SN74LVC1G04 Single Inverter Gate Datasheet (Rev
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Engineering Transcriptional Control and Synthetic Gene Circuits in Cell Free Systems
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2012 Engineering Transcriptional Control and Synthetic Gene Circuits in Cell Free systems Sukanya Iyer University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biotechnology Commons Recommended Citation Iyer, Sukanya, "Engineering Transcriptional Control and Synthetic Gene Circuits in Cell Free systems. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1586 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Sukanya Iyer entitled "Engineering Transcriptional Control and Synthetic Gene Circuits in Cell Free systems." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Life Sciences. Mitchel J. Doktycz, Major Professor We have read this dissertation and recommend its acceptance: Michael L. Simpson, Albrecht G. von Arnim, Barry D. Bruce, Jennifer L. Morrell-Falvey Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Engineering Transcriptional Control and Synthetic Gene Circuits in Cell Free systems A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Sukanya Iyer December 2012 Copyright © 2012 by Sukanya Iyer. -
CSE Yet, Please Do Well! Logical Connectives
administrivia Course web: http://www.cs.washington.edu/311 Office hours: 12 office hours each week Me/James: MW 10:30-11:30/2:30-3:30pm or by appointment TA Section: Start next week Call me: Shayan Don’t: Actually call me. Homework #1: Will be posted today, due next Friday by midnight (Oct 9th) Gradescope! (stay tuned) Extra credit: Not required to get a 4.0. Counts separately. In total, may raise grade by ~0.1 Don’t be shy (raise your hand in the back)! Do space out your participation. If you are not CSE yet, please do well! logical connectives p q p q p p T T T T F T F F F T F T F NOT F F F AND p q p q p q p q T T T T T F T F T T F T F T T F T T F F F F F F OR XOR 푝 → 푞 • “If p, then q” is a promise: p q p q F F T • Whenever p is true, then q is true F T T • Ask “has the promise been broken” T F F T T T If it’s raining, then I have my umbrella. related implications • Implication: p q • Converse: q p • Contrapositive: q p • Inverse: p q How do these relate to each other? How to see this? 푝 ↔ 푞 • p iff q • p is equivalent to q • p implies q and q implies p p q p q Let’s think about fruits A fruit is an apple only if it is either red or green and a fruit is not red and green. -
Efficient Design of 2'S Complement Adder/Subtractor Using QCA
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 11, November - 2013 Efficient Design of 2'S complement Adder/Subtractor Using QCA. D.Ajitha 1 Dr.K.Venkata Ramanaiah 3 , Assistant Professor, Dept of ECE, Associate Professor, ECE Dept , S.I.T.A.M..S., Chittoor, Y S R Engineering college of Yogi Vemana A.P. India. University, Proddatur. 2 4 P.Yugesh Kumar, Dr.V.Sumalatha , SITAMS,Chittoor, Associate Professor, Dept of ECE, J.N.T.U.C.E.A Ananthapur, A.P. Abstract: The alternate digital design of In this paper efficient 1-bit full adder [10] has CMOS Technology fulfilled with the Quantum taken to implement the above circuit by comparing with previous 1-bit full adder designs [7-9]. A full adder with Dot Cellular Automata. In this paper, the 2’s reduced one inverter is used and implemented with less complement adder design with overflow was number of cells. Latency and power consumption is also implemented as first time in QCA & have the reduced with the help of optimization process [5]. smallest area with the least number of cells, Therefore efficient two‟s complement adder is also reduced latency and low cost achieved with designed using the efficient 1-bit full adder [10] and reduced all the parameters like area delay and cost one inverter reduced full adder using majority compared with CMOS [14]. logic. The circuit was simulated with QCADesigner and results were included in The paper is organized as follows: In Section 2, this paper. QCA basics and design methods to implement gates functionalities is presented. -
Negation-Limited Complexity of Parity and Inverters
数理解析研究所講究録 第 1554 巻 2007 年 131-138 131 Negation-Limited Complexity of Parity and Inverters 森住大樹 1 垂井淳 2 岩間一雄 1 1 京都大学大学院情報学研究科, {morizumi, iwama}@kuis.kyoto-u.ac.jp 2 電気通信大学情報通信工学科, [email protected] Abstract 1 Introduction and Summary In negation-limited complexity, one considers circuits Although exponential lower bounds are known for the with a limited number of NOT gates, being mo- monotone circuit size [4], [6], at present we cannot tivated by the gap in our understanding of mono- prove a superlinear lower bound for the size of circuits tone versus general circuit complexity, and hop- computing an explicit Boolean function: the largest ing to better understand the power of NOT gates. known lower bound is $5n-o(n)[\eta, |10],$ $[8]$ . It is We give improved lower bounds for the size (the natural to ask: What happens if we allow a limited number of $AND/OR/NOT$) of negation-limited cir- number of NOT gatae? The hope is that by the study cuits computing Parity and for the size of negation- of negation-limited complexity of Boolean functions limited inverters. An inverter is a circuit with inputs under various scenarios [3], [17], [15]. [2], $|1$ ], $[13]$ , we $x_{1},$ $\ldots,x_{\mathfrak{n}}$ $\neg x_{1},$ $po\mathfrak{n}^{r}er$ and outputs $\ldots,$ $\neg x_{n}$ . We show that understand the of NOT gates better. (a) For $n=2^{f}-1$ , circuits computing Parity with $r-1$ We consider circuits consisting of $AND/OR/NOT$ NOT gates have size at least $6n-\log_{2}(n+1)-O(1)$, gates. -
Digital IC Listing
BELS Digital IC Report Package BELS Unit PartName Type Location ID # Price Type CMOS 74HC00, Quad 2-Input NAND Gate DIP-14 3 - A 500 0.24 74HCT00, Quad 2-Input NAND Gate DIP-14 3 - A 501 0.36 74HC02, Quad 2 Input NOR DIP-14 3 - A 417 0.24 74HC04, Hex Inverter, buffered DIP-14 3 - A 418 0.24 74HC04, Hex Inverter (buffered) DIP-14 3 - A 511 0.24 74HCT04, Hex Inverter (Open Collector) DIP-14 3 - A 512 0.36 74HC08, Quad 2 Input AND Gate DIP-14 3 - A 408 0.24 74HC10, Triple 3-Input NAND DIP-14 3 - A 419 0.31 74HC32, Quad OR DIP-14 3 - B 409 0.24 74HC32, Quad 2-Input OR Gates DIP-14 3 - B 543 0.24 74HC138, 3-line to 8-line decoder / demultiplexer DIP-16 3 - C 603 1.05 74HCT139, Dual 2-line to 4-line decoders / demultiplexers DIP-16 3 - C 605 0.86 74HC154, 4-16 line decoder/demulitplexer, 0.3 wide DIP - Small none 445 1.49 74HC154W, 4-16 line decoder/demultiplexer, 0.6wide DIP none 446 1.86 74HC190, Synchronous 4-Bit Up/Down Decade and Binary Counters DIP-16 3 - D 637 74HCT240, Octal Buffers and Line Drivers w/ 3-State outputs DIP-20 3 - D 643 1.04 74HC244, Octal Buffers And Line Drivers w/ 3-State outputs DIP-20 3 - D 647 1.43 74HCT245, Octal Bus Transceivers w/ 3-State outputs DIP-20 3 - D 649 1.13 74HCT273, Octal D-Type Flip-Flops w/ Clear DIP-20 3 - D 658 1.35 74HCT373, Octal Transparent D-Type Latches w/ 3-State outputs DIP-20 3 - E 666 1.35 74HCT377, Octal D-Type Flip-Flops w/ Clock Enable DIP-20 3 - E 669 1.50 74HCT573, Octal Transparent D-Type Latches w/ 3-State outputs DIP-20 3 - E 674 0.88 Type CMOS CD4000 Series CD4001, Quad 2-input -
The Equation for the 3-Input XOR Gate Is Derived As Follows
The equation for the 3-input XOR gate is derived as follows The last four product terms in the above derivation are the four 1-minterms in the 3-input XOR truth table. For 3 or more inputs, the XOR gate has a value of 1when there is an odd number of 1’s in the inputs, otherwise, it is a 0. Notice also that the truth tables for the 3-input XOR and XNOR gates are identical. It turns out that for an even number of inputs, XOR is the inverse of XNOR, but for an odd number of inputs, XOR is equal to XNOR. All these gates can be interconnected together to form large complex circuits which we call networks. These networks can be described graphically using circuit diagrams, with Boolean expressions or with truth tables. 3.2 Describing Logic Circuits Algebraically Any logic circuit, no matter how complex, may be completely described using the Boolean operations previously defined, because of the OR gate, AND gate, and NOT circuit are the basic building blocks of digital systems. For example consider the circuit shown in Figure 1.3(c). The circuit has three inputs, A, B, and C, and a single output, x. Utilizing the Boolean expression for each gate, we can easily determine the expression for the output. The expression for the AND gate output is written A B. This AND output is connected as an input to the OR gate along with C, another input. The OR gate operates on its inputs such that its output is the OR sum of the inputs. -
Hardware Abstract the Logic Gates References Results Transistors Through the Years Acknowledgements
The Practical Applications of Logic Gates in Computer Science Courses Presenters: Arash Mahmoudian, Ashley Moser Sponsored by Prof. Heda Samimi ABSTRACT THE LOGIC GATES Logic gates are binary operators used to simulate electronic gates for design of circuits virtually before building them with-real components. These gates are used as an instrumental foundation for digital computers; They help the user control a computer or similar device by controlling the decision making for the hardware. A gate takes in OR GATE AND GATE NOT GATE an input, then it produces an algorithm as to how The OR gate is a logic gate with at least two An AND gate is a consists of at least two A NOT gate, also known as an inverter, has to handle the output. This process prevents the inputs and only one output that performs what inputs and one output that performs what is just a single input with rather simple behavior. user from having to include a microprocessor for is known as logical disjunction, meaning that known as logical conjunction, meaning that A NOT gate performs what is known as logical negation, which means that if its input is true, decision this making. Six of the logic gates used the output of this gate is true when any of its the output of this gate is false if one or more of inputs are true. If all the inputs are false, the an AND gate's inputs are false. Otherwise, if then the output will be false. Likewise, are: the OR gate, AND gate, NOT gate, XOR gate, output of the gate will also be false. -
Solving Logic Problems with a Twist
Transformations Volume 6 Issue 1 Winter 2020 Article 6 11-30-2020 Solving Logic Problems with a Twist Angie Su Nova Southeastern University, [email protected] Bhagi Phuel Chloe Johnson Dylan Mandolini Shawlyn Fleming Follow this and additional works at: https://nsuworks.nova.edu/transformations Part of the Science and Mathematics Education Commons, and the Teacher Education and Professional Development Commons Recommended Citation Su, Angie; Bhagi Phuel; Chloe Johnson; Dylan Mandolini; and Shawlyn Fleming (2020) "Solving Logic Problems with a Twist," Transformations: Vol. 6 : Iss. 1 , Article 6. Available at: https://nsuworks.nova.edu/transformations/vol6/iss1/6 This Article is brought to you for free and open access by the Abraham S. Fischler College of Education at NSUWorks. It has been accepted for inclusion in Transformations by an authorized editor of NSUWorks. For more information, please contact [email protected]. Solving Logic Problems with a Twist Cover Page Footnote This article was originally published in the Dimensions Journal, A publication of the Florida Council of Teachers of Mathematics Journal. This article is available in Transformations: https://nsuworks.nova.edu/transformations/vol6/iss1/6 Su, Hui Fang Huang, Bhagi Phuel, Chloe Johnson, Dylan Mandolini, and Shawlyn Fleming Solving Logic Problems with a Twist Solving Logic Problems with a Twist Hui Fang Huang Su, Bhagi Phuel, Chloe Johnson, Dylan Mandolini, and Shawlyn Fleming Review of Symbolic Logic Aristotle, Greek philosopher and scientist, was a pupil of Plato and asserted that any logical argument is reducible to two premises and a conclusion (Gullberg, 1997). According to classical (Aristotelian) logic, arguments are governed by three fundamental laws: the principle of identity, the principle of the excluded middle, and the principle of contradiction. -
Basics of CMOS Logic Ics Application Note
Basics of CMOS Logic ICs Application Note Basics of CMOS Logic ICs Outline: This document describes applications, functions, operations, and structure of CMOS logic ICs. Each functions (inverter, buffer, flip-flop, etc.) are explained using system diagrams, truth tables, timing charts, internal circuits, image diagrams, etc. ©2020- 2021 1 2021-01-31 Toshiba Electronic Devices & Storage Corporation Basics of CMOS Logic ICs Application Note Table of Contents Outline: ................................................................................................................................................. 1 Table of Contents ................................................................................................................................. 2 1. Standard logic IC ............................................................................................................................. 3 1.1. Devices that use standard logic ICs ................................................................................................. 3 1.2. Where are standard logic ICs used? ................................................................................................ 3 1.3. What is a standard logic IC? .............................................................................................................. 4 1.4. Classification of standard logic ICs ................................................................................................... 5 1.5. List of basic circuits of CMOS logic ICs (combinational logic circuits) -
Designing Combinational Logic Gates in Cmos
CHAPTER 6 DESIGNING COMBINATIONAL LOGIC GATES IN CMOS In-depth discussion of logic families in CMOS—static and dynamic, pass-transistor, nonra- tioed and ratioed logic n Optimizing a logic gate for area, speed, energy, or robustness n Low-power and high-performance circuit-design techniques 6.1 Introduction 6.3.2 Speed and Power Dissipation of Dynamic Logic 6.2 Static CMOS Design 6.3.3 Issues in Dynamic Design 6.2.1 Complementary CMOS 6.3.4 Cascading Dynamic Gates 6.5 Leakage in Low Voltage Systems 6.2.2 Ratioed Logic 6.4 Perspective: How to Choose a Logic Style 6.2.3 Pass-Transistor Logic 6.6 Summary 6.3 Dynamic CMOS Design 6.7 To Probe Further 6.3.1 Dynamic Logic: Basic Principles 6.8 Exercises and Design Problems 197 198 DESIGNING COMBINATIONAL LOGIC GATES IN CMOS Chapter 6 6.1Introduction The design considerations for a simple inverter circuit were presented in the previous chapter. In this chapter, the design of the inverter will be extended to address the synthesis of arbitrary digital gates such as NOR, NAND and XOR. The focus will be on combina- tional logic (or non-regenerative) circuits that have the property that at any point in time, the output of the circuit is related to its current input signals by some Boolean expression (assuming that the transients through the logic gates have settled). No intentional connec- tion between outputs and inputs is present. In another class of circuits, known as sequential or regenerative circuits —to be dis- cussed in a later chapter—, the output is not only a function of the current input data, but also of previous values of the input signals (Figure 6.1). -
–Not –And –Or –Xor –Nand –Nor
Gates Six types of gates –NOT –AND –OR –XOR –NAND –NOR 1 NOT Gate A NOT gate accepts one input signal (0 or 1) and returns the complementary (opposite) signal as output 2 AND Gate An AND gate accepts two input signals If both are 1, the output is 1; otherwise, the output is 0 3 OR Gate An OR gate accepts two input signals If both are 0, the output is 0; otherwise, the output is 1 4 XOR Gate An XOR gate accepts two input signals If both are the same, the output is 0; otherwise, the output is 1 5 XOR Gate Note the difference between the XOR gate and the OR gate; they differ only in one input situation When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0 XOR is called the exclusive OR because its output is 1 if (and only if): • either one input or the other is 1, • excluding the case that they both are 6 NAND Gate The NAND (“NOT of AND”) gate accepts two input signals If both are 1, the output is 0; otherwise, the output is 1 NOR Gate The NOR (“NOT of OR”) gate accepts two inputs If both are 0, the output is 1; otherwise, the output is 0 8 AND OR XOR NAND NOR 9 Review of Gate Processing Gate Behavior NOT Inverts its single input AND Produces 1 if all input values are 1 OR Produces 0 if all input values are 0 XOR Produces 0 if both input values are the same NAND Produces 0 if all input values are 1 NOR Produces 1 if all input values are 0 10 Combinational Circuits Gates are combined into circuits by using the output of one gate as the input for another This same circuit using a Boolean expression is AB + AC 11 Combinational Circuits Three inputs require eight rows to describe all possible input combinations 12 Combinational Circuits Consider the following Boolean expression A(B + C) Does this truth table look familiar? Compare it with previous table 13. -
On Negation Complexity of Injections, Surjections and Collision-Resistance in Cryptography
On Negation Complexity of Injections, Surjections and Collision-Resistance in Cryptography Douglas Miller Adam Scrivener Jesse Stern Muthuramakrishnan Venkitasubramaniam∗ Abstract Goldreich and Izsak (Theory of Computing, 2012) initiated the research on understanding the role of negations in circuits implementing cryptographic primitives, notably, considering one-way functions and pseudo-random generators. More recently, Guo, Malkin, Oliveira and Rosen (TCC, 2014) determined tight bounds on the minimum number of negations gates (i.e., negation complexity) of a wide variety of cryptographic primitives including pseudo-random functions, error-correcting codes, hardcore-predicates and randomness extractors. We continue this line of work to establish the following results: 1. First, we determine tight lower bounds on the negation complexity of collision-resistant and target collision-resistant hash-function families. 2. Next, we examine the role of injectivity and surjectivity on the negation complexity of one-way functions. Here we show that, (a) Assuming the existence of one-way injections, there exists a monotone one-way injection. Furthermore, we complement our result by showing that, even in the worst-case, there cannot exist a monotone one-way injection with constant stretch. (b) Assuming the existence of one-way permutations, there exists a monotone one-way surjection. 3. Finally, we show that there exists list-decodable codes with monotone decoders. In addition, we observe some interesting corollaries to our results. ∗University of Rochester 1 Introduction A boolean circuit C is monotone if it comprises only of fanin-2 AND and OR gates. Monotone circuits have been extensively studied in complexity theory, where one of the fundamental goals is to establish lower bounds on circuit size, and learning theory [17, 10, 5, 1, 6].