inputs are true. If all the inputs are false, the an AND gate's inputs are false. Otherwise, if then the output will be false. Likewise, are: the OR gate, AND gate, NOT gate, XOR gate, output of the gate will also be false.
    [Show full text]
  • Solving Logic Problems with a Twist
    Transformations Volume 6 Issue 1 Winter 2020 Article 6 11-30-2020 Solving Logic Problems with a Twist Angie Su Nova Southeastern University, [email protected] Bhagi Phuel Chloe Johnson Dylan Mandolini Shawlyn Fleming Follow this and additional works at: https://nsuworks.nova.edu/transformations Part of the Science and Mathematics Education Commons, and the Teacher Education and Professional Development Commons Recommended Citation Su, Angie; Bhagi Phuel; Chloe Johnson; Dylan Mandolini; and Shawlyn Fleming (2020) "Solving Logic Problems with a Twist," Transformations: Vol. 6 : Iss. 1 , Article 6. Available at: https://nsuworks.nova.edu/transformations/vol6/iss1/6 This Article is brought to you for free and open access by the Abraham S. Fischler College of Education at NSUWorks. It has been accepted for inclusion in Transformations by an authorized editor of NSUWorks. For more information, please contact [email protected]. Solving Logic Problems with a Twist Cover Page Footnote This article was originally published in the Dimensions Journal, A publication of the Florida Council of Teachers of Mathematics Journal. This article is available in Transformations: https://nsuworks.nova.edu/transformations/vol6/iss1/6 Su, Hui Fang Huang, Bhagi Phuel, Chloe Johnson, Dylan Mandolini, and Shawlyn Fleming Solving Logic Problems with a Twist Solving Logic Problems with a Twist Hui Fang Huang Su, Bhagi Phuel, Chloe Johnson, Dylan Mandolini, and Shawlyn Fleming Review of Symbolic Logic Aristotle, Greek philosopher and scientist, was a pupil of Plato and asserted that any logical argument is reducible to two premises and a conclusion (Gullberg, 1997). According to classical (Aristotelian) logic, arguments are governed by three fundamental laws: the principle of identity, the principle of the excluded middle, and the principle of contradiction.
    [Show full text]
  • Designing Combinational Logic Gates in Cmos
    CHAPTER 6 DESIGNING COMBINATIONAL LOGIC GATES IN CMOS In-depth discussion of logic families in CMOS—static and dynamic, pass-transistor, nonra- tioed and ratioed logic n Optimizing a logic gate for area, speed, energy, or robustness n Low-power and high-performance circuit-design techniques 6.1 Introduction 6.3.2 Speed and Power Dissipation of Dynamic Logic 6.2 Static CMOS Design 6.3.3 Issues in Dynamic Design 6.2.1 Complementary CMOS 6.3.4 Cascading Dynamic Gates 6.5 Leakage in Low Voltage Systems 6.2.2 Ratioed Logic 6.4 Perspective: How to Choose a Logic Style 6.2.3 Pass-Transistor Logic 6.6 Summary 6.3 Dynamic CMOS Design 6.7 To Probe Further 6.3.1 Dynamic Logic: Basic Principles 6.8 Exercises and Design Problems 197 198 DESIGNING COMBINATIONAL LOGIC GATES IN CMOS Chapter 6 6.1Introduction The design considerations for a simple inverter circuit were presented in the previous chapter. In this chapter, the design of the inverter will be extended to address the synthesis of arbitrary digital gates such as NOR, NAND and XOR. The focus will be on combina- tional logic (or non-regenerative) circuits that have the property that at any point in time, the output of the circuit is related to its current input signals by some Boolean expression (assuming that the transients through the logic gates have settled). No intentional connec- tion between outputs and inputs is present. In another class of circuits, known as sequential or regenerative circuits —to be dis- cussed in a later chapter—, the output is not only a function of the current input data, but also of previous values of the input signals (Figure 6.1).
    [Show full text]
  • Class 10: CMOS Gate Design
    Class 10: CMOS Gate Design Topics: 1. Exclusive OR Implementation 2. Exclusive OR Carry Circuit 3. PMOS Carry Circuit Equivalent 4. CMOS Full-Adder 5. NAND, NOR Gate Considerations 6. Logic Example 7. Logic Negation 8. Mapping Logic ‘0’ 9. Equivalent Circuits 10. Fan-In and Fan-Out 11. Rise Delay Time 12. Rise Delay Time 13. Rise Delay Time 14. Fall Delay Time 15. Equal Delays Joseph A. Elias, PhD 1 Class 10: CMOS Gate Design Exclusive OR Design (Martin c4.5) 3-input XOR Truth Table Similar to how one derives a 2-input XOR (Martin, p.183) using (a’+b’)=(ab)’ (a’b’)=(a+b)’ a XOR b = a’b + ab’ = a’a + a’b + ab’ + bb’ = a’(a+b) + b’(a+b) = (a’+b’)(a+b) = (ab)’(a+b) = (ab + (a’b’) )’ = (ab + (a + b)’ )’ Joseph A. Elias, PhD 2 Class 10: CMOS Gate Design Exclusive OR Carry Circuit (Martin c4.5) NMOS realization PMOS equivalent •A in parallel with B •A in series with B •A||B in series with C •AB in parallel with C •AB in parallel with (A||B)C •A||B in series with (AB)||C Vout = Joseph A. Elias, PhD 3 Class 10: CMOS Gate Design PMOS Carry Circuit Equivalent (Martin c4.5) •Martin indicates equivalency between these circuits •Is this true? (AB+C)(A+B) = (A+B)C + (AB) ABA + ABB + AC + BC = AC +BC +AB AB + AB + AC + BC = AC + BC + AB AB + AC + BC = AB + AC + BC equivalent Joseph A. Elias, PhD 4 Class 10: CMOS Gate Design CMOS Full-Adder (Martin c4.5) Sum: (A+B+C) Carry + ABC Carry: (A+B)C + AB Joseph A.
    [Show full text]
  • –Not –And –Or –Xor –Nand –Nor
    Gates Six types of gates –NOT –AND –OR –XOR –NAND –NOR 1 NOT Gate A NOT gate accepts one input signal (0 or 1) and returns the complementary (opposite) signal as output 2 AND Gate An AND gate accepts two input signals If both are 1, the output is 1; otherwise, the output is 0 3 OR Gate An OR gate accepts two input signals If both are 0, the output is 0; otherwise, the output is 1 4 XOR Gate An XOR gate accepts two input signals If both are the same, the output is 0; otherwise, the output is 1 5 XOR Gate Note the difference between the XOR gate and the OR gate; they differ only in one input situation When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0 XOR is called the exclusive OR because its output is 1 if (and only if): • either one input or the other is 1, • excluding the case that they both are 6 NAND Gate The NAND (“NOT of AND”) gate accepts two input signals If both are 1, the output is 0; otherwise, the output is 1 NOR Gate The NOR (“NOT of OR”) gate accepts two inputs If both are 0, the output is 1; otherwise, the output is 0 8 AND OR XOR NAND NOR 9 Review of Gate Processing Gate Behavior NOT Inverts its single input AND Produces 1 if all input values are 1 OR Produces 0 if all input values are 0 XOR Produces 0 if both input values are the same NAND Produces 0 if all input values are 1 NOR Produces 1 if all input values are 0 10 Combinational Circuits Gates are combined into circuits by using the output of one gate as the input for another This same circuit using a Boolean expression is AB + AC 11 Combinational Circuits Three inputs require eight rows to describe all possible input combinations 12 Combinational Circuits Consider the following Boolean expression A(B + C) Does this truth table look familiar? Compare it with previous table 13.
    [Show full text]
  • Combinational Logic Circuits
    CHAPTER 4 COMBINATIONAL LOGIC CIRCUITS ■ OUTLINE 4-1 Sum-of-Products Form 4-10 Troubleshooting Digital 4-2 Simplifying Logic Circuits Systems 4-3 Algebraic Simplification 4-11 Internal Digital IC Faults 4-4 Designing Combinational 4-12 External Faults Logic Circuits 4-13 Troubleshooting Prototyped 4-5 Karnaugh Map Method Circuits 4-6 Exclusive-OR and 4-14 Programmable Logic Devices Exclusive-NOR Circuits 4-15 Representing Data in HDL 4-7 Parity Generator and Checker 4-16 Truth Tables Using HDL 4-8 Enable/Disable Circuits 4-17 Decision Control Structures 4-9 Basic Characteristics of in HDL Digital ICs M04_WIDM0130_12_SE_C04.indd 136 1/8/16 8:38 PM ■ CHAPTER OUTCOMES Upon completion of this chapter, you will be able to: ■■ Convert a logic expression into a sum-of-products expression. ■■ Perform the necessary steps to reduce a sum-of-products expression to its simplest form. ■■ Use Boolean algebra and the Karnaugh map as tools to simplify and design logic circuits. ■■ Explain the operation of both exclusive-OR and exclusive-NOR circuits. ■■ Design simple logic circuits without the help of a truth table. ■■ Describe how to implement enable circuits. ■■ Cite the basic characteristics of TTL and CMOS digital ICs. ■■ Use the basic troubleshooting rules of digital systems. ■■ Deduce from observed results the faults of malfunctioning combina- tional logic circuits. ■■ Describe the fundamental idea of programmable logic devices (PLDs). ■■ Describe the steps involved in programming a PLD to perform a simple combinational logic function. ■■ Describe hierarchical design methods. ■■ Identify proper data types for single-bit, bit array, and numeric value variables.
    [Show full text]
  • SN74LVC1G04 Single Inverter Gate Datasheet (Rev
    Product Sample & Technical Tools & Support & Folder Buy Documents Software Community SN74LVC1G04 SCES214AD–APRIL1999–REVISED OCTOBER 2014 SN74LVC1G04 Single Inverter Gate 1 Features 3 Description 2 1• Available in the Ultra-Small 0.64-mm This single inverter gate is designed for Package (DPW) with 0.5-mm Pitch 1.65-V to 5.5-V VCC operation. • Supports 5-V VCC Operation The SN74LVC1G04 device performs the Boolean • Inputs Accept Voltages up to 5.5 V Allowing Down function Y = A. Translation to VCC The CMOS device has high output drive while maintaining low static power dissipation over a broad • Max tpd of 3.3 ns at 3.3-V VCC operating range. • Low Power Consumption, 10-μA Max ICC • ±24-mA Output Drive at 3.3-V The SN74LVC1G04 device is available in a variety of packages, including the ultra-small DPW package •Ioff Supports Live-Insertion, Partial-Power-Down with a body size of 0.8 mm × 0.8 mm. Mode, and Back-Drive Protection • Latch-Up Performance Exceeds 100 mA Device Information(1) Per JESD 78, Class II DEVICE NAME PACKAGE BODY SIZE • ESD Protection Exceeds JESD 22 SOT-23 (5) 2.9mm × 1.6mm – 2000-V Human-Body Model (A114-A) SC70 (5) 2.0mm × 1.25mm – 200-V Machine Model (A115-A) SN74LVC1G04 SON (6) 1.45mm × 1.0mm – 1000-V Charged-Device Model (C101) SON (6) 1.0mm × 1.0mm X2SON (4) 0.8mm × 0.8mm 2 Applications (1) For all available packages, see the orderable addendum at the end of the datasheet. • AV Receiver • Audio Dock: Portable • Blu-ray Player and Home Theater • Embedded PC • MP3 Player/Recorder (Portable Audio) • Personal Digital Assistant (PDA) • Power: Telecom/Server AC/DC Supply: Single Controller: Analog and Digital • Solid State Drive (SSD): Client and Enterprise • TV: LCD/Digital and High-Definition (HDTV) • Tablet: Enterprise • Video Analytics: Server • Wireless Headset, Keyboard, and Mouse 4 Simplified Schematic A Y 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers.
    [Show full text]
  • Design and Simulation of V&Pl Submodules Using Nand And
    DESIGN AND SIMULATION OF V&PL SUBMODULES USING NAND AND NOR GATE H.Hasim, Syirrazie CS Instrumentation and Automation Center, Technical Support Division, Malaysia Nuclear Agensi 43000, Bangi, Kajang, Selangor Abstract Digital Integarted Circuit(IC) design is an alternative to current analog IC design. Both have vise verse advan- tages and disadvantages. This paper investigate and compare sub-modules of voting and protecting logic (V&PL) using only two input either NAND gate(74LS00) or NOR gate (74LS02). On the previous research, V&PL sub- module are mixed of six input NOR gate, 2 input AND gate, and Inverter. The result show a complexity of circuity and difficulty of finding six input NOR gate. We extend this analysis by comparable of less complexity of PMOS and NMOS used in NAND and NOR gate as V&PL sub-module, less time propagation delay, with high frequency and less total nombor of transistor used. Kanaugh map minimizer, logisim, and LTSpice used to design and develop of V&PL sub-module Complementary Metal Oxide Semiconductor(CMOS) NAND and NOR gate.Result show that, propagation delay of NAND gate is less with high frequency than NOR gate. Keywords: CMOS, NOR gate, NAND gate, Voting and Protecting Logic(V&PL) 1 Introduction One of the key challenges in IC design is making used of transistor. Transistor can be either biasing and funtion as amplifier or operated in saturated and cut-off region. To be digitalize, transistor will operated in saturated and cut-off region. The saturated region is when the flat or staedy-state amount of voltage throught out of time while in cut-off region it is approximately zeros volt.
    [Show full text]