Almanac08 Cov PDF Maker

Total Page:16

File Type:pdf, Size:1020Kb

Almanac08 Cov PDF Maker WESTERN AUSTRALIAN AASTRONOMSTRONOMYY ALMANACALMANAC FREEINCLUDES CD TheThe reallyreally usefuluseful guideguide toto thethe wonderswonders ofof thethe nightnight skysky Highlights: January 24 Lunar Occultation of Regulus February 1 Venus in conjunction with Jupiter February 2 Lunar Occultation of Antares March Venus close to Mercury April 23 Lunar Occultation of Antares July 11 Mars in conjunction with Saturn July 14 Lunar Occultation of Antares August 13 Venus in conjunction with Saturn August 17 Partial lunar eclipse September Mercury, Venus and Mars close in evening twilight October 4 Lunar Occultation of Antares December 1 Venus in conjunction with Jupiter December 29 Lunar Occultation of Jupiter December 31 Mercury in conjunction with Jupiter 20082008 2008 JANUARY 2008 FEBRUARY 2008 MARCH 2008 Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat 12345 12 30 31 1 6 7 8 9101112 3456789 2345678 13 14 15 16 17 18 19 10 11 12 13 14 15 16 9101112131415 20 21 22 23 24 25 26 17 18 19 20 21 22 23 16 17 18 19 20 21 22 27 28 29 30 31 24 25 26 27 28 29 23 24 25 26 27 28 29 APRIL 2008 MAY 2008 JUNE 2008 Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat 12345 123 1234567 6 7 8 9 10 11 12 45678910 8 9 10 11 12 13 14 13 14 15 16 17 18 19 11 12 13 14 15 16 17 15 16 17 18 19 20 21 20 21 22 23 24 25 26 18 19 20 21 22 23 24 22 23 24 25 26 27 28 27 28 29 30 25 26 27 28 29 30 31 29 30 JULY 2008 AUGUST 2008 SEPTEMBER 2008 Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat 12345 31 1 2 123456 6 7 8 9 10 11 12 3456789 7 8 910111213 13 14 15 16 17 18 19 10 11 12 13 14 15 16 14 15 16 17 18 19 20 20 21 22 23 24 25 26 17 18 19 20 21 22 23 21 22 23 24 25 26 27 27 28 29 30 31 24 25 26 27 28 29 30 28 29 30 OCTOBER 2008 NOVEMBER 2008 DECEMBER 2008 Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat 1234 30 1 123456 567891011 2345678 7 8 910111213 12 13 14 15 16 17 18 9101112131415 14 15 16 17 18 19 20 19 20 21 22 23 24 25 16 17 18 19 20 21 22 21 22 23 24 25 26 27 26 27 28 29 30 31 23 24 25 26 27 28 29 28 29 30 31 New Moon First Quarter Full Moon Last Quarter WESTERN AUSTRALIAN AASTRONOMSTRONOMYY ALMANACALMANAC 2008CONTENTS Introduction 3 Getting Started 4 How To Use This Almanac 6 January 8 February 12 March 16 April 20 May 24 June 28 July 32 August 36 September 40 October 44 November 48 December 52 Special Events – Eclipses & Occultations 56 Solar System Information 60 Stars & Non-Stellar Objects 93 Background & General Information 97 Western Australian Places of Astronomical Interest 120 © Perth Observatory 2007 This book is copyright. Apart from any fair dealings for purposes of private study, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Inquiries should be made to the publishers. ISBN 9780958196376 Published in November 2007 by: Perth Observatory, 337 Walnut Rd, Bickley 6076, Western Australia Phone: (08) 9293 8255 Fax: (08) 9293 8138 Website: www.perthobservatory.wa.gov.au Email: [email protected] Western Australian Astronomy Almanac 2008 may be purchased directly from Perth Observatory, Phone (08) 9293 8255, or from all good booksellers. Disclaimer: Perth Observatory has gone to a great deal of effort to ensure that all the details in this almanac are correct. However, the Perth Observatory cannot be held responsible for any eventuality arising out of the use of the data herein. It is advisable to contact Perth Observatory directly with your astronomical data requirements in order to maximise their quality. Please note that charges apply for such consultancies. ACKNOWLEDGEMENTS Thanks to Perth Observatory staff for proof reading and input, Peter Pieloor of Ali B Design for all the graphic design work, and the taxpayers of Western Australia who have supported Perth Observatory for over a century. Information for this almanac was adapted from the following sources: ‘Astronomical Almanac for the Year 2008, US Naval Observatory/H.M. Nautical Almanac Office, Rutherford Appleton Laboratory. ‘Astronomical Tables of the Sun, Moon and Planets’, 2nd ed., 1995, by Jean Meeus, Willmann-Bell Inc. ‘Astronomy and Astrophysics in the New Millennium’, National Research Council USA, National Academy Press. ‘The Cambridge Guide to the Constellations’, 1995, by Michael E Bakich, Cambridge University Press. ‘Eclipse! The What, Where, When, Why and How Guide to Watching Solar and Lunar Eclipses’, 1997, by Philip Harrington, John Wiley & Sons, Inc. ‘Explanatory Supplement to the Astronomical Almanac’, 1992, ed. by P. K. Seidelmann, University Science Books, Mill Valley, California, USA. ‘Frequently Asked Questions About Calendars’, 2005, Claus Tondering, http://www.tondering.dk/claus/calendar.html ‘Mathematical Astronomy Morsels’, 1997, by Jean Meeus, Willmann-Bell Inc. ‘More Mathematical Astronomy Morsels’, 2002, by Jean Meeus, Willmann-Bell Inc. ‘The Southern Sky Guide’, 1993, by David Ellyard & Wil Tirion, Cambridge University Press. ‘Total Eclipses: Science, Observations, Myths and Legends’, 1999, by Pierre Guillermier and Serge Koutchmy, Springer – Praxis Series in Astronomy. Heavens Above website http://www.heavens above.com ICQ/CBAT/MPC World Wide Web pages http://cfa-www.harvard.edu/iau/ International Meteor Organization http://www.imo.net/ JPL Solar Systems Dynamics Group http://ssd.jpl.nasa.gov/ NASA National Space Science Data Center http://nssdc.gsfc.nasa.gov/planetary Resolutions 5 and 6 adopted at IAU XXVIth General Assembly in Prague, on August 24, 2006. http://www.iau.org/Resolutions_at_GA-XXVI.340.0.html SIMBAD database, operated at CDS, Strasbourg, France http://simbad.u-strasbg.fr/sim-fid.pl Sky and Telescope magazine http://skyandtelescope.com/ United States Naval Observatory http://www.usno.navy.mil US Geological Survey Planetary Nomenclature http://planetarynames.wr.usgs.gov/ ICE version 0.51, US Naval Observatory, Nautical Almanac Office Sky Charts – Cartes du Ciel version 3 beta 0.1.2 by Patrick Chevalley Starry Night Pro, version 5.0.2, Sienna Software Inc. Front Cover: Hubble Space Telescope image of bright blue, newly formed stars that are blowing a cavity in the centre of a star-forming region in our galactic neighbour - the Small Magellanic Cloud – located about 200,000 light-years from the Solar System. Near the centre of the star-forming region, lies star cluster NGC 602. The high-energy radiation blazing out from the hot young stars is sculpting the inner edge of the outer portions of the nebula, slowly eroding it away and eating into the material beyond. The diffuse outer reaches of the nebula prevent the energetic outflows from streaming away from the cluster. Ridges of dust and gaseous filaments are seen towards the northwest (in the upper-left part of the image) and towards the southeast (in the lower right-hand corner). Elephant trunk-like dust pillars point towards the hot blue stars and are tell-tale signs of their eroding effect. In this region it is possible to trace how the star formation started at the centre of the cluster and propagated outward, with the youngest stars still forming today along the dust ridges. The width of the star forming region is about 200 light-years. Acknowledgement: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) - ESA/Hubble Collaboration 2 INTRODUCTION Astronomy was once again prominent in the public arena in 2007 after the imposition of daylight saving in late 2006. Daylight saving exploits the fact that the Sun rises earlier and sets later than average during the months around, and during, the height of summer. A very long afternoon can be created if civil time is advanced by one hour (day light saving time) during these months. However, this is only part of the story. A given time, such as noon – the time when the Sun is highest in the sky, is a local phenomenon and it is entirely impractical for each community to conduct their activities based on local time. As a consequence, the world is divided into time zones with each zone being (usually) one hour different to the one adjacent. Naturally, common sense comes into play and the boundaries for each zone are usually defined by state or regional boundaries in order minimise problems and maximise co-ordination of activities for people living in given region. Western Australia spans the longitude range 113° to 129° east of the Prime Meridian at Greenwich, England. This means that noon occurs from about 8.6 to 7.5 hours ahead of Greenwich, Consequently, the time zone for all of WA is 8 hours ahead of Greenwich and local time is the same as the zone time only at longitude 120°. Given that the longitude for Perth is about 4° west of the 120th meridian means that the local noon is on average 16 minutes later than that expected for the time zone. This means that because of Perth’s location it experiences an average of 16 minutes of daylight saving all year even without the formal imposition of daylight saving.
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • The Astronomical Garden of Venus and Mars-NG915: the Pivotal Role Of
    The astronomical garden of Venus and Mars - NG915 : the pivotal role of Astronomy in dating and deciphering Botticelli’s masterpiece Mariateresa Crosta Istituto Nazionale di Astrofisica (INAF- OATo), Via Osservatorio 20, Pino Torinese -10025, TO, Italy e-mail: [email protected] Abstract This essay demonstrates the key role of Astronomy in the Botticelli Venus and Mars-NG915 painting, to date only very partially understood. Worthwhile coin- cidences among the principles of the Ficinian philosophy, the historical characters involved and the compositional elements of the painting, show how the astronomi- cal knowledge of that time strongly influenced this masterpiece. First, Astronomy provides its precise dating since the artist used the astronomical ephemerides of his time, albeit preserving a mythological meaning, and a clue for Botticelli’s signature. Second, it allows the correlation among Botticelli’s creative intention, the historical facts and the astronomical phenomena such as the heliacal rising of the planet Venus in conjunction with the Aquarius constellation dating back to the earliest represen- tations of Venus in Mesopotamian culture. This work not only bears a significant value for the history of science and art, but, in the current era of three-dimensional mapping of billion stars about to be delivered by Gaia, states the role of astro- nomical heritage in Western culture. Finally, following the same method, a precise astronomical dating for the famous Primavera painting is suggested. Keywords: History of Astronomy, Science and Philosophy, Renaissance Art, Educa- tion. Introduction Since its acquisition by London’s National Gallery on June 1874, the painting Venus and Mars by Botticelli, cataloged as NG915, has remained a mystery to be interpreted [1]1.
    [Show full text]
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • C a L E N D a R F O R 2019
    Small Astronomy Calendar for Amateur Astronomers Year III 2021 Let’s welcome our 2021 Small Astronomy Calendar Edition made by our Intergalactic Astronomy Educators Fellowship (IGAEF)’s team. In 2021, many amateur astronomers asked for calculations for more specific geographical locations. This year we added new useful calculated positions and coordinates for everyone in the world to use. You should check this calendar every month, specifically the lunar occultations pages for your observation point. There are many interesting and unique events that might not happen every year, because of the different parameters of the Moon orbit. Our hope is to fulfill your expectations. We would like to receive suggestions and feedback. You can find the editor’s email in the last page of the calendar. We appreciate your support and we are looking forward to having a good observational year, and a better and more complete calendar for this first year of a new decade. Index 3 - Calendar for 2021 4 – What is the Intergalactic Astronomy Educators Fellowship (IGAEF) 5 - Time Zones and Universal Time 6 - Phases of the Moon 2021 7 – Physical Ephemeris for the Moon 2021 10 - Local Time (EST) of MOONRISE 2021 11 - Local Time (EST) of MOONSET 2021 12 - Local time (EST) of planets rise and set 2021 15 - Diary of Astronomical Phenomena 2021 21 - Lunar eclipses 23 - Solar Eclipses 25 - Meteor Showers for 2021 26 – 2021 UPCOMING COMETS 27 - Satellites of Jupiter 2021 36 – Mutual Events of Jupiter Satellites 2021 39 - Julian Day Number, Apparent Sidereal Time, Obliquity
    [Show full text]
  • 1989Aj 97. . 51 Om the Astronomical Journal Volume 97, Number 2 February 1989 Iccd Speckle Observations of Binary Stars. Iv
    OM 51 . THE ASTRONOMICAL JOURNAL VOLUME 97, NUMBER 2 FEBRUARY 1989 97. ICCD SPECKLE OBSERVATIONS OF BINARY STARS. IV. MEASUREMENTS DURING 1986-1988 FROM THE KITT PEAK 4 m TELESCOPE Harold A. McAlister,a) William I. Hartkopf,a) James R. Sowell,10 1989AJ and Edmund G. Dombrowski“’ Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303 OttoG. Franz3) Lowell Observatory, Flagstaff, Arizona 86001 Received 29 August 1988; revised 12 October 1988 ABSTRACT One thousand five hundred and fifty measurements of 1006 binary star systems observed mostly during 1986 through mid-1988 by means of speckle interferometry with the KPNO 4 m telescope are present- ed. Twenty-one systems are directly resolved for the first time, including new components to the cool supergiant a Her A and the Pleiades shell star Pleione. A continuing survey of The Bright Star Cata- logue yielded eight new binaries from 293 bright stars observed. Corrections to speckle measures from the GSU/CHARA ICCD speckle camera previously published are presented and discussed. I. INTRODUCTION for the 1983-1984 data is due to the somewhat lower quality This paper presents further results from a continuing pro- of the calibration data available for that particular time peri- gram of binary star speckle interferometry carried out at the od. We now adopt a calibration based upon the mean of all 4 m Mayall telescope at Kitt Peak National Observatory. A the scale and orientation measurements that we have deter- detailed description of the observational technique and in- mined since the initiation of our ICCD speckle-camera sys- strumentation, and of the methods of data reduction, analy- tem.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • JOHN R. THORSTENSEN Address
    CURRICULUM VITAE: JOHN R. THORSTENSEN Address: Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755-3528; (603)-646-2869 [email protected] Undergraduate Studies: Haverford College, B. A. 1974 Astronomy and Physics double major, High Honors in both. Graduate Studies: Ph. D., 1980, University of California, Berkeley Astronomy Department Dissertation : \Optical Studies of Faint Blue X-ray Stars" Graduate Advisor: Professor C. Stuart Bowyer Employment History: Department of Physics and Astronomy, Dartmouth College: { Professor, July 1991 { present { Associate Professor, July 1986 { July 1991 { Assistant Professor, September 1980 { June 1986 Research Assistant, Space Sciences Lab., U.C. Berkeley, 1975 { 1980. Summer Student, National Radio Astronomy Observatory, 1974. Summer Student, Bartol Research Foundation, 1973. Consultant, IBM Corporation, 1973. (STARMAP program). Honors and Awards: Phi Beta Kappa, 1974. National Science Foundation Graduate Fellow, 1974 { 1977. Dorothea Klumpke Roberts Award of the Berkeley Astronomy Dept., 1978. Professional Societies: American Astronomical Society Astronomical Society of the Pacific International Astronomical Union Lifetime Publication List * \Can Collapsed Stars Close the Universe?" Thorstensen, J. R., and Partridge, R. B. 1975, Ap. J., 200, 527. \Optical Identification of Nova Scuti 1975." Raff, M. I., and Thorstensen, J. 1975, P. A. S. P., 87, 593. \Photometry of Slow X-ray Pulsars II: The 13.9 Minute Period of X Persei." Margon, B., Thorstensen, J., Bowyer, S., Mason, K. O., White, N. E., Sanford, P. W., Parkes, G., Stone, R. P. S., and Bailey, J. 1977, Ap. J., 218, 504. \A Spectrophotometric Survey of the A 0535+26 Field." Margon, B., Thorstensen, J., Nelson, J., Chanan, G., and Bowyer, S.
    [Show full text]
  • Annual Report 2016–2017 AAVSO
    AAVSO The American Association of Variable Star Observers Annual Report 2016–2017 AAVSO Annual Report 2012 –2013 The American Association of Variable Star Observers AAVSO Annual Report 2016–2017 The American Association of Variable Star Observers 49 Bay State Road Cambridge, MA 02138-1203 USA Telephone: 617-354-0484 Fax: 617-354-0665 email: [email protected] website: https://www.aavso.org Annual Report Website: https://www.aavso.org/annual-report On the cover... At the 2017 AAVSO Annual Meeting.(clockwise from upper left) Knicole Colon, Koji Mukai, Dennis Conti, Kristine Larsen, Joey Rodriguez; Rachid El Hamri, Andy Block, Jane Glanzer, Erin Aadland, Jamin Welch, Stella Kafka; and (clockwise from upper left) Joey Rodriguez, Knicole Colon, Koji Mukai, Frans-Josef “Josch” Hambsch, Chandler Barnes. Picture credits In additon to images from the AAVSO and its archives, the editors gratefully acknowledge the following for their image contributions: Glenn Chaple, Shawn Dvorak, Mary Glennon, Bill Goff, Barbara Harris, Mario Motta, NASA, Gary Poyner, Msgr. Ronald Royer, the Mary Lea Shane Archives of the Lick Observatory, Chris Stephan, and Wheatley, et al. 2003, MNRAS, 345, 49. Table of Contents 1. About the AAVSO Vision and Mission Statement 1 About the AAVSO 1 What We Do 2 What Are Variable Stars? 3 Why Observe Variable Stars? 3 The AAVSO International Database 4 Observing Variable Stars 6 Services to Astronomy 7 Education and Outreach 9 2. The Year in Review Introduction 11 The 106th AAVSO Spring Membership Meeting, Ontario, California 11 The
    [Show full text]
  • Astronomy Binder
    Astronomy Binder Bloomington High School South 2011 Contents 1 Astronomical Distances 2 1.1 Geometric Methods . 2 1.2 Spectroscopic Methods . 4 1.3 Standard Candle Methods . 4 1.4 Cosmological Redshift . 5 1.5 Distances to Galaxies . 5 2 Age and Size 6 2.1 Measuring Age . 6 2.2 Measuring Size . 7 3 Variable Stars 7 3.1 Pulsating Variable Stars . 7 3.1.1 Cepheid Variables . 7 3.1.2 RR Lyrae Variables . 8 3.1.3 RV Tauri Variables . 8 3.1.4 Long Period/Semiregular Variables . 8 3.2 Binary Variables . 8 3.3 Cataclysmic Variables . 11 3.3.1 Classical Nova . 11 3.3.2 Recurrent Novae . 11 3.3.3 Dwarf Novae (U Geminorum) . 11 3.3.4 X-Ray Binary . 11 3.3.5 Polar (AM Herculis) star . 12 3.3.6 Intermediate Polar (DQ Herculis) star . 12 3.3.7 Super Soft Source (SSS) . 12 3.3.8 VY Sculptoris stars . 12 3.3.9 AM Canum Venaticorum stars . 12 3.3.10 SW Sextantis stars . 13 3.3.11 Symbiotic Stars . 13 3.3.12 Pulsating White Dwarfs . 13 4 Galaxy Classification 14 4.1 Elliptical Galaxies . 14 4.2 Spirals . 15 4.3 Classification . 16 4.4 The Milky Way Galaxy (MWG . 19 4.4.1 Scale Height . 19 4.4.2 Magellanic Clouds . 20 5 Galaxy Interactions 20 6 Interstellar Medium 21 7 Active Galactic Nuclei 22 7.1 AGN Equations . 23 1 8 Spectra 25 8.1 21 cm line . 26 9 Black Holes 26 9.1 Stellar Black Holes .
    [Show full text]