<<

58 4

m bastepe and others G in PTH actions 58: 4 R203–R224 Review

Heterotrimeric G proteins in the control of parathyroid actions

Murat Bastepe1, Serap Turan2 and Qing He1 Correspondence should be addressed 1 Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, to M Bastepe Boston, Massachusetts, USA Email 2 Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey [email protected]. edu

Abstract

Parathyroid hormone (PTH) is a key regulator of skeletal physiology and calcium and Key Words phosphate homeostasis. It acts on bone and kidney to stimulate bone turnover, increase ff PTH the circulating levels of 1,25 dihydroxyvitamin D and calcium and inhibit the reabsorption ff G proteins of phosphate from the glomerular filtrate. Dysregulated PTH actions contribute to or ff GNAS are the cause of several endocrine disorders. This calciotropic hormone exerts its actions ff bone via binding to the PTH/PTH-related peptide receptor (PTH1R), which couples to multiple ff kidney

heterotrimeric G proteins, including Gs and Gq/11. Genetic mutations affecting the

activity or expression of the alpha-subunit of Gs, encoded by the GNAS complex locus, are responsible for several human diseases for which the clinical findings result, at least partly, from aberrant PTH signaling. Here, we review the bone and renal actions of PTH with respect to the different signaling pathways downstream of these G proteins, as well Journal of Molecular Journal of Molecular Endocrinology as the disorders caused by GNAS mutations. Endocrinology (2017) 58, R203–R224

Introduction

Parathyroid hormone (PTH) is an 84-amino acid peptide Other regulators of PTH synthesis/secretion include secreted from the chief cells of the parathyroid glands 1,25-dihydroxyvitamin D, serum phosphate levels (Habener et al. 1984, Potts 2005). PTH is synthesized and the phosphaturic hormone fibroblast growth as a pre–pro hormone consisting of 115 amino acids. factor-23 (FGF23) (Silver et al. 1985, Moallem et al. 1998, The pre-sequence (25 amino acids), which serves as the Ben-Dov et al. 2007, Krajisnik et al. 2007). signal peptide necessary for the peptide’s delivery across The actions of PTH are critical for the maintenance the membrane of the endoplasmic reticulum, and the of serum calcium and phosphate levels and contribute pro-sequence (6 amino acids), which is thought to be directly to bone turnover and remodeling. Consistent necessary for efficient transport and proper folding, are with these roles, PTH exerts its actions primarily in bone removed prior to the secretion of the remaining 84-amino and kidney. It increases both bone formation and bone acid sequence, which makes up the mature PTH hormone resorption via its actions on osteoblasts, but the net effect (Kemper et al. 1974, Wiren et al. 1989). PTH secretion depends on the nature of PTH exposure. Intermittent is regulated through the actions of various factors, PTH administration favors bone formation and, thus, including blood-ionized calcium, which acts directly via has an anabolic effect on bone. This effect is utilized in its own G -coupled receptor (Brown et al. 1993). the clinic for treating osteoporosis in postmenopausal

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access

10.1530/JME-16-0221 Journal of Molecular Endocrinology skeletal lesionsthatresultfromincreasedboneresorption. action causeshypercalcemia, hypophosphatemiaand with elevatedserumphosphate,whereasexcessPTH results inhypocalcemiaandreduced1,25(OH) lead toseveralendocrinediseases.DiminishedPTHaction Impaired orexcessactionsofthiscalciotropichormone serum calcium and a reduction in serum phosphate levels. the overall outcome of PTH actions are an elevation in absorption ofcalciumintheintestine,andtherefore, in theproximaltubule. 1,25(OH) (1,25(OH) the activevitaminDmetabolite1,25dihydroxyvitamin in thedistaltubule,whereasitstimulatessynthesisof Potts 2005 parts ofthe nephron arePTHtargets ( Rhee osteoblasts andosteocytes( directly stimulatestheproductionofFGF23inmature Potts 2005 patients withhyperparathyroidism ( levels, ontheotherhand,enhanceboneresorption,asin women ( DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org Review t al et Neer 2 . 2011 D) andinhibitsthereabsorptionofphosphate ). PTHenhancesthereabsorptionofcalcium ). Additionally, ithasbeenshownthatPTH t al et b ). Inkidney, bothproximalanddistal . 2001 ). ContinuouslyelevatedPTH Lavi-Moshayoff m

bastepe © 2017SocietyforEndocrinology Habener Habener 2 D stimulatesthe andothers Printed inGreatBritain t al et et al et al 2 D levels . 2010 . 1984 . 1984 , , , phospholipases, potassiumandcalciumionchannels specific effectors,suchasadenylylcyclases,certain and becomesavailableforregulatingtheactivitiesof bound alpha-subunitdissociatesfromtheG Cabrera-Vera of theheterotrimericGprotein( PTH inducesaGDP–GTPexchangeonthealpha-subunit -coupledreceptors,stimulationofPTH1Rby of 39residues(TIP39)( actions oftheneuropeptide tuberoinfundibular peptide is nowknownthatthelatterreceptorprimarilyfor receptor, termedPTH2R( and activateanother, closelyrelatedGprotein-coupled ( G PTH1R couplestomultipledifferentGproteins,including family BGprotein-coupledreceptors( peptide (PTHrP)receptor(PTH1R),whichbelongstothe regulates arangeofeffectorproteins,somewhichare intracellular second messengers. The G and src tyrosinekinase, whichinturngeneratevarious G proteinsinPTHactions Fig. 1 Published byBioscientifica Ltd. s andG PTH exertsitsactionsthroughthePTH/PTH-related ). Theaminoterminalportion of PTHcanalsobind q/11 ( Abou-Samra t al et . 2003 pathways activatedbyPTH. A summarydiagramofGprotein-mediated Figure 1 Usdin Downloaded fromBioscientifica.com at09/28/202101:35:51PM , et al Usdin Syrovatkina . 1991 et al et al . 1999 , Bringhurst Bourne . 1995 Jüppner 58 t al et : β 4 ). Aswithother γ complex also . 2016 t al et ); however, it et al β et al γ subunits . 1991 . 1991 ). GTP- R204 . 1993 via freeaccess ). ). ) , Review m bastepe and others G proteins in PTH actions 58:4 R205

identical to those regulated by G alpha-subunits, such as (Boguslawski et al. 2000) and matrix metalloproteinase adenylyl cyclases, phospholipase Cβ and certain potassium 13 (Selvamurugan et al. 1998). These typically depend and calcium ion channels. The duration of G protein- on the activation of AP1 (activator protein 1) family of mediated intracellular signaling is tightly controlled transcription factors c-fos and c-jun via phosphorylation through the intrinsic GTP activity of the alpha- of cAMP response element-binding protein (CREB) subunit, which limits the half-life of the GTP-bound (Clohisy et al. 1992, Pearman et al. 1996, McCauley et al. form. The GDP-bound alpha-subunit readily reassociates 1997), although other transcription factors are also with the Gβγ subunits and thereby resumes an inactive involved. For example, a role for αNAC (nascent conformation (Bourne et al. 1991, Cabrera-Vera et al. polypeptide-associated complex α-subunit) upon PKA 2003, Syrovatkina et al. 2016). The G protein activation phosphorylation has been described recently, particularly cycle is key to the actions of PTH, as well as numerous with respect to PTH-induced osteocalcin expression and other , neurotransmistters and autocrine/ the anabolic effect of PTH on bone (Pellicelli et al. 2014). paracrine factors throughout the body. In this article, we PTH-induced changes in expression also involve review the G protein-dependent signaling pathways that intermediate kinases and phosphorylation events. A mediate the different actions of PTH in bone and kidney. recent study using both in vitro and in vivo approaches has In humans, defects within the gene encoding the alpha- shown that p38 mitogen-activated (MAPK) subunit of the stimulatory G protein (GNAS) are associated is an important mediator of PTH actions downstream of with various phenotypes that directly reflect altered PTH PKA and that ablation of this protein in osteoblasts (using actions. Thus, we also review the GNAS-related diseases, osteocalcin–Cre) markedly impairs the osteoanabolic particularly focusing on clinical features resulting from activity of PTH (Thouverey & Caverzasio 2016). abnormal PTH signaling. PTH signaling also cross-talks with the Wnt/β-catenin signaling to promote osteogenesis. Wnt/β-catenin signaling pathway is an important of osteoblast G /cAMP/PKA-mediated actions of PTH s differentiation and bone formation (Day et al. 2005, in bone Hill et al. 2005, Rodda & McMahon 2006). PKA can It has been shown that intermittent PTH treatment phosphorylate and increase the stability of β-catenin enhances the activation frequency of bone multicellular (Guo et al. 2010a). PTH1R signaling has been shown to units and osteoblast surface, as well as increasing osteoblast result in binding of the receptor to the Wnt co-receptor numbers and activity (Shen et al. 1993, Boyce et al. low-density lipoprotein receptor-related protein 6 (LRP6), Journal of Molecular Endocrinology 1996, Lane et al. 1996, Manolagas 2000). Studies have phosphorylation of the latter and stabilization of β-catenin revealed various different mechanisms underlying the in osteoblasts (Wan et al. 2008). It has also been shown bone anabolic action of PTH. These include stimulation that PTH-induced cAMP/PKA signaling phosphorylates of osteoblast proliferation and differentiation, inhibition and, thereby inactivates glycogen synthase kinase 3 of osteoblast and activation of quiescent lining beta (GSK3β), thus promoting Wnt/β-catenin signaling cells (Dobnig & Turner 1997, Jilka et al. 1999, 2009, Iida- (Suzuki et al. 2008). Furthermore, PTH acts on osteocytes Klein et al. 2002, Bellido et al. 2003, Lindsay et al. 2006, to suppress the expression of sclerostin, an inhibitor of Jilka 2007, Kim et al. 2012). canonical Wnt signaling (Li et al. 2005, Semenov et al.

Gs is a ubiquitously expressed heterotrimeric protein 2005). PTH action on sclerostin is primarily through mediating the actions of many endogenous ligands cAMP signaling (Keller & Kneissel 2005) and mediated

(Weinstein et al. 2001). Although several effectors of the Gs by myocyte enhancer factor-2 (MEF2) transcriptional alpha-subunit (Gαs) have been described, by far the most regulators (Leupin et al. 2007). Using the cAMP signaling extensively studied and, evidently, the most important Gαs pathway in osteoblasts, PTH also inhibits the expression effector is , which catalyzes the synthesis of Dickkopf 1 (Dkk1) (Guo et al. 2010a), which is another of the ubiquitous second messenger cyclic AMP (cAMP). A Wnt pathway inhibitor (Li et al. 2006, Morvan et al. 2006). major target of intracellular cAMP is the cAMP-dependent PTH exposure also activates osteoclastogenesis through protein kinase (PKA), which phosphorylates a whole host an indirect effect on stromal cells and/or mature osteoblasts of critical proteins to initiate specific cellular events. by activation of the receptor activator of nuclear factor-κ PKA-dependent PTH action increases the B/RANK ligand (RANK/RANKL) system (Lacey et al. 1998, expression levels of several osteoblast-specific , Quinn et al. 1998, Yasuda et al. 1998, Lee & Lorenzo 1999, such as Runx2 (Franceschi & Xiao 2003), osteocalcin Ma et al. 2001, Ben-awadh et al. 2014). RANKL is expressed

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access Journal of Molecular Endocrinology G protein-coupledreceptor inosteoblaststhroughout constitutive activationofG bone properties( mass withimprovedbone architecture andmechanical mutant inmatureosteoblasts alsoleadtoincreasedbone reduced ( bone massisincreasedandsclerostinexpression is mutant inlateosteoblastsandosteocytes,trabecular in transgenicmiceexpressingaconstitutivelyactivePKA in theosteoblastlineage( constitutively activePTH1RdependsonG has recentlybeenshownthattheincreaseinbonemassby signaling pathways ( version ofPTH1RpredominantlyactivatesG O’Brien expressed inosteoblastsorosteocytes( increases intrabecularbonemassmicewhenspecifically chondrodysplasia ( identified inpatientswithJansenmetaphyseal 2011 cAMP pathway( receptor-related 1 protein (Nurr1) downstream of the G signaling andoccursviatheactivationofnuclear ( PTH directlyinducestranscriptionofFGF23inbonecells using mousemodelsandculturedcellsdemonstratedthat ( production ofFGF23,animportantphosphaturichormone Lorenzo 2002 on FGF23productionisdependentWnt/ 2005 production ( production of1,25(OH) to anindirectactioninthesameregardbyincreasing osteoblastic cells( signaling pathway, asshowninvariousstudiesusing by PTH also occurs primarily through the G Stimulation ofRANKLandinhibitionOPGexpression & Lorenzo1999 also inhibitsOPGexpressioninearlyosteoblasts( ligand secretedfromosteoblasts( expression ofosteoprotegerin(OPG),aRANKLdecoy (M-CSF) andRANKLwithsimultaneousdecreaseinthe by exposuretomacrophagecolony-stimulatingfactor 1998 cells ofthemonocyte/macrophagelineage( and bindstoitsreceptor, RANK,whichispresenton on thesurfaceofstromalcellsandosteoblasts/osteocytes, Lavi-Moshayoff Consortium DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org Review A constitutivelyactivemutantformofPTH1R, Another actionofPTHinboneistostimulatethe b ). CurrentevidenceindicatesthattheeffectofPTH , , Li Meir et al t al et Kao et al . 2008 Collins t al et t al et ). . 2000 . 2014 , et al Lavi-Moshayoff Fu Onyia , Rhee . 2000 Schipani . 2013 et al Tascau et al . 2010 Schipani a ). Osteoclastogenesisisstimulated , . 2005 Fan 2 t al et et al D, whichalsostimulatesFGF23 , . 2002 ). ExpressionofthesamePKA t al et , Shimada Sinha et al et al α Rhee . 2011 s signalingbyanengineereds . 2000 , et al Kolek , . 1995 . 2016 Kondo m t al et et al Yasuda . 2016 t al et

. 1995 bastepe a © 2017SocietyforEndocrinology t al et ). , et al . 2011 Huang ) resultsinprofound In vitro . 2010 . 2016 ). et al Calvi andothers ). Accordingly, it . 2005 et al ). Inaddition, . 2001 Printed inGreatBritain b α . 2002 t al et ), inaddition , thismutant , Yasuda ). Moreover, . 1998 s expressions et al s -dependent Rhee , Saito ). Studies β α -catenin . 2004 s/cAMP s/cAMP , . 2001 ). PTH Lee & t al et et al et al Lee α s/ ). , . . . osteoclastic boneresorption( primarily duetoadecreaseinRANKLexpressionand bone volumebuthadincreasedcorticalthickness, spongiosaandreducedtrabecular formation ofprimary fragment ofthecollagenI differentiated osteoblasts(usingCredrivenbythe2.3-kb and coworkershavereportedthatablationofG in differentstagesofosteoblastdifferentiation.Sakamoto various mousemodelsinwhichG constraints. pathway and is subject to developmental stage-specific the effectofPTHonbonemassutilizesG detected ( ofage,noskeletalphenotypeis is delayeduntil4 weeks occurs inbonemass( activation isdelayeduntilbirth,amuchmilderincrease bone volumeinmice( resultsinadramaticincreasetrabecular embryogenesis global G in die soonafterbirth,featuresthathavebeenobserved And these mice are born with subcutaneous edema and Additionally, osteogenic maturationisacceleratedin expression oftheWntinhibitors sclerostinandDkk1. Wnt signalingthatresultsat leastinpartfromincreased and oneoftheunderlying mechanismsisattenuated in osteoblastnumberisthe mostprominentpathology and intramembranousossification.Themarkeddecrease osteoporosis duetoimpairmentofbothendochondral cular spacing( trabecular thicknessandnumber, aswellincreasedtrabe­ spongiosa withdecreased trabecular boneintheprimary protein in early osteoblast lineage, also results in reduced promoter-driven Cre (G mice) ( PTH1R (DSELmutant)deficientincouplingtoG formation robustly in knockinmiceexpressing a mutant however, appearsunlikely, asPTHcouldstimulatebone actions viaotherGproteins.Arolefor bone formation, suggesting that PTH exerts these specific PTH isabletostimulateosteoblastdifferentiationand in the osteoblast lineage. However, despite G blunted the actions of intermittent PTH on trabecular bone are and corticalbonemass( osterix promoter)revealsmarkedlyreducedtrabecular (using adoxycycline-regulatedCredrivenbythe 2002 G proteinsinPTHactions Published byBioscientifica Ltd. The roleofG The constitutive deletion of G Postnatal removalofG , Chen Guo in vivo α s-knockout models s-knockout ( Hsiao et al et al inmicewhichG Wu . 2010 . 2005 et al s et al signalinghasbeenstudieddirectlyin . 2008 Hsiao b , Hsiao . 2011 , Germain-Lee Sinha Downloaded fromBioscientifica.com at09/28/202101:35:51PM α 1 promoter)resultedinreduced α Sinha ). Thesestudieshighlightthat et al s α et al OsxKO ). G s intheosteoblastlineage s Yu et al α . 2010 Sakamoto et al α ), which ablates this . 2008 t al et s isablatedconditionally s α s . 2016 s isablatedpostnatally s OsxKO α et al . 1998 s using the osterix s 58 . 2016 ), andifactivation ). However, ifG micehavesevere : 4 ). . 2005 t al et , q/11 α Skinner ). Moreover, s deficiency,s signaling, s ). signaling q/11 . 2005 R206 (D/D α et al s in s α via freeaccess ). s . Review m bastepe and others G proteins in PTH actions 58:4 R207

mesenchymal progenitors committed to the osteoblast that specifically activate the αG s pathway and the DSEL- lineage, resulting in the depletion of osteoblasts and knockin mice (Guo et al. 2010b, Nagai et al. 2011). PTH1R accumulation of osteocytes. However, the bone that is interacts with Na(+)/H(+) exchanger regulatory factors present in GαsOsxKO mice is mainly woven, suggesting that (NHERF) 1 and 2 (Mahon et al. 2002). This interaction

Gs signaling plays an important role in the formation of seems to play a critical role in determining G protein orderly lamellar bone (Wu et al. 2011). coupling, switching the G protein coupling preference of

Gαs was also knocked out in late osteoblasts and PTH1R toward Gq/11 from Gs. Further molecular studies osteocytes by using Dmp1-Cre (Fulzele et al. 2013). These have demonstrated that, although the interaction of

mice show severe osteopenia, with decreased trabecular PTH1R with NHERF1 enhances Gq/11 coupling without

and cortical bone and diminished bone mineral density. affecting Gi or Gs coupling, the interaction of PTH1R with Osteocyte density is elevated, but the lacunar–canalicular NHERF2 alters coupling to these G proteins in a manner

network was reduced and disorganized. Interestingly, favoring activation of Gq/11 and reduction of cAMP these mice show increased myelopoiesis due to altered generation, i.e. promoting Gi coupling and inhibiting

bone marrow microenvironment. Gs coupling (Wang et al. 2010). It has also been shown that NHERFs are critical in the membrane retention of PTH1R (Wang et al. 2007). Based on additional studies of

Gs/cAMP/PKA-mediated actions of PTH NHERFs in kidney, it is clear that NHERF1 is required for in kidney the membrane targeting of NPT2a and that its ablation in mice results in phosphate wasting (Shenolikar et al. Actions in the renal proximal tubule 2002). Phosphorylation of NHERF1, which occurs by

PTH shows its renal effects by acting on both the proximal both Gs and Gq/11-mediated pathways, dissociates Npt2a and the distal part of the nephron. PTH1R protein is from NHERF1, thus allowing Npt2a internalization and expressed primarily in the epithelial cells of the proximal lysosomal trafficking (Weinman et al. 2007, Wang et al. and distal tubules but not in the thin limbs of Henle, 2012). collecting ducts or glomeruli (Lupp et al. 2010). Our group has recently investigated the specific role PTH has an indirect calcemic effect at the renal of Gαs in RPT by studying knockout mice in which Gαs proximal tubule (RPT) by increasing the circulating is ablated conditionally using Cre recombinase driven

level of 1,25(OH)2D (Rasmussen et al. 1972, Larkins et al. by the promoter of type-2 sodium–glucose cotransporter Sglt2KO 1974). Although 1,25(OH)2D synthesis is upregulated, (Gαs mice) (Zhu et al. 2016). The Cre driven by this Journal of Molecular Endocrinology its metabolism by 24-hydroxylation is reduced by the promoter is active in S1 and S2, but not in S3, segments action of PTH (Trechsel et al. 1979). These PTH actions of RPT. GαsSglt2KO mice are normophosphatemic but

are mainly mediated by Gαs signaling, which induces show hypocalcemia with reduced serum 1,25(OH)2D and the expression of the gene encoding 25-hydroxyvitamin elevated serum PTH levels. In addition, PTH-induced D 1α hydroxylase (Cyp27b1) and destabilizes the elevation in urinary cAMP excretion is blunted, together transcript encoding vitamin D 24-hydroxylase (Cyp24a1) with a mildly blunted reduction of serum phosphate in (Rasmussen et al. 1972, Larkins et al. 1974, Horiuchi et al. response to PTH. However, renal Cyp27b1 mRNA levels 1977, Henry 1985, Shigematsu et al. 1986, Brenza et al. are normal at baseline and after PTH injection, renal 1998, Zierold et al. 2001). Cyp27b1 mRNA increases markedly in these mice. This PTH inhibits the reabsorption of phosphate from the finding suggests that Gαs-independent signaling pathways glomerular filtrate in RPT by decreasing the abundance of play a role, at least partly, in the induction of Cyp27b1 by sodium-phosphate co-transporters NPT2a and NPT2c on PTH. Consistent with this interpretation, PKC activation the apical membrane, thus enhancing renal phosphate has been suggested to mediate the action of PTH in this

excretion (Keusch et al. 1998, Pfister et al. 1998). Both Gs regard (Janulis et al. 1992, Ro et al. 1992). Reduced serum Sglt2KO and Gq/11 signaling have roles in PTH-mediated phosphate 1,25(OH)2D levels in Gαs mice could be explained reabsorption in RPT (Pfister et al. 1999, Traebert et al. by elevated renal Cyp24a1 expression. As PTH regulates 2000, Capuano et al. 2007, Segawa et al. 2007, the stability of Cyp24a1 mRNA via a cAMP-dependent Cunningham et al. 2009, Weinman et al. 2011). It has mechanism (Zierold et al. 2001), the elevation of Cyp24a1

been well documented that Gs signaling has a role in the expression likely reflects the PTH resistance. In addition, Sglt2KO acute effects of PTH, whereas Gq/11 signaling is required for Gαs mice show increased FGF23 expression in bone long-term PTH effects based on studies with PTH analogs and a mildly elevated serum FGF23 (Zhu et al. 2016),

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access Journal of Molecular Endocrinology 1981 Another transcript isalsoderivedfrom thepaternal splice ontoexons2–13ofG most tissues.MaternallyexpressedNESP55 andthepaternallyexpressedXL scale. (B)and(C)paternallymaternally expressed paternal allele(NESP55)orthematernal allele(XL paternal (pat) including therenalproximaltubuleandthyroid.Boxesconnecting linesrepresenttheexonsandintrons,respectively. Maternal(mat)and and inmosttissues,G within DMRs.Thenon-methylatedpromoterisactiveanddrivestheexpression inaparent-of-origin-specificmanner. G The Figure 2 increases TRPV5-mediatedcalciuminfluxbyenhancing 1999 connecting duct has beenpostulated( reabsorption intheconnectingtubuleandcortical phorbol ester-insensitive PKC isotype to stimulate calcium cAMP-independent PTHactionwiththeinvolvementofa PKA andPKCactivation( reabsorptive roleofPTHindistaltubulerequiresboth However, ithasalsobeenshownthatthecalcium- perfused nephron segments ( of calciumbyincreasingcAMPgenerationinisolated van deGraaf intestine ( TRPV6 expressionismorewide-spread,includingthe distal convolutedtubuleandconnectingtubule,whereas Groot 5 and6(TRPV5TRPV6)( cell through the transient receptor potential vanilloid Friedman & Gesek 1993 ( of Careabsorptioninthedistalpartnephron PTH triggerscAMPsignalingandisamajorregulator Actions intherenal distaltubule Zhu ablation ofthematernalG Cyp27b1 arepresentinmiceheterozygousforuniversal biochemistries andrenalexpressionlevelsofCyp24a1 ( which isapotentinducerofCyp24a1expression Shimada Shareghi &Stoner1978 DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org Review GNAS et al , ). ActivationofthecAMP–PKApathwaybyPTH et al Lau &Bourdeau1989 complexlocusanditsgeneproducts.(A)InadditiontothatdrivingG . 2016 et al Hoenderop . 2008 GNAS et al . 2004 ). productsareillustratedaboveandbelow thegenestructure,respectively. ‘+++’indicatesmethylatedDMRpromoters eitheronthe αs ). TRPV5isexclusivelyexpressedinthe . 2006 promoterisactiveonbothparentalalleles;however, thepaternalG ). Ofnote,similarchangesinserum αs t al et . NotethattheportionofNESP55transcript derivedfromexons2to13arewithinthe3 ). PTHshowsreabsorptiveactivity ). Calcium is reabsorbed into the Friedman , . 2001 Chabardes α s allele( s Friedman & Gesek 1995 Hoenderop , m ,

Shimizu bastepe et al Nijenhuis © 2017SocietyforEndocrinology t al et α . 1996 Liu s, A/Band Hoenderop andothers GNAS GNAS Printed inGreatBritain et al t al et t al et . 1980 t al et allele,butthistranscriptismadefrom theantisensestrand( ). Moreover, products,respectively. G . 2003 GNAS . 2011 . 1990 . 2003 , t al et -AS1 exon1).Arrowsindicatedirection oftranscription.Thefigureisnotdrawnto Imai , de de a ). ). , , , . α s andA/Boriginatefromthesensestrand andusedistinctfirstexonsthat splice ontoexons2–13. A/B transcriptsuseindividual,upstreamfirstexonsthat ( rise to several other coding and non-coding transcripts G gene encoding G Human disorders causedby mutations inthe seem tobeinvolvedinthedistaltubularactionsofPTH. Thus, both cAMP-dependentand-independentpathways to the C-terminus of TRPV5 ( involve, atleastpartly, inhibitionofcalmodulinbinding surface ( the openingofaconstantTRPV5channelatcell expression issilencedinasmallsetoftissues,including parental alleles,i.e.biallelic.Nevertheless,paternalG promoter isnotmethylatedandshowsactivityonboth promoter drivesthetranscription.Incontrast,G methylated regions(DMR),andtheunmethylated monoallelic transcripts are located within differentially exclusively fromthepaternalallele.Thepromotersofthese maternal allele, XL Although NESP55isexpressedexclusivelyfromthe transcriptional profile, exon ofNESP55.Inadditiontothiscomplexityinits upstream ofthepromoterforXL transcript ( NESP55 (Neuroendocrine secretory protein-55),XL NESP55 (Neuroendocrinesecretory 2000 1999 Swaroop G proteinsinPTHactions αs i. 2 Fig. Published byBioscientifica Ltd. α expression,thelocuscontainsfourdistinctpromotersthatarelocated s is encoded s by the αs b , transcripts,whichuseexons1–13,are biallelicallyexpressedin , Hayward &Bonthron2000 Wroe ) ( de Groot et al αs Kozasa alleleissilenced,atleastpartially, inseveraltissues GNAS et al . 1991 . 2000 t al et et al -AS1), which originates immediately α , s, A/B and Hayward α . 2009 ). Exons 1–13 encode G GNAS s . 1988 GNAS Downloaded fromBioscientifica.com at09/28/202101:35:51PM GNAS ). ThisPTHeffectappearsto complex locus, which gives ′ -untranslated region. alsoproducesanantisense et al GNAS is an imprinted locus. αs , promoterisnon-methylated, GNAS , de Groot Ishikawa Li α –AS1 transcript). . 1998 s andspansthefirst et al 58 -AS1 are expressed : . 2000 4 a t al et , t al et b , Peters α b s, whereas s, , . 2011 Liu . 1990 R208 α et al s and et al α α via freeaccess ). ). s s . . , Review m bastepe and others G proteins in PTH actions 58:4 R209

renal proximal tubule, thyroid, pituitary and certain indicating a major role for enhanced PTH actions in parts of the brain (Yu et al. 1998, Hayward et al. 2001, the pathogenesis of fibrous dysplasia. Increased bone Germain-Lee et al. 2002, Mantovani et al. 2002, Liu et al. resorption with enhanced osteoclastogenesis is another 2003, Chen et al. 2009). This tissue-specific monoallelic feature of FD, which is mediated by excess production of expression of Gαs underlies the imprinted mode of IL-6 (Yamamoto et al. 1996) and RANKL (Piersanti et al. inheritance observed for some of the phenotypes resulting 2010). The osteomalacia is related, at least partly, to excess from GNAS mutations (see below). production of FGF23, which leads to hypophosphatemia (Riminucci et al. 2003, Kobayashi et al. 2006). As mentioned previously, PTH was shown to stimulate FGF23 production McCune–Albright syndrome and fibrous dysplasia via Gαs signaling, and thus, the enhanced FGF23 of bone production is plausibly driven by the increased cAMP Residues Arg201 and Gln227 of Gαs are crucial for the accumulation in the cells. Nevertheless, Gαs signaling intrinsic GTPase activity, and thus, mutations at these sites has also been shown to contribute to the processing of result in a constitutively active Gαs mutant (Landis et al. FGF23 into its inactive fragments (Bhattacharyya et al. 1989). By stimulating adenylyl cyclase, constitutively 2012). Moreover, it is conceivable that the excess FGF23 active Gαs causes overproduction of cAMP in a ligand- production is secondary to the aberrant differentiation of independent manner, promoting cellular responses that the stromal cells. are normally mediated by cAMP signaling. Somatic Gαs FD/MAS is a genetic but a non-inherited disease, mutations of this nature are found in various endocrine as no germline inheritance of the Gαs mutation has and non-endocrine tumors, such as growth hormone- thus far been reported. It is therefore postulated that secreting adenomas (Landis et al. 1989) (Table 1). The same activating Gαs mutations are incompatible with life Gαs mutant, most frequently with a substitution at residue and lead to embryonic lethality, unless the mutation- 201 (95% of reported cases), is the cause of McCune– bearing and wild-type cells form a mosaic (Happle 1986). Albright syndrome (MAS) or isolated fibrous dysplasia of Recently, however, a transgenic mouse model expressing bone (FD) (Weinstein et al. 1991, Schwindinger et al. 1992, a constitutively active Gαs mutant has been described, Alman et al. 1996). MAS is characterized by the presence in which the transgene was transmitted along multiple of FD together with hyperpigmented skin lesions (café-au generations (Saggio et al. 2014), casting doubts about this lait spots) and hyperactive endocrine organs including hypothesis. Nevertheless, the development of FD lesions pituitary, thyroid and adrenal (Boyce & Collins 1993). in this model occurs much later than expected based on

Journal of Molecular Endocrinology GNAS mutations in FD/MAS are post-zygotically acquired, the findings in humans, suggesting that there might be and therefore, the patients are mosaic (Weinstein et al. significant differences at the molecular level between this 1991, Lumbroso et al. 2004). The skin, bone and endocrine particular mouse model and human FD. systems are the most frequently affected tissues in MAS, and this finding indicates that a mutation occurs early in Albright’s hereditary osteodystrophy and embryogenesis, before the separation of the three germ layers. The phenotype of patients with FD/MAS depends on the extent of tissues containing the GNAS mutation Heterozygous inactivating mutations in Gαs-coding

and the role of Gs signaling in those tissues (Dumitrescu GNAS exons cause Albright’s hereditary osteodystrophy & Collins 2008). (AHO), characterized by obesity with round face, short FD is an unregularly growing excess bone, causing a stature, brachydactyly, subcutaneous ossification and localized increase in bone mass. Bone pathology shows cognitive impairment (Albright et al. 1942, Patten et al. spicules of woven bone and undermineralized bone 1990, Weinstein et al. 1990) (Table 1). These patients also matrix embedded in a mass of connective tissue made of show resistance to PTH in the RPT with blunted urinary abnormal, poorly differentiated stromal cells (Marie et al. cAMP and phosphate excretion in response to exogenous 1997, Riminucci et al. 1997, 1999). This fibrosis is PTH, termed pseudohypoparathyroidism (PHP) type-I reminiscent of that seen in patients with severe primary (Albright et al. 1942, Chase et al. 1969). Hypocalcemia or secondary hyperparathyroidism (Kumbasar et al. and hyperphosphatemia with elevated PTH levels are 2004). Likewise, mice expressing a constitutively active the typical biochemical features of PHP type-I. Only PTH1R mutant also display significant accumulation of mutations on the maternal allele cause PTH resistance, fibroblastoid cells in the bone marrow (Calvi et al. 2001), owing to the silencing of the paternal Gαs allele in RPT

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access Journal of Molecular Endocrinology mutation leadstoPHPtype-Ia uponmaternalinheritance, often found in the same kindreds as PHP type-Ia. The G termed pseudo-pseudohypoparathyroidism (PPHP), is developing anyhormone resistance. Thiscondition, Conversely, somepatientsdisplayAHOfeatures without and testes.ThissubtypeofPHPistermedtype-Ia. expression ofG reflecting the predominant maternal are also observed, to other hormones, such as TSH and gonadotropins, alter theG deficiency inRPT, whereasapaternalmutationdoesnot mutation affectingthematernalallelecausessevereG of normalindividualsbyepigeneticmechanisms.Thus, a uniparental disomyinvolvingchromosome20. microdeletions ateithertheneighboring diminished erythrocyteG features weredetectedinfewPOHpatients,whomthemutationwasmaternal. affecting receptorcoupling butnotbasalactivity. a PHP Ib POH PPHP PHP Ic PHP Ia Tumors Isolated polyostotic Table 1 McCune Albright By definition,PHP-IciscausedbymutationsthataredownstreamofG (OMIM #603233) (OMIM #166350) (OMIM #612463) (OMIM #612462) (OMIM #103580) (POFD) fibrous dysplasia (OMIM #174800) Syndrome (MAS) DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org Review In somecaseswithAHOandPTHresistance,resistance

Diseases causedbygeneticorepigeneticalterationsof αs levelsignificantly( αs inseveralothertissues,includingthyroid Molecular defects Methylation defects Inactivating G Inactivating G Receptor uncoupling G Inactivating G Affected residues Activating G Affected residueArg201 Activating G Affected residueArg201 Activating G αs Arg201, Gln227 αs αs αs αs αs αs αs activityinaseriesofpatientswith codingmutations codingmutations codingmutations codingmutations codingmutations codingmutations codingmutations STX16 Yu m

bastepe © 2017SocietyforEndocrinology et al g geneorattheNESP55DMR;causeofmethylationdefectsinsomesporadicPHP-Ibcasesispaternal NA, notapplicable. f

a . 1998 b andothers Mild hormoneresistancehasbeendetectedinsomePPHPcases. Printed inGreatBritain Parental origin Maternal Paternal Paternal Maternal Maternal Somatic Somatic Mosaic Post-zygotic ). GNAS

methylationdefects. s αs αs ; however, somecaseswereshowntocarryG Hormonal abnormalities Other hormoneresistances TSH resistance PTH resistance ACTH-independent Pituitary tumor:growth No Hypophostamic rickets Cushing’s syndrome Pituitary gigantism Thyrotoxicosis Peripheral precociouspuberty TSH resistance PTH resistance No No Other hormoneresistances TSH resistance PTH resistance

stromal tumor hyperplasia, sexcord macronodular adrenal secreting hormone-secreting, ACTH gonadotrophins) (e.g., GHRH, gonadotrophins) (e.g., GHRH, GNAS c b ossifications inskinandsubcutaneous tissues,butthese POH initiallydisplayectopic, extra-skeletalheterotopic progressive osseousheteroplasia (POH).Patientswith thesamemutations,termed in somepatientscarrying mutations, moreextensiveossificationhasbeendetected finding inpatientswithheterozygousinactivating G Mouallem patients with PHP-Ia rather than PPHP ( impairment, which appear to develop predominantly in the mutation,withexceptionofobesityandcognitive AHO featuresdevelop regardless oftheparental origin of upon paternalinheritance( whereas thesamemutationcausesPPHP(i.e. AHO alone) G proteinsinPTHactions Published byBioscientifica Ltd. . Although subcutaneousossificationisnotarare d Some patientscanhaveAHOfeatures. et al f In familialcases, . 2008 ). features clinical Additional AHO No No Café au-lait POFD No No AHO AHO Downloaded fromBioscientifica.com at09/28/202101:35:51PM GNAS spot d c

methylationdefectsarecausedby Davies andHughes1993 αs -coding mutationswithinexon13 c Hormone resistanceand/orAHO to PTH response phosphate cAMP and Urinary Blunted NA NA NA Blunted Normal Normal Blunted 58 g e A studyshowedmildly : Long 4

et al G Erythrocyte Reduced NA NA NA Normal Reduced Reduced Normal s α activity . 2007 R210 e

αs via freeaccess ). ,

Review m bastepe and others G proteins in PTH actions 58:4 R211

subsequently invade deep connective tissues and exon 13 – encoding the C-terminal portion – have been skeletal muscle (Kaplan & Shore 2000). It has been identified, and the mutant protein was shown to affect shown that POH has a mosaic distribution through the receptor coupling but not the basal activity (Linglart et al. dermomyotomes, which is similar to the skin lesions 2002, 2006, Thiele et al. 2011). Thus, when Gαs activity

observed in MAS (Cairns et al. 2013). Based on this is assessed in patients using direct stimulators of Gs finding, it has been suggested that a somatic mutation rather than receptor , those Gαs mutants appear in a progenitor cell of somitic origin causes loss of functional, suggesting that the diagnosis of PHP-Ic, at heterozygosity at the GNAS locus, thus leading to POH least in some cases, may reflect the limitation of the Gαs (Cairns et al. 2013). Investigation of multiple kindreds activity assay employed. with POH revealed that this disease is predominantly Another subtype is PHP-Ib (Table 1), which refers to inherited through paternal Gαs mutations, suggesting patients who present with PTH and, in some cases, mild that the disruption of one of paternally expressed GNAS TSH resistance in the absence of AHO features (Peterman products contributes to the pathogenesis (Shore et al. & Garvey 1949, Reynolds et al. 1952). Several studies, 2002). Recently, it was shown that activated hedgehog however, have recently indicated that PHP-Ib patients can signaling is a major player in heterotopic ossification also have certain AHO features (de Nanclares et al. 2007, caused by inactivating GNAS mutations, suggesting that Mariot et al. 2008, Unluturk et al. 2008, Mantovani et al. inhibition of this pathway could be a future drug target 2010). PHP-Ib is caused by methylation changes within for POH (Regard et al. 2013). the GNAS locus (Liu et al. 2000a). The patients show Most AHO features could be attributed to diminished loss of methylation at exon A/B with biallelic expression signaling downstream of PTH1R, which binds not only of the A/B transcript, whereas some cases display PTH but also PTH-related peptide (PTHrP), a paracrine methylation defects at additional GNAS DMRs (Liu et al. factor that plays a crucial role in endochondral bone 2000a, Bastepe et al. 2001b). Like in PHP-Ia, hormone development (Karaplis et al. 1994). Brachydactyly (type resistance in PHP-Ib is inherited maternally (Jüppner et al. E) and short stature are due to impaired PTHrP actions in 1998). The loss of A/B methylation and/or derepressed endochondral bone formation, similar to that observed A/B promoter activity on the maternal allele leads to in patients with mutations in either HDAC4 or PTHLH silencing of Gαs in cis, and this silencing takes place in (gene-encoding PTHrP) (Klopocki et al. 2010, Maass et al. tissues where Gαs expression normally occurs, exclusively 2010, Williams et al. 2010). Of note, these AHO features or predominantly, from the maternal allele, such as the are also found, in a more severe manner, in patients renal proximal tubule and thyroid. Thus, Gαs expression Journal of Molecular Endocrinology carrying mutations in PRKAR1A or PDE4D, which encode in those tissues is suppressed on both GNAS alleles. the type 1A PKA regulatory subunit or the type 4D cAMP Genetic changes that lead to these GNAS methylation phosphodiesterase, respectively (Linglart et al. 2011, abnormalities have been discovered in most familial cases Lee et al. 2012, Michot et al. 2012), further highlighting with PHP-Ib and include various microdeletions either at

the importance of reduced Gs signaling in the the neighboring STX16 locus, located ~200 kb centromeric pathogenesis. On the other hand, evidence suggests that to GNAS, or at the NESP55 DMR (Bastepe et al. 2003, 2005, ectopic ossifications, at least those observed in patients Linglart et al. 2005, Chillambhi et al. 2010, Richard et al. with POH, may result from deficient Gαs signaling 2012, Elli et al. 2014, Rezwan et al. 2015, Takatani et al. downstream of other receptors. Although ablation of Gαs 2016). A recent study has also revealed a large genomic in the mouse limb bud mesenchyme – through the use inversion that disrupts the GNAS locus as a cause of of Prx1–Cre – results in a severe phenotype resembling PHP-Ib (Grigelioniene et al. 2017). Sporadic PHP-Ib cases POH (Regard et al. 2013), ablation of PTH1R using the display broad methylation abnormalities within GNAS, same approach does not lead to ectopic ossification including loss of A/B methylation, and in some of these (Fan et al. 2016). cases, the underlying cause is paternal uniparental disomy Two additional subtypes of PHP type-I have been involving 20 (Bastepe et al. 2001a). described. PHP-Ic is phenotypically identical to PHP-Ia (Table 1). The genetic defect may be downstream of Gq/11/PLC/PKC-mediated PTH actions in bone Gαs in these cases, as Gαs activity appears normal in easily accessible cells from patients with PHP-Ic, unlike In addition to Gs, the PTH1R couples to Gq/11-dependent those from patients with PHP-Ia (Farfel et al. 1981). In activation of (PLC) (Abou-Samra et al. several PHP-Ic cases, however, Gαs mutations within 1991, 1992, Bringhurst et al. 1993). Upon activation,

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access Journal of Molecular Endocrinology mice, includingadiminished peritrabecularstromalcell D/D miceshowsignificant differencesfromwild-type 2004 G of PTHrP, demonstratingthatthe G ( and abnormalitiesinendochondralboneformation delayed hypertrophicdifferentiationofchondrocytes signaling ( G a mutatedPTH1R(DSELmutant)thatcanstimulate knockin mouse model has been generated, expressing the roleofG action of PTH in bone is less well characterized than in additiontoPKA( gene expressionappearstoinvolvePKC-deltaactivation, of insulin-like growth factor-binding protein-5 (IGFBP-5) ( the effects of PTH stimulation on MMP13 expression altering thecAMPresponsetoPTH,anditalsoenhances 01 significantlyincreasesPTH1RcouplingtoPLCwithout ( roleinosteoblastdifferentiation alpha playsaninhibitory 2001 osteoblast proliferation( ( also activatesPKC-deltaviaaPLC-independentpathway ( (1–34), as well as PTH (3–34), PTHrP and PTH (1–31) membrane translocationofPKC-alphainducedbyPTH forthe study showedthatphospholipaseDisnecessary different PKCisozymeshavealsobeensuggested.One PLC-independent mechanismsfortheactivationof IP3 generation( osteoblastic cellsfrommousecalvaria,PTHalsoinduces indicating activation of phospholipaseC.Inprimary 1991 the activationofG UMR106 andROScells),PTHtreatmentresultsin and PKAactions( of PTH1R is negatively regulated by the phosphorylation protein kinaseC(PKC)isozymes.PTHsignalingtoPLC turn, increaseintracellularCa Vera membrane phospholipids( (DAG) throughtheactionofphospholipaseCon inositol 1,4,5-trisphosphate(IP3)anddiacylglycerol G Guo Cheung Nakura Yang Radeff DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org s q/11 αs Review signalingingrowthplatechondrocytes ( /cAMP/PKA signalingbutnotG The In osteosarcoma-derived osteoblast-likecells(e.g. leadstothegenerationofsecondmessengers ). When fed a low-calcium diet or infused with PTH, , ). On the other hand, it has also been shown that PKC- et al et al t al et 1992 et al t al et et al in vivo . 2003 . 2002 Iida-Klein . 2006 ). ThisisevidencedbyaccumulationofIP3, . 2011 . 2004 . 2005 s inthesameregard.Asdiscussedabove,a , roleofG Farndale ). These findings reflect impaired actions Syrovatkina ). Via activationofPKC,PTHincreases Tawfeek &Abou-Samra2008 ). Overexpression of G ). AnotherstudyindicatedthatPTH ). Inaddition,PTH-inducedregulation Erclik &Mitchell2002 et al q/11 Miao et al signaling( . 1997 q/11 Bourne et al signalinginmediatingthe . 1988 et al 2+ andactivatedownstream ). Themice(D/D)exhibit . 2016 m

. 2001 bastepe © 2017SocietyforEndocrinology ). Ontheotherhand, q/11 t al et Abou-Samra signalingopposes ). IP3andDAG,in andothers , . 1991 α Swarthout Printed inGreatBritain 11 in UMR106- ). Bastepe q/11 ). , /PLC/PKC Cabrera- t al et et al et al . . . response toPTHtreatment( trabecular or cortical bone in G in remained unchanged,andnochangeswereobserved found similareffects.Boneformationorboneresorption specifically overexpressnativeG ( do not respond to PTH treatment regarding bone volume exhibit osteopenia and decreased bone formation, and (using the2.3-kbfragmentofCol1a1promoter) overexpression ofaconstitutivelyactiveG responses toPTH. for bonemodelingandremodeling,aswellnormal indicate thatthePLC–PKCsignalingpathwayisessential differentiation ability( formation and proliferation, but normal osteogenic isolated fromD/Dmicealsoshowattenuatedcolony 2010 with phorbol esters, a pharmacological activator of Hruska 1990 C/PKC inregulatingrenal actionsofPTH( membranes have demonstrated a role of phospholipase cells, amodelofRPT, andproximaltubule basolateral 1993 signaling inassays using LLCPK-1cells( phosphate transporthasbeenshowntorelyonPLC generation ( mechanism dampensthelevelofPTH-inducedIP3 ofPLC-beta3by aPKA-mediated and phosphorylation markedly diminishestheeffectofPTHonPLCsignaling, and/or G LLCPK-1 porcine renal tubularcells, reduction of G of PLC( renal cortical tubular cells, thus demonstrating activation GTP analog,resultsintheaccumulationofIP3canine been shownthatadditionofPTH,aswellastable via itseffectsontheapicalNPT2acotransporter. Ithas the PTH-inducedinhibitionofphosphatereabsorption The G in kidney G and PTHosteoanabolicaction. inhibits bonedevelopment,osteogenicdifferentiation ( bone volumeandturnoverthanthewild-typemice of G the otherhand,micewithosteoblast-specificablation response andreducednewboneformation( G proteinsinPTHactions Ogata Ogata Published byBioscientifica Ltd. q/11 Transgenic micewithosteoblast-specific α b ). Moreover, experimentsusingopossumkidney(OK) /PLC/PKC-mediated PTHactions q/G ). Bone marrow cells and primary osteoblasts ). Bonemarrowcellsandprimary q/11 t al et et al signalingpathwayhasalsobeenimplicatedin α α Coleman &Bilezikian1990 11 levelsbytheuseofsmall-interferingRNA 11 exhibit,upondailyPTHinjections,higher . 2011 . 2007 Tawfeek &Abou-Samra2008 , Azarani ). TheseresultssuggestG ). Astudyusingtransgenicmicethat t al et Guo Downloaded fromBioscientifica.com at09/28/202101:35:51PM . 1995 et al Dela Cruz . 2010 α ). Moreover, treatment 11 transgenic mice in α 11 inosteoblasts 58 b ). Intransfected t al et : ). Thesefindings 4 ). PTH-regulated Bringhurst α q/G . 2016 α Guo Dunlay & q mutant α 11 signal R212 ). On t al et et al α via freeaccess q . . Review m bastepe and others G proteins in PTH actions 58:4 R213

PKCs, in OK cells mimics the inhibitory effect of PTH nearly all exons are shared between XLαs and Gαs, and significantly suppresses the expression and activity XLαs is identical to Gαs over almost the entire amino of NPT2a (Cole et al. 1987, Malmström et al. 1988, acid sequence but contains a unique and much larger Quamme et al. 1989a,b, Pfister et al. 1999). Similar results N terminus. As indicated previously, Gαs is expressed were observed ex vivo using isolated intact proximal biallelically in most tissues, whereas the maternal allele tubules of mice treated with 1,2-dioctanoylglycerol of XLαs is silenced, i.e. XLαs is expressed exclusively from (DOG), an activator of PKC pathway, and based on further the paternal GNAS allele. XLαs is abundantly expressed in analyses, it has been suggested that the PLC/PKC pathway neuroendocrine tissues, particularly pituitary, and brain, predominantly regulates the actions of PTH in the apical its expression is also detectable in pancreas, kidney, bone membrane (Traebert et al. 2000). Impaired PTH-induced and muscle (Kehlenbach et al. 1994, Pasolli et al. 2000, PLC stimulation in Nherf1-deficient mice, which fail Pasolli & Huttner 2001, Liu et al. 2011a, Pignolo et al. to couple apical PTH1Rs to PLC/PKC, also suggests that 2011, Krechowec et al. 2012). Because Gαs and XLαs apical PTH1R preferably couples to the PLC/PKC pathway share the amino acid sequences encoded by exons 2–13, (Capuano et al. 2007). In addition, studies with the D/D disease-causing GNAS mutations that are located in these mice (see above) have provided further support for an exons affect both Gαs and XLαs when they are on the important role for the PLC/PKC pathway in PTH-induced paternal allele. Thus, all mutations that are responsible inhibition of renal phosphate reabsorption in vivo. for PPHP, except for those located in exon 1, disrupt Although wild-type mice show dramatically decreased XLαs activity. Moreover, when present on the paternal serum phosphate levels in response to continuous GNAS copy, all mutations found in patients with FD/MAS infusion of PTH (1–34), the D/D mice display only a and multiple tumors, which are located in exons 8 or

transient response (Guo et al. 2013). Thus, the Gq/11 9, affect XLαs activity. XLαs inactivation is specifically pathway is essential for the normal renal actions of PTH implicated in progressive osseous heteroplasia, which on phosphate reabsorption. is predominantly, but not always, inherited paternally,

It is important to note that Gq/11 proteins also play and in severe intrauterine growth retardation observed a crucial role in regulating PTH generation as the action in PPHP, whereas XLαs hyperactivity in the formation of the calcium-sensing receptor is primarily mediated of thyroid and ovarian tumors in patients with MAS by these G proteins (Hofer & Brown 2003, Ward 2004). (Shore et al. 2002, Mariot et al. 2011, Richard et al. 2013). Parathyroid gland-specific αG q/Gα11 double-knockout In addition, increased XLαs activity has been implicated in mice exhibit parathyroid hyperplasia, markedly increased the development of 20q-amplified breast tumors (Garcia-

Journal of Molecular Endocrinology serum calcium and PTH, severe delay in bone formation Murillas et al. 2013). and resorption (Wettschureck et al. 2007). Similar findings Studies using transfected cells overexpressing XLαs are also present in transgenic mice in which the PTH suggest that it can mimic the action of Gαs with respect promoter drives expression of the C-terminal peptide of to PTH-induced cAMP generation (Bastepe et al. 2002, Gαq, which specifically inhibits the latter Pi( et al. 2008). Linglart et al. 2006). XLαs, like Gαs, is localized to the In humans, mutations in GNA11, which encodes Gα11, plasma membrane at the basal state (Pasolli et al. 2000, also correlate with dysregulated PTH levels. Inactivating Linglart et al. 2006). However, activated XLαs and Gαs mutations in GNA11 have been identified as a cause of traffic differently in XLαs- or Gαs-transfected cells. XLαs familial hypocalciuric hypercalcemia type 2, whereas remains at the plasma membrane after PTH stimulation, gain-of-function mutations in this gene were shown to be whereas Gαs redistributes to the cytosol (Liu et al. 2011b). responsible for autosomal dominant hypocalcemia type 2 This property of XLαs is consistent with higher basal (Mannstadt et al. 2013, Nesbit et al. 2013, Li et al. 2014). activity of GTPase-deficient XLαs mutants in transfected cells and may explain the finding that XLαs overexpression significantly prolongs the cAMP response induced by XL s-mediated actions of PTH α a typically short-acting PTH analog (M-PTH (1–14)) XLαs is a large variant of Gαs derived from the imprinted (Liu et al. 2011b). In addition, when XLαs is expressed GNAS complex locus (Kehlenbach et al. 1994). XLαs ectopically in the renal proximal tubules in transgenic uses an alternative upstream promoter and a distinct (rptXLαs) mice, overexpressed XLαs enhances the cellular first exon, but shares the same exons 2–13 with Gαs responses downstream of Gαs signaling (Liu et al. 2011a). (Hayward et al. 1998a, Peters et al. 1999) (Fig. 2). Because And transgenic overexpression of XLαs in renal proximal

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access Journal of Molecular Endocrinology including Mmp8,Gadd45a and Foxa2( PTH inaG cells identifiedasmallset of genesthatareregulatedby PTH, experimentsusingantagonist minigenesinUMR106 to beclarifiedwithrespect to thephysiologicalactionsof overall significanceofPTH1RcouplingtoG of G showed thatPTH-inducedPLDactivation was downstream A subsequent study by the same group of investigators and thebioactivelipidphosphatidicacid( that hydrolyzesphosphatidylcholinetogeneratecholine manner, the activityofphospholipaseD(PLD),anenzyme demonstrated thatPTHstimulates,inaRhoA-dependent By usingosteoblastic UMR106 cells, it has been Other Gproteins intheactionsofPTH of PTHduringearlypostnataldevelopment. PKC pathway XL activation ( in vivo of XL in XLKOmiceatpostnatalday2andthatoverexpression the abundancesofPKC found thatbasalandPTH-stimulatedIP3signaling increased serumPTH( hyperphosphatemia and hypocalcemia, together with found that at early postnatal age, XLKO mice exhibit 2005 in miceheterozygousforG from andare,bylarge,oppositeofthoseobserved Richard XLKO mice( in fattissuesthatarereminiscentofthephenotypes been implicatedtohavefeedingdifficultiesanddefects humans, lossoffunctionpaternal have beenknockedout( 2, inwhichthepaternalallelesofbothG in miceheterozygousfordeletedpaternalGnasexon 2004 defects inglucoseandenergymetabolism( hypermetabolism andreducedadiposity, andhave poor adaptationtofeeding,earlypostnatallethality, the actions of G (XLKO) micesuggestthatXL overexpressed, mice withablationofmaternalG tubules partiallyrescuesthePTHresistancephenotypeof DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org Review α Although XL s canpromoteG , ). Thesephenotypesaresimilartothoseobserved 12/13 α s in transfected cells or in renal proximal tubules stimulates IP3 generationand PKC isozymes Germain-Lee activation ( t al et He 12 -, butnotG Aldred . 2013 in vivo et al in vivo αs α . Mice in which XL . 2015 s displays a G t al et andisrequiredfortherenalactions ). Thesephenotypesdiffervastly q/11 t al et Singh He studiesusingXL δ signalingtostimulatethePLC/ ). Theseresultsdemonstratethat , PKC Yu . 2002 t al et s - orG . 2005 αs t al et et al α ablationalone( s hasactionsdistinctfrom α . 2015 andPKC , m αs . 1998 q/11 . 2005 Genevieve

). We haverecently bastepe © 2017SocietyforEndocrinology ( -dependent manner, Liu αs ). We additionally α Wang -like role when s is ablated show , andothers Singh et al GNAS 2000 ). Although the Printed inGreatBritain ζ arerepressed αs . 2011 t al et 12/13 α Plagge et al et al s-knockout allelehas Chen , andXL 2001 remains . 2011 . 2005 . 2003 a et al ). et al ). In α ). ). s , . . ( as OKcells,inadose-andtime-dependentmanner signaling pathway in several different cell lines, such the regulationofPTH1Ruponactivation. G and trafficking ( and PLD2havebeenfoundtoregulatePTH1Rendocytosis In addition,basedonstudiesusingculturedcells,PLD1 phosphorylation byPTHoccursinabiphasicmanner,phosphorylation cells andvariouspharmacologicinhibitors,thatERK1/2 & Defize1997 ERK1/2, wasindependentofrasactivation( of kinase signaling,asjudgedbythephosphorylation also indicatedthatthePTH-inducedactivationofMAP occurs viabothofthosesignalingpathways.Onestudy PLC/PKC pathways, concluding that the effect of PTH inhibitors todifferentiallyalterG 2000 By employingtheseligands, itwasthenshownthat receptor internalization( hand, PTH (1–31)activates the PTH1R without causing inducing cAMPorPLCsignaling pathways. Ontheother cells, PTH(7–34)inducesreceptor endocytosiswithout both activates and internalizes PTH1R in distal kidney 2007 factor receptor(EGFR)( (HB-EGF) andtransactivationoftheepidermalgrowth heparin-binding fragment of epidermalgrowth factor metalloprotease-mediated cleavageofmembrane-bound the G revealed thatPTHcanstimulateERK1/2signalingthrough in OK cells ( phosphorylation suggested intheactionofPTHasastimulatorERK1/2 An involvement of epidermalgrowth factor has been depends onG phasethat identification oftheERK1/2phosphorylation alleles of line in which exon 2 was ablated from both parental fibroblast The studyalsoutilizedamouseembryonic protein-independent manner( a latephasethatinvolvestheactionofbeta-arrestininG has anearlyphasethatreliesonG inthesecells the PTH-inducedERK1/2phosphorylation human PTH1RcDNAhassubsequentlydeterminedthat kidney 293(HEK293)cellstransientlytransfectedwiththe 2000 late phasedependentonproteinkinaseC( phosphatidylinositol-4,5-bisphosphate 3-kinase andthe with theearlierphasemediatedbytyrosinekinaseand G proteinsinPTHactions Verheijen &Defize 1997 Published byBioscientifica Ltd. 12/13 PTH hasbeenshowntostimulatetheMAPkinase ). These studies used various stimulators and ). In contrast, another study using human embryonic ). Incontrast,anotherstudyusinghumanembryonic ). Ithasbeenshownthat, although PTH(1–34) i mediates certain specific actions ofPTH, as well as signalingpathway, whichleadstothestimulation of Gnas s /cAMP signaling( ( ). Ithasalsobeenshown,byusingOK Garrido Bastepe Ahmed et al Downloaded fromBioscientifica.com at09/28/202101:35:51PM t al et Sneddon , . 2009 . 2002 Cole 1999 Cole 1999 et al Gesty-Palmer Gesty-Palmer s andG s /cAMP/PKA andG ). It thusappears that t al et . 2003 ); thesecellsallowed 58 q/11 : ). Further studies 4 , , . 2003 Lederer Sneddon pathwaysand Lederer et al et al Verheijen , . 2006 2004 . 2006 t al et R214 et al et al q/11 via freeaccess ). ). ). / . . . Review m bastepe and others G proteins in PTH actions 58:4 R215

PTH1R activation, but not internalization, is required for within the imprinted GNAS1 locus. Human Molecular Genetics 10 stimulation of MAP kinase signaling in distal kidney cells 1231–1241. (doi:10.1093/hmg/10.12.1231) Bastepe M, Gunes Y, Perez-Villamil B, Hunzelman J, Weinstein LS & (Sneddon et al. 2007). Jüppner H 2002 Receptor-mediated adenylyl cyclase activation through XLalphas, the extra-large variant of the stimulatory G protein alpha-subunit. Molecular Endocrinology 16 1912–1919. (doi:10.1210/me.2002-0054) Declaration of interest Bastepe M, Fröhlich LF, Hendy GN, Indridason OS, Josse RG, The authors declare that there is no conflict of interest that could be Koshiyama H, Körkkö J, Nakamoto JM, Rosenbloom AL, perceived as prejudicing the impartiality of this review. Slyper AH, et al. 2003 Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. Journal of Clinical Investigation 112 1255–1263. Funding (doi:10.1172/JCI19159) The studies conducted by the corresponding author’s lab have been funded, Bastepe M, Weinstein LS, Ogata N, Kawaguchi H, Jüppner H, in part, by the National Institutes of Health (NIDDK, RO1 DK073911), the Kronenberg HM & Chung UI 2004 Stimulatory G protein directly March of Dimes, the Milton Fund and the Fibrous Dysplasia Foundation. regulates hypertrophic differentiation of growth plate cartilage in vivo. PNAS 101 14794–14799. (doi:10.1073/pnas.0405091101) Bastepe M, Fröhlich LF, Linglart A, Abu-zahra HS, Tojo K, Ward LM & Jüppner H 2005 Deletion of the NESP55 differentially methylated References region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type-Ib. Nature Genetics 37 25–37. Abou-Samra AB, Zajac JD, Schiffer-Alberts D, Skurat R, Kearns A, (doi:10.1038/ng1560) Segre GV & Bringhurst FR 1991 Cyclic adenosine Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Roberson PK, Weinstein RS, 3′,5′-monophosphate (cAMP)-dependent and cAMP-independent O’Brien CA, Manolagas SC & Jilka RL 2003 Proteasomal degradation regulation of parathyroid hormone receptors in UMR 106-01 of Runx2 shortens parathyroid hormone-induced anti-apoptotic osteoblastic osteosarcoma cells. Endocrinology 129 2547–2554. signaling in osteoblasts. A putative explanation for why intermittent (doi:10.1210/endo-129-5-2547) administration is needed for bone anabolism. Journal of Biological Abou-Samra AB, Jüppner H, Force T, Freeman MW, Kong XF, Schipani E, Chemistry 278 50259–50272. (doi:10.1074/jbc.M307444200) Urena P, Richards J, Bonventre JV, Potts JT Jr, et al. 1992 Expression Ben-awadh AN, Delgado-Calle J, Tu X, Kuhlenschmidt K, Allen MR, cloning of a common receptor for parathyroid hormone and Plotkin LI & Bellido T 2014 Parathyroid hormone receptor signaling parathyroid hormone-related peptide from rat osteoblast-like cells: a induces bone resorption in the adult skeleton by directly regulating single receptor stimulates intracellular accumulation of both cAMP the RANKL gene in osteocytes. Endocrinology 155 2797–2809. and inositol triphosphates and increases intracellular free calcium. (doi:10.1210/en.2014-1046) PNAS 89 2732–2736. (doi:10.1073/pnas.89.7.2732) Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Ahmed I, Gesty-Palmer D, Drezner MK & Luttrell LM 2003 Mohammadi M, Sirkis R, Naveh-Many T & Silver J 2007 The Transactivation of the epidermal growth factor receptor mediates parathyroid is a target organ for FGF23 in rats. Journal of Clinical parathyroid hormone and prostaglandin F2 alpha-stimulated Investigation 117 4003–4008. mitogen-activated protein kinase activation in cultured transgenic Bhattacharyya N, Wiench M, Dumitrescu C, Connolly BM, Bugge TH, Journal of Molecular Endocrinology murine osteoblasts. Molecular Endocrinology 17 1607–1621. Patel HV, Gafni RI, Cherman N, Cho M, Hager GL, et al. 2012 (doi:10.1210/me.2002-0040) Mechanism of FGF23 processing in fibrous dysplasia. Journal of Bone Albright F, Burnett CH, Smith PH & Parson W 1942 and Mineral Research 27 1132–1141. (doi:10.1002/jbmr.1546) Pseudohypoparathyroidism – an example of ‘Seabright-Bantam Boguslawski G, Hale LV, Yu XP, Miles RR, Onyia JE, Santerre RF & syndrome’. Endocrinology 30 922–932. Chandrasekhar S 2000 Activation of osteocalcin transcription Aldred MA, Aftimos S, Hall C, Waters KS, Thakker RV, Trembath RC & involves interaction of - and protein kinase Brueton L 2002 Constitutional deletion of chromosome 20q in two C-dependent pathways. Journal of Biological Chemistry 275 999–1006. patients affected with albright hereditary osteodystrophy. American (doi:10.1074/jbc.275.2.999) Journal of Medical Genetics 113 167–172. (doi:10.1002/ajmg.10751) Bourne HR, Sanders DA & McCormick F 1991 The GTPase superfamily: Alman BA, Greel DA & Wolfe HJ 1996 Activating mutations of Gs conserved structure and molecular mechanism. Nature 349 117–127. protein in monostotic fibrous lesions of bone. Journal of Orthopaedic (doi:10.1038/349117a0) Research 14 311–315. (doi:10.1002/jor.1100140221) Boyce AM & Collins MT 1993 Fibrous dysplasia/McCune-Albright Azarani A, Goltzman D & Orlowski J 1995 Parathyroid hormone and syndrome. In GeneReviews. Eds RA Pagon, MP Adam, HH Ardinger, parathyroid hormone-related peptide inhibit the apical Na+/H+ SE Wallace, A Amemiya, LJH Bean, TD Bird, CR Dolan, CT Fong, RJH exchanger NHE-3 isoform in renal cells (OK) via a dual signaling Smith, et al. Seattle, WA, USA: University of Washington. (available cascade involving protein kinase A and C. Journal of Biological at: https://www.ncbi.nlm.nih.gov/books/NBK274564/) Chemistry 270 20004–20010. (doi:10.1074/jbc.270.34.20004) Boyce RW, Paddock CL, Franks AF, Jankowsky ML & Eriksen EF 1996 Bastepe M, Lane AH & Jüppner H 2001a Paternal uniparental isodisomy Effects of intermittent hPTH(1–34) alone and in combination with of chromosome 20q (patUPD20q) – and the resulting changes 1,25(OH)(2)D(3) or risedronate on endosteal bone remodeling in in GNAS1 methylation – as a plausible cause of canine cancellous and cortical bone. Journal of Bone and Mineral pseudohypoparathyroidism. American Journal of Human Genetics 68 Research 11 600–613. (doi:10.1002/jbmr.5650110508) 1283–1289. (doi:10.1086/320117) Brenza HL, Kimmel-Jehan C, Jehan F, Shinki T, Wakino S, Anazawa H, Bastepe M, Pincus JE, Sugimoto T, Tojo K, Kanatani M, Azuma Y, Suda T & DeLuca HF 1998 Parathyroid hormone activation of the Kruse K, Rosenbloom AL, Koshiyama H & Jüppner H 2001b 25-hydroxyvitamin D3–1a-hydroxylase gene promoter. PNAS 95 Positional dissociation between the genetic mutation responsible for 1387–1391. (doi:10.1073/pnas.95.4.1387) pseudohypoparathyroidism type Ib and the associated methylation Bringhurst FR, Jüppner H, Guo J, Urena P, Potts JT Jr, Kronenberg HM, defect at exon A/B: evidence for a long-range regulatory element Abou-Samra AB & Segre GV 1993 Cloned, stably expressed

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access Journal of Molecular Endocrinology Coleman DT & Bilezikian JP 1990Parathyroidhormonestimulates &Bilezikian JP Coleman DT 1987Adual &Forte LR Thorne PK Poelling RE, Eber SL, Cole JA, 1999Parathyroidhormoneactivatesmitogen-activatedprotein Cole JA Clohisy JC, Scott DK, Brakenhoff KD, Quinn CO & Partridge NC 1992 &Partridge NC Quinn CO Brakenhoff KD, Scott DK, Clohisy JC, &Bastepe M Jüppner H Turan S, Hwang DY, Chen HC, Chillambhi S, 2005Increasedexpressionof &Mitchell J Erclik MS Cheung R, Lai EW, Xie T, Gupta D, Kelleher J, Wang J, Dickerson KE, Chen M, Nguyen AT, Xie T, Deng C, Nackers LM, Liu J, Gavrilova O, Chen M, 1969Pseudohypoparathyroidism: &Aurbach GD Melson GL Chase LR, Imbert-Teboul M, Gontcharevskaia O, Gagnan-Brunette M, Chabardes D, Capuano P, Bacic D, Roos M, Gisler SM, Stange G, Biber J, Kaissling B, Kaissling B, Biber J, Stange G, Gisler SM, Capuano P, Roos M, Bacic D, Saxton J, Giovannetti A, Knight M, Hunzelman J, Sims N, Calvi L, Xu M, Uchimura T, Lindborg CM, Brennan TA, Pignolo RJ, Cairns DM, Preininger A, Medkova M, Thomas TO, Vanhauwe J, Cabrera-Vera TM, Kifor O, Butters R, Lombardi M, Riccardi D, Gamba G, Brown EM, DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org Review formation ofinositolphosphatesin amembranepreparationof parathyroid hormone. mechanism forregulationofkidney phosphatetransportby (doi:10.1210/endo.140.12.7173) kinase inopossumkidneycells. mend.6.11.1480173) osteoblastic cells. Parathyroid hormoneinducesc-fosandc-junmessengerRNAinrat 95 methylation incis. pseudohypoparathyroidism typeIbandbiparentaldefectsofGNAS 2010 DeletionofthenoncodingGNASantisensetranscriptcauses 336–343. metalloproteinase-13 mRNA. activation ofphospholipaseCandAP-1regulationmatrix G11alpha inosteoblasticcellsenhancesparathyroidhormone regulation. imprinting oftheGproteinG(s)alphaanditsroleinmetabolic &Weinstein LS system 2009 Centralnervous Gavrilova O Pacak K, PNAS products haveoppositeeffectsonglucoseandlipidmetabolism. &Weinstein LS 2005Alternative Gnasgene Shen L Lorenzo J, (doi:10.1172/JCI106149) hormone. defective excretionof3 JCI109687) nephron. responsiveness tohormonesinvariousportionsofthehuman 1980Adenylatecyclase &Morel F Clique A Montegut M, 292 Nherf1-deficient mice. internalization oftheNa+-phosphatecotransporterNaPi-IIain coupling ofapicalPTHreceptorstophospholipaseCprevents Wagner CA, Weinman EJ, Shenolikar S, (doi:10.1172/JCI11296) and trabecularbone. PTHrP receptorinosteoblasticcellshasdifferentialeffectsoncortical 2001ActivationofthePTH/ &Schipani E Baron R Kronenberg HM, Clinical Investigation mimicsprogressiveosseousheteroplasia. chick embryos 2013SomiticdisruptionofGNASin &Zeng L Shore EM Kaplan FS, (doi:10.1210/er.2000-0026) function, andregulation. 2003InsightsintoGproteinstructure, &Hamm HE Mazzoni MR bovine parathyroid. characterization ofanextracellularCa 1993Cloningand &Hebert SC Lytton J Hediger MA, Sun A, en.132.5.2090) kidney cells. multiple messengersignalsandbiologicalresponsesinLLC-PK1 parathyroid hormone(PTH)/PTH-relatedpeptidereceptorsactivate 3993–4002. C927–C934.

102 (doi:10.1002/jcp.20299) Journal ofClinicalInvestigation Journal 7386–7391. Journal ofClinicalInvestigation Journal Cell Metabolism Endocrinology (doi:10.1210/jc.2009-2205) (doi:10.1152/ajpcell.00126.2006) Molecular Endocrinology Journal ofClinicalEndocrinologyandMetabolism Journal

123 Nature Journal ofClinicalInvestigation Journal American Journal ofPhysiology American Journal (doi:10.1073/pnas.0408268102) American Journal ofPhysiology:CellPhysiology American Journal ′ ,5 3624–3633.

Endocrine Reviews ′

9 -AMP inresponsetoparathyroid 132

548–555. 366 Journal ofCellularPhysiology Journal 2090–2098. 575–580. Endocrinology (doi:10.1172/JCI69746) (doi:10.1016/j.cmet.2009.05.004) 2+ m

-sensing receptorfrom

et al

65

bastepe 48 © 2017SocietyforEndocrinology 6 (doi:10.1038/366575a0) 1834–1842.

439–448. 24 (doi:10.1210/ 1832–1844. . 2007Defective

140 765–781. andothers Printed inGreatBritain 5771–5779.

107

253 (doi:10.1172/ (doi:10.1210/ 277–286. Journal of Journal E221–E227.

204

Day TF, Guo X, Garrett-Beal L &Yang Y 2005Wnt/beta-catenin Garrett-Beal L Day TF, Guo X, 1993ImprintinginAlbright’s hereditary &Hughes HE Davies AJ & Shenolikar S Steplock D, Brazie M, Biswas R, Cunningham R, O’RiordanJLH,Speer MC, Evans WE, White KE, Consortium TA, Weinstein LS, Cutler CM, Kelly MH, Jain A, Collins MT, Lindsay JR, Erclik MS & Mitchell J 2002Theroleofproteinkinase C-deltainPTH &Mitchell J Erclik MS Beck- Bordogna P, Miolo G, Peverelli E, Pivetta B, deSanctis L, Elli FM, 1990PTHreceptorcouplingtophospholipase Cis &Hruska K Dunlay R 2008McCune-Albrightsyndrome. &Collins MT Dumitrescu CE &Turner RT 1997Theeffectsofprogrammedadministration Dobnig H 2016Overexpressionof &Mitchell J Grynpas MD Dela Cruz A, Garcia-Cuartero B, de Nanclares GP, Santin I, Fernandez-Rebollo E, de Groot T, Bindels RJ & Hoenderop JG 2008TRPV5:aningeniously &Hoenderop JG de Groot T, Bindels RJ Fan Y, Bi R, Densmore MJ, Sato T, Kobayashi T, Densmore MJ, Yuan Q,Fan Y, Zhou X, Bi R, de Groot T, van Kovalevskaya NV, Felici M, Schilderink N, Verkaart S, & Bindels RJ Jalink K, Xi Q, Langeslag M, de Groot T, Lee K, G proteinsinPTHactions Published byBioscientifica Ltd. 4607–4612. controlled calciumchannel. Developmental Cell chondrocyte differentiationduringvertebrateskeletogenesis. signaling inmesenchymalprogenitorscontrolsosteoblastand jmg.30.2.101) osteodystrophy. (doi:10.1152/ajprenal.90426.2008) ofPhysiology:Renal Physiology American Journal to inhibitphosphatetransportinmouserenalproximaltubulecells. Weinman EJ 2009SignalingpathwaysutilizedbyPTHanddopamine (doi:10.1038/81664) associated withmutationsinFGF23. 2000Autosomaldominanthypophosphataemicricketsis Strom TM & Mettinger T Grabowski M, Lorenz-Depiereux B, Econs MJ, Mineral Research regulated by1alpha,25-dihydroxyvitaminD. 2005Fibroblastgrowthfactor-23is &Winer KK Fedarko NS Liu J, Research canine renalcorticaltubularcells. Erben RG & Lanske B 2016 Parathyroid hormone1receptoris &Lanske B Erben RG E534–E541. ofPhysiology:EndocrinologyandMetabolism American Journal stimulation ofIGF-bindingprotein-5 mRNAinUMR-106–01cells. jc.2013-3704) Clinical EndocrinologyandMetabolism ablating STX16causeslossofimprintingattheA/BDMR. pseudohypoparathyroidism typeIb:anovelinheriteddeletion 2014Autosomaldominant Peccoz P, & Mantovani G Spada A ofPhysiology American Journal an alternatepathwayofsignaltransductioninboneandkidney. ofRare Diseases Orphanet Journal inrats. andserumchemistry histomorphometry of humanparathyroidhormonefragment(1–34)onbone International response tointermittentPTHandexercise. Galpha11 inosteoblastlineagecellssuppressestheosteoanabolic 2370–2373. osteodystrophy. pseudohypoparathyroidism andmildfeaturesofAlbright’s hereditary Barros F, Bilbao JR, Pombo M, Morales MJ, Menendez E, Gaztambide S, 31 modulation byparathyroidhormone. Molecular mechanismsofcalmodulinactiononTRPV5and 2011 &Hoenderop JG Vuister GW Bindels RJ, der Hagen EA, Nephrology dependent phosphorylation. 2009ParathyroidhormoneactivatesTRPV5viaPKA- Hoenderop JG (doi:10.1038/ki.2008.320) 2845–2853.

5 et al 299–306.

20

(doi:10.1210/en.138.11.4607) (doi:10.1210/jc.2006-2287) (doi:10.1152/ajpendo.00417.2001) 99 . 2007EpigeneticdefectsofGNASinpatientswith 1693–1704. 423–434. (doi:10.1128/MCB.01319-10)

Journal ofMedicalGenetics Journal Journal ofClinicalEndocrinologyandMetabolism Journal 20

8 1944–1950. 739–750. (doi:10.1002/jbmr.5650050314) (doi:10.1007/s00223-016-0158-y) (doi:10.1681/ASN.2008080873) Downloaded fromBioscientifica.com at09/28/202101:35:51PM Kidney International

Journal oftheAmericanSociety Journal 258 (doi:10.1016/j.devcel.2005.03.016)

(doi:10.1359/JBMR.050718) 3 F223–F231. 12. Journal ofBoneandMineral Journal

Nature Genetics 99 (doi:10.1186/1750-1172-3-12) Molecular andCellularBiology E724–E728.

30 Calcified Tissue 58 Journal ofBoneand Journal 101–103.

296 :

4 74 Endocrinology F355–361. 1241–1246.

26 (doi:10.1210/ 345–348. (doi:10.1136/ Journal of Journal

282 R216

138

92

via freeaccess

Review m bastepe and others G proteins in PTH actions 58:4 R217

essential to induce FGF23 production and maintain systemic mineral type Ib (PHP1B). Journal of Bone and Mineral Research [in press]. ion homeostasis. FASEB Journal 30 428–440. (doi:10.1096/fj.15- (doi:10.1002/jbmr.3083) 278184) Guo J, Chung UI, Kondo H, Bringhurst FR & Kronenberg HM 2002 The Farfel Z, Brothers VM, Brickman AS, Conte F, Neer R & Bourne HR 1981 PTH/PTHrP receptor can delay chondrocyte hypertrophy in vivo Pseudohypoparathyroidism: inheritance of deficient receptor-cyclase without activating phospholipase C. Developmental Cell 3 183–194. coupling activity. PNAS 78 3098–3102. (doi:10.1073/pnas.78.5.3098) (doi:10.1016/S1534-5807(02)00218-6) Farndale RW, Sandy JR, Atkinson SJ, Pennington SR, Meghji S & Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJ, Kuhstoss SA,

Meikle MC 1988 Parathyroid hormone and prostaglandin E2 Thomas CC, Schipani E, Baron R, et al. 2010a Suppression of Wnt stimulate both inositol phosphate and cyclic AMP accumulation in signaling by Dkk1 attenuates PTH-mediated stromal cell response mouse osteoblast cultures. Biochemical Journal 252 263–268. and new bone formation. Cell Metabolism 11 161–171. (doi:10.1042/bj2520263) (doi:10.1016/j.cmet.2009.12.007) Franceschi RT & Xiao G 2003 Regulation of the osteoblast-specific Guo J, Liu M, Yang D, Bouxsein ML, Thomas CC, Schipani E, transcription factor, Runx2: responsiveness to multiple signal Bringhurst FR & Kronenberg HM 2010b Phospholipase C signaling transduction pathways. Journal of Cellular Biochemistry 88 446–454. via the parathyroid hormone (PTH)/PTH-related peptide receptor is (doi:10.1002/jcb.10369) essential for normal bone responses to PTH. Endocrinology 151 Friedman PA & Gesek FA 1993 Calcium transport in renal epithelial 3502–3513. (doi:10.1210/en.2009-1494) cells. American Journal of Physiology 264 F181–F198. Guo J, Song L, Liu M, Segawa H, Miyamoto K, Bringhurst FR, Friedman PA & Gesek FA 1995 Cellular calcium transport in renal Kronenberg HM & Jüppner H 2013 Activation of a non-cAMP/PKA epithelia: measurement, mechanisms, and regulation. Physiological signaling pathway downstream of the PTH/PTHrP receptor is essential Reviews 75 429–471. for a sustained hypophosphatemic response to PTH infusion in male Friedman PA, Coutermarsh BA, Kennedy SM & Gesek FA 1996 mice. Endocrinology 154 1680–1689. (doi:10.1210/en.2012-2240) Parathyroid hormone stimulation of calcium transport is mediated Habener JF, Rosenblatt M & Potts JT Jr 1984 Parathyroid hormone: by dual signaling mechanisms involving protein kinase A and biochemical aspects of biosynthesis, secretion, and metabolism. protein kinase C. Endocrinology 137 13–20. (doi:10.1210/en.137.1.13) Physiological Reviews 64 985–1053. Fu Q, Jilka RL, Manolagas SC & O’Brien CA 2002 Parathyroid hormone Happle R 1986 The McCune-Albright syndrome: a lethal gene surviving stimulates receptor activator of NFkappa B ligand and inhibits by mosaicism. Clinical Genetics 29 321–324. (doi:10.1111/ osteoprotegerin expression via protein kinase A activation of cAMP- j.1399-0004.1986.tb01261.x) response element-binding protein. Journal of Biological Chemistry 277 Hayward BE & Bonthron DT 2000 An imprinted antisense transcript at 48868–48875. (doi:10.1074/jbc.M208494200) the human GNAS1 locus. Human Molecular Genetics 9 835–841. Fulzele K, Krause DS, Panaroni C, Saini V, Barry KJ, Liu X, Lotinun S, (doi:10.1093/hmg/9.5.835) Baron R, Bonewald L, Feng JQ, et al. 2013 Myelopoiesis is regulated Hayward B, Kamiya M, Strain L, Moran V, Campbell R, Hayashizaki Y & by osteocytes through Gsalpha-dependent signaling. Blood 121 Bronthon DT 1998a The human GNAS1 gene is imprinted and 930–939. (doi:10.1182/blood-2012-06-437160) encodes distinct paternally and biallelically expressed G proteins. Garcia-Murillas I, Sharpe R, Pearson A, Campbell J, Natrajan R, PNAS 95 10038–10043. (doi:10.1073/pnas.95.17.10038) Ashworth A & Turner NC 2013 An siRNA screen identifies the GNAS Hayward BE, Moran V, Strain L & Bonthron DT 1998b Bidirectional locus as a driver in 20q amplified breast cancer. Oncogene 33 imprinting of a single gene: GNAS1 encodes maternally, paternally, 2478–2486. (doi:10.1038/onc.2013.202) and biallelically derived proteins. PNAS 95 15475–15480. Garrido JL, Wheeler D, Vega LL, Friedman PA & Romero G 2009 Role of (doi:10.1073/pnas.95.26.15475) phospholipase D in parathyroid hormone type 1 receptor signaling Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Journal of Molecular Endocrinology and trafficking. Molecular Endocrinology 23 2048–2059. (doi:10.1210/ Enjalbert A & Bonthron DT 2001 Imprinting of the G(s)alpha gene me.2008-0436) GNAS1 in the pathogenesis of acromegaly. Journal of Clinical Genevieve D, Sanlaville D, Faivre L, Kottler ML, Jambou M, Gosset P, Investigation 107 R31–36. (doi:10.1172/JCI11887) Boustani-Samara D, Pinto G, Ozilou C, Abeguile G, et al. 2005 He Q, Zhu Y, Corbin BA, Plagge A & Bastepe M 2015 The G protein Paternal deletion of the GNAS imprinted locus (including Gnasxl) in alpha subunit variant XLalphas promotes inositol 1,4,5-trisphosphate two girls presenting with severe pre- and post-natal growth signaling and mediates the renal actions of parathyroid hormone in retardation and intractable feeding difficulties. European Journal of vivo. Science Signaling 8 ra84. (doi:10.1126/scisignal.aaa9953) Human Genetics 13 1033–1039. (doi:10.1038/sj.ejhg.5201448) Henry H 1985 Parathyroid hormone modulation of 25-hydroxyvitamin Germain-Lee EL, Ding CL, Deng Z, Crane JL, Saji M, Ringel MD & D3 metabolism by cultured chick kidney cells is mimicked and Levine MA 2002 Paternal imprinting of Galpha(s) in the human enhanced by forskolin. Endocrinology 116 503–510. (doi:10.1210/ thyroid as the basis of TSH resistance in pseudohypoparathyroidism endo-116-2-503) type 1a. Biochemical and Biophysical Research Communications 296 Hill TP, Spater D, Taketo MM, Birchmeier W & Hartmann C 2005 67–72. (doi:10.1016/S0006-291X(02)00833-1) Canonical Wnt/beta-catenin signaling prevents osteoblasts from Germain-Lee EL, Schwindinger W, Crane JL, Zewdu R, Zweifel LS, differentiating into chondrocytes. Developmental Cell 8 727–738. Wand G, Huso DL, Saji M, Ringel MD & Levine MA 2005 A mouse (doi:10.1016/j.devcel.2005.02.013) model of albright hereditary osteodystrophy generated by targeted Hoenderop JG, De Pont JJ, Bindels RJ & Willems PH 1999 Hormone- disruption of exon 1 of the Gnas gene. Endocrinology 146 stimulated Ca2+ reabsorption in rabbit kidney cortical collecting 4697–4709. (doi:10.1210/en.2005-0681) system is cAMP-independent and involves a phorbol ester-insensitive Gesty-Palmer D, Chen M, Reiter E, Ahn S, Nelson CD, Wang S, PKC isotype. Kidney International 55 225–233. Eckhardt AE, Cowan CL, Spurney RF, Luttrell LM, et al. 2006 Distinct (doi:10.1046/j.1523-1755.1999.00228.x) beta-arrestin- and G protein-dependent pathways for parathyroid Hoenderop JG, Vennekens R, Muller D, Prenen J, Droogmans G, hormone receptor-stimulated ERK1/2 activation. Journal of Biological Bindels RJ & Nilius B 2001 Function and expression of the epithelial Chemistry 281 10856–10864. (doi:10.1074/jbc.M513380200) Ca(2+) channel family: comparison of mammalian ECaC1 and 2. Grigelioniene G, Nevalainen PI, Reyes M, Thiele S, Tafaj O, Molinaro A, Journal of Physiology 537 747–761. (doi:10.1113/ Takatani R, Ala-Houhala M, Nilsson D, Eisfeldt J, et al. 2017 A large jphysiol.2001.012917) inversion involving GNAS exon A/B and all exons encoding gsalpha Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der is associated with autosomal dominant pseudohypoparathyroidism Kemp AW, Merillat AM, Waarsing JH, Rossier BC, Vallon V,

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access Journal of Molecular Endocrinology Jüppner H, Schipani E, Bastepe M, Cole DEC, Lawson ML, Mannstadt M, Mannstadt M, Lawson ML, Cole DEC, Bastepe M, Schipani E, Jüppner H, Freeman MW, Kong XF, Abou-Samra AB, Schipani E, Jüppner H, Weinstein RS & Roberson PK, Ali AA, O’Brien CA, Jilka RL, Weinstein RS, Bellido T, Roberson P,Jilka RL, &Manolagas SC Parfitt AM 2007Molecularandcellularmechanismsoftheanaboliceffect Jilka RL 1992RoleofproteinkinaseCin Tembe V &Favus MJ Janulis M, 1990Alternative &Homcy CJ Nadal-Ginard B Ishikawa Y, Bianchi C, cyclic 1981EffectsofparathyroidhormoneandN6,O2-dibutyryl Imai M Ducayen-Knowles M, Levine LR, Lu SS, Zhou H, Iida-Klein A, Takamura M, Drake MT, PottsJTJr, Guo J, Abou-Samra AB, Iida-Klein A, Halloran BP, & Bencsik M, Bikle DD Sakata T, Pfleger LL, Huang JC, Halloran BP, &Conklin BR Boudignon BM, Nissenson RA Hsiao EC, Nguyen TD, Peng J, Bencsik M, Chang WC, Boudignon BM, Hsiao EC, 1977Invivo &Ogata E Suda T, Takahashi H, Shimazawa E Horiuchi N, 2003Extracellularcalciumsensingand &Brown EM Hofer AM DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org Review formation byactionsonpost-mitoticpreosteoblasts. 2009IntermittentPTHstimulatesperiostealbone Manolagas SC with parathyroidhormone. 1999 Increasedboneformationbypreventionofosteoblastapoptosis bone.2007.03.017) of intermittentPTH. (doi:10.1172/JCI116114) perfused invitro. AMP onCa2+transportacrosstherabbitdistalnephronsegments (doi:10.1359/jbmr.2002.17.5.808) levels inmice. parathyroid hormoneisskeletalsitespecificatthetissueandcellular 2002Anabolicactionof &Lindsay R Dempster DW, Nieves J jbc.272.11.6882) activity. receptor resultinselectivelossofPTH-stimulatedphospholipaseC loop oftheratparathyroidhormone(PTH)/PTH-relatedprotein 1997Mutationsinthesecondcytoplasmic &Segre GV Bringhurst FR (doi:10.1359/JBMR.0301226) and OPG. 2004PTHdifferentiallyregulatesexpressionofRANKL Nissenson RA responsible forpseudohypoparathyroidism typeIbispaternally Koh T, Koshiyama H, Plotkin H, Hendy GN, Science parathyroid hormoneand hormone-relatedpeptide. Kronenberg HM, PottsJTJr, KolakowskiLFJr, Hock J, Richards J, 275–286. 439–446. D3 secretion. parathyroid hormonestimulationofrenal1,25-dihydroxyvitamin Biological Chemistry promoter and5 145–151. Research age-dependent effectsonboneformation. 2010 GsGprotein-coupledreceptorsignalinginosteoblastselicits (doi:10.1073/pnas.0707457105) dramatically increasesbonemass. Osteoblast expressionofanengineeredGs-coupledreceptor 2008 Halloran BP, &Nissenson RA Manalac C, Conklin BR 3-969) synthesis inrats. hormone-induced stimulationof1alpha,25-dihydroxyvitaminD3 roleof3 evidence fortheintermediary (doi:10.1038/nrm1154) signalling. Investigation reduced bonethicknessinmicelackingTRPV5. Hummler E,

254

Journal ofBiologicalChemistry Journal 25 (doi:10.1016/j.bone.2008.10.037) (doi:10.1172/JCI6610) (doi:10.1007/bf00590197) Journal ofBoneandMineralResearchJournal Nature ReviewsMolecularCellBiology 1024–1026. 584–593.

112 et al Journal ofClinicalInvestigation Journal Journal ofBoneandMineralResearchJournal ′ exongenerateanovelG 1906–1914. . 2003RenalCa2+wasting,hyperabsorption,and et al Endocrinology Pflügers Archiv: ofPhysiology European Journal

265 Bone . 1991AGprotein-linkedreceptorfor (doi:10.1002/jbmr.3) 8458–8462.

40 Journal ofClinicalInvestigation Journal 1434–1446. (doi:10.1172/JCI200319826)

101 PNAS 969–974.

m 272 ′ ,5

105 bastepe © 2017SocietyforEndocrinology ′ s (doi:10.1016/j. -cyclic AMPinparathyroid a mRNA. 6882–6889. Journal ofBoneandMineral Journal

90 1209–1214. et al (doi:10.1210/endo-101-

19

2278–2283. 4 andothers Journal ofClinical Journal 530–538. . 1998Thegene 235–244. Printed inGreatBritain

17 Journal of Journal Bone 808–816. (doi:10.1074/

44 104

390

Keusch I, Traebert M, Lotscher M, Kaissling B, Murer H & Biber J 1998 &Biber J Murer H Kaissling B, Traebert M, Lotscher M, Keusch I, 1974 &Rich A Potts JT Habener JF, Mulligan RC, Kemper B, 2005SOSTisatargetgeneforPTHinbone. &Kneissel M Keller H 1994XLasisanewtypeofG &Huttner WB Matthey J Kehlenbach RH, Tybulewicz V, Bronson R, Glowacki J, Luz A, Karaplis AC, 2000Progressiveosseousheteroplasia. &Shore EM Kaplan FS 2013 &Nissenson R Lu W O’Carroll D, Louie A, Abbott MJ, Kao RS, Krechowec SO, Burton KL, Newlaczyl AU, Nunn N, Vlatkovic N & Vlatkovic N Nunn N, Newlaczyl AU, Burton KL, Krechowec SO, Akerstrom G, Krajisnik T, Bjorklund P, Ljunggren O, Marsell R, 1988Isolationand &Kaziro Y Tsukamoto T Kozasa T, Itoh H, 2002Cyclicadenosine &Bringhurst FR Guo J Kondo H, Kiela PR, Lipko MA, LeSueur LK, Jones MD, Hines ER, Kolek OI, Wakasa K, Miyauchi A, Imanishi Y, Koshiyama H, Kobayashi K, Blom E, deRavel T, Baten E, Hennig BP, Koll R, Klopocki E, Dathe K, Yang JY, Barry KJ, Baek WY, Selig M, Shin CS, Kim SW, Pajevic PD, G proteinsinPTHactions Published byBioscientifica Ltd. imprinted signallingproteinXLalphas underliethechanging 2012Postnatalchanges intheexpressionpatternof Plagge A 125–131. in culturedbovineparathyroidcells. regulates parathyroidhormoneand1alpha-hydroxylaseexpression 2007Fibroblastgrowthfactor-23 Westin G &Larsson TE Jonsson KB, (doi:10.1073/pnas.85.7.2081) characterization ofthehumanGsagene. 17 mRNAs bymarrowstromalcells. osteoclastogenesis andexpressionofRANKLosteoprotegerin parathyroid hormone-relatedproteinreceptorregulationof monophosphate/protein kinaseAmediatesparathyroidhormone/ ajpgi.00243.2005) and LiverPhysiology phosphate transport. the finallinkinarenal-gastrointestinal-skeletalaxisthatcontrols Dihydroxyvitamin D3upregulatesFGF23geneexpressioninbone: 20051alpha,25- &Ghishan FK Collins JF, Haussler MR lfs.2005.09.052) isolated fibrousdysplasia. Expression ofFGF23iscorrelatedwithserumphosphatelevelin Mochizuki R, Koyano HM, Ohashi H, Kawata T, Goto H, routing oftheproximaltubularNa/Pi-cotransportertypeII. phosphateprovokealysosomalParathyroid hormoneanddietary pnas.71.9.3731) parathyroid messengerRNA. Preproparathyroid hormone:adirecttranslationproductof 37 (doi:10.1038/372804a0) protein (ErratuminNature1995375:253). gene. targeted disruptionoftheparathyroidhormone-relatedpeptide 1994Lethalskeletaldysplasiafrom &Mulligan RC Kronenberg HM jbmr.2000.15.11.2084) Bone andMineralResearch (doi:10.1016/j.bone.2013.04.001) osteoblasts producesananaboliceffectonbone. Constitutive proteinkinaseAactivityinosteocytesandlate 20q13.3. imprinted andmapsinfourunrelatedkindredstochromosome Human Genetics mutations ofPTHLHcausebrachydactylytypeE. Gillerot Y, Weigel JF, Kruger G, jbmr.1665) ofBoneandMineralResearchJournal administration convertsquiescentliningcellstoactiveosteoblasts. 2012Intermittentparathyroidhormone &Kronenberg HM Kim JE 1998.00115.x) International 148–158. 1667–1679. Genes andDevelopment PNAS (doi:10.1677/JOE-07-0267)

(doi:10.1016/j.bone.2005.03.018) 54

95

(doi:10.1359/jbmr.2002.17.9.1667) 1224–1232. 86 11798–11803. 434–439.

289 American Journal ofPhysiology:Gastrointestinal American Journal G1036–G1042.

15 Life Science Downloaded fromBioscientifica.com at09/28/202101:35:51PM

2084–2094. 8 PNAS (doi:10.1046/j.1523-1755. (doi:10.1016/j.ajhg.2010.01.023) 277–289. et al (doi:10.1073/pnas.95.20.11798) Journal ofBoneandMineralResearchJournal

71 . 2010Deletionandpoint 27

Journal ofEndocrinology Journal 78 3731–3735. 2075–2084. (doi:10.1152/ 2295–2301. (doi:10.1101/gad.8.3.277) (doi:10.1359/ PNAS Nature 58

85 : 4 Bone

American Journal of American Journal 2081–2085. 372 (doi:10.1073/ (doi:10.1002/ (doi:10.1016/j.

804–809. 55

277–287. et al Journal of Journal

195 R218 . 2006 Kidney Bone via freeaccess

Review m bastepe and others G proteins in PTH actions 58:4 R219

phenotype of deficient mice. PLoS ONE 7 e29753. (doi:10.1371/ Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE & Wu D 2005 journal.pone.0029753) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. Kumbasar B, Taylan I, Kazancioglu R, Agan M, Yenigun M & Sar F 2004 Journal of Biological Chemistry 280 19883–19887. (doi:10.1074/jbc. Myelofibrosis secondary to hyperparathyroidism. Experimental and M413274200) Clinical Endocrinology and Diabetes 112 127–130. Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, Morony S, (doi:10.1055/s-2004-817820) Adamu S, Geng Z, Qiu W, et al. 2006 Dkk1-mediated inhibition of Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Wnt signaling in bone results in osteopenia. Bone 39 754–766. Colombero A, Elliott G, Scully S, et al. 1998 Osteoprotegerin ligand (doi:10.1016/j.bone.2006.03.017) is a cytokine that regulates osteoclast differentiation and activation. Li D, Opas EE, Tuluc F, Metzger DL, Hou C, Hakonarson H & Levine MA Cell 93 165–176. (doi:10.1016/S0092-8674(00)81569-X) 2014 Autosomal dominant caused by germline Landis CA, Masters SB, Spada A, Pace AM, Bourne HR & Vallar L 1989 mutation in GNA11: phenotypic and molecular characterization. GTPase inhibiting mutations activate the alpha chain of Gs and Journal of Clinical Endocrinology and Metabolism 99 E1774–E1783. stimulate adenylyl cyclase in human pituitary tumours. Nature 340 (doi:10.1210/jc.2014-1029) 692–696. (doi:10.1038/340692a0) Lindsay R, Cosman F, Zhou H, Bostrom MP, Shen VW, Cruz JD, Lane NE, Kimmel DB, Nilsson MH, Cohen FE, Newton S, Nissenson RA Nieves JW & Dempster DW 2006 A novel tetracycline labeling & Strewler GJ 1996 Bone-selective analogs of human PTH(1–34) schedule for longitudinal evaluation of the short-term effects of increase bone formation in an ovariectomized rat model. Journal of anabolic therapy with a single iliac crest bone biopsy: early actions Bone and Mineral Research 11 614–625. (doi:10.1002/ of teriparatide. Journal of Bone and Mineral Research 21 366–373. jbmr.5650110509) (doi:10.1359/JBMR.051109) Larkins RG, MacAuley SJ, Rapoport A, Martin TJ, Tulloch BR, Byfield PG, Linglart A, Carel JC, Garabedian M, Le T, Mallet E & Kottler ML 2002 Matthews EW & MacIntyre I 1974 Effects of nucleotides, hormones, GNAS1 lesions in pseudohypoparathyroidism Ia and Ic: genotype ions, and 1,25-dihydroxycholecalciferon on phenotype relationship and evidence of the maternal transmission 1,25-dihydroxycholecalciferol production in isolated chick renal of the hormonal resistance. Journal of Clinical Endocrinology and tubules. Clinical Science and Molecular Medicine 46 569–582. Metabolism 87 189–197. (doi:10.1210/jcem.87.1.8133) (doi:10.1042/cs0460569) Linglart A, Gensure RC, Olney RC, Jüppner H & Bastepe M 2005 A Lau K & Bourdeau JE 1989 Evidence for cAMP-dependent protein kinase Novel STX16 Deletion in autosomal dominant in mediating the parathyroid hormone-stimulated rise in cytosolic pseudohypoparathyroidism type Ib redefines the boundaries of a cis- free calcium in rabbit connecting tubules. Journal of Biological acting imprinting control element of GNAS. American Journal of Chemistry 264 4028–4032. Human Genetics 76 804–814. (doi:10.1086/429932) Lavi-Moshayoff V, Wasserman G, Meir T, Silver J & Naveh-Many T 2010 Linglart A, Mahon MJ, Kerachian MA, Berlach DM, Hendy GN, PTH increases FGF23 and mediates the high-FGF23 Jüppner H & Bastepe M 2006 Coding GNAS mutations leading to levels of experimental kidney failure: a bone parathyroid feedback hormone resistance impair in vitro - and toxin- loop. American Journal of Physiology: Renal Physiology 299 F882–F889. induced adenosine cyclic 3′,5′-monophosphate formation mediated (doi:10.1152/ajpcell.00349.2010) by human XLas. Endocrinology 147 2253–2262. (doi:10.1210/ Lederer ED, Sohi SS & McLeish KR 2000 Parathyroid hormone stimulates en.2005-1487) extracellular signal-regulated kinase (ERK) activity through two Linglart A, Menguy C, Couvineau A, Auzan C, Gunes Y, Cancel M, independent pathways: role of ERK in Motte E, Pinto G, Chanson P, Bougneres P, et al. 2011 sodium-phosphate cotransport. Journal of the American Society of Recurrent PRKAR1A mutation in acrodysostosis with hormone Nephrology 11 222–231. resistance. New England Journal of Medicine 364 2218–2226. Journal of Molecular Endocrinology Lee S & Lorenzo J 1999 Parathyroid hormone stimulates TRANCE and (doi:10.1056/NEJMoa1012717) inhibits osteoprotegerin messenger ribonucleic acid expression in Liu J, Litman D, Rosenberg M, Yu S, Biesecker L & Weinstein L 2000a A murine bone marrow cultures: correlation with osteoclast-like cell GNAS1 imprinting defect in pseudohypoparathyroidism type IB. formation. Endocrinology 140 3552–3561. (doi:10.1210/ Journal of Clinical Investigation 106 1167–1174. (doi:10.1172/ en.140.8.3552) JCI10431) Lee SK & Lorenzo JA 2002 Regulation of receptor activator of nuclear Liu J, Yu S, Litman D, Chen W & Weinstein L 2000b Identification of a factor-kappa B ligand and osteoprotegerin mRNA expression by methylation imprint mark within the mouse gnas locus. Molecular parathyroid hormone is predominantly mediated by the protein and Cellular Biology 20 5808–5817. (doi:10.1128/MCB.20.16.5808- kinase a pathway in murine bone marrow cultures. Bone 31 5817.2000) 252–259. (doi:10.1016/S8756-3282(02)00804-9) Liu J, Erlichman B & Weinstein LS 2003 The stimulatory G protein Lee H, Graham JM Jr, Rimoin DL, Lachman RS, Krejci P, Tompson SW, a-subunit Gsa is imprinted in human thyroid glands: implications Nelson SF, Krakow D & Cohn DH 2012 Exome sequencing identifies for thyroid function in pseudohypoparathyroidism types 1A and 1B. PDE4D mutations in acrodysostosis. American Journal of Human Journal of Clinical Endocrinology and Metabolism 88 4336–4341. Genetics 90 746–751. (doi:10.1016/j.ajhg.2012.03.004) (doi:10.1210/jc.2003-030393) Leupin O, Kramer I, Collette NM, Loots GG, Natt F, Kneissel M & Liu Z, Segawa H, Aydin C, Reyes M, Erben RG, Weinstein LS, Chen M, Keller H 2007 Control of the SOST bone enhancer by PTH using Marshansky V, Frohlich LF & Bastepe M 2011a Transgenic MEF2 transcription factors. Journal of Bone and Mineral Research 22 overexpression of the extra-large Gs{alpha} variant XL{alpha}s 1957–1967. (doi:10.1359/jbmr.070804) enhances Gs{alpha}-mediated responses in the mouse renal proximal Li J, Sarosi I, Yan X, Morony S, Capparelli C, Tan H, McCabe S, Elliott R, tubule in vivo. Endocrinology 152 1222–1233. (doi:10.1210/en.2010- Scully S, Van G, et al. 2000a RANK is the intrinsic hematopoietic cell 1034) surface receptor that controls osteoclastogenesis and regulation of Liu Z, Turan S, Wehbi VL, Vilardaga JP & Bastepe M 2011b Extra-long bone mass and calcium metabolism. PNAS 15 1566–1571. Galphas variant XLalphas protein escapes activation-induced (doi:10.1073/pnas.97.4.1566) subcellular redistribution and is able to provide sustained signaling. Li T, Vu TH, Zeng ZL, Nguyen BT, Hayward BE, Bonthron DT, Hu JF & Journal of Biological Chemistry 286 38558–38569. (doi:10.1074/jbc. Hoffman AR 2000b Tissue-specific expression of antisense and sense M111.240150) transcripts at the imprinted Gnas locus. Genomics 69 295–304. Long DN, McGuire S, Levine MA, Weinstein LS & Germain-Lee EL 2007 (doi:10.1006/geno.2000.6337) Body mass index differences in pseudohypoparathyroidism type 1a

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access Journal of Molecular Endocrinology McCauley LK, Koh AJ, Beecher CA & Rosol TJ 1997Proto-oncogenec-fos &Rosol TJ Beecher CA Koh AJ, McCauley LK, & Mariot V, Linglart A Wu JY, Mahon MJ, Mantovani G, Aydin C, 2008 &Linglart A Kottler ML Mariot V, Sinding C, Maupetit-Mehouas S, Marie PJ, de Pollak C, Chanson P & Lomri A 1997Increased &Lomri A Chanson P dePollak C, Marie PJ, Bollati V, Elli FM, Vaira V, Barbieri AM, deSanctis L, Mantovani G, 2002 &Spada A Beck-Peccoz P Giammona E, Ballare E, Mantovani G, 2000Birthanddeathofbonecells:basicregulatory Manolagas SC Dreijerink KM, Chitturi S, Bravenboer B, Harris M, Mannstadt M, 1988Intracellularcascadesinthe &Murer H Stange G Malmström K, 2002Na(+)/H(+) Yun CC &Segre GV Donowitz M, Mahon MJ, Otero M, Tinschert S, Stricker S, Rump A, Aydin A, Wirth J, Maass PG, Miles RR, Yang X, Zeng Q, Halladay DL, Cain RL, Ma YL, Lupp A, Klenk C, Rocken C, Evert M, Mawrin C & Schulz S 2010 &Schulz S Mawrin C Evert M, Rocken C, Klenk C, Lupp A, 2004 &EuropeanCollaborative S Paris F, Sultan C Lumbroso S, DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org Review PTH-related proteininacyclicadenosine monophosphate- is transcriptionallyregulatedbyparathyroid hormone(PTH)and bone. pathogenesis ofMcCune-AlbrightSyndrome andfibrousdysplasiaof XLalphas implicatesthisimprinted GNAS productinthe 2011PotentconstitutivecyclicAMP-generatingactivity of Bastepe M and Metabolism and parathyroidhormoneresistance. A maternalepimutationofGNASleadstoAlbrightosteodystrophy ofPathology Journal mutation inmonostoticandpolyostoticfibrousdysplasia. proliferation ofosteoblasticcellsexpressingtheactivatingGsalpha Metabolism analysis in40patients. osteodystrophyandmolecular evaluation ofalbrighthereditary Pseudohypoparathyroidism andGNASepigeneticdefects:clinical Lania AG, Labarile P, Peverelli E, Bondioni S, and Metabolism human thyroidglandandgonads. The Gsalphagene:predominantmaternaloriginoftranscriptionin edrv.21.2.0395) osteoporosis. mechanisms andimplicationsforthepathogenesistreatmentof NEJMc1300278) England Journal ofMedicine England Journal Germline mutationsaffectingGalpha11inhypoparathyroidism. 2013 &Jüppner H Gabriel S Lim ET, Daly MJ, Lambright DG, (doi:10.1042/bj2510207) cotransport inOKcells. parathyroid-hormone dependentregulationofNa+/phosphate receptor signalling. factor2directsparathyroidhormone1 exchanger regulatory 848–860. leads toBrachydactylyType E. site downregulatesPTHLHintranslocationt(8;12)(q13;p11.2)and Luft FC, Goldring MB, Tsuchimochi K, (doi:10.1210/endo.142.9.8356) associated boneformation. stimulation ofRANKLandinhibitionosteoprotegeringene- continuous humanPTH(1–38)invivoisassociatedwithsustained 2001Cataboliceffectsof &Onyia JE Martin TJ Chandrasekhar S, ofEndocrinology Journal hormone receptorinnormalandneoplastichumantissues. Immunohistochemical identificationofthePTHR1parathyroid (doi:10.1210/jc.2003-031225) ofClinicalEndocrinologyand Metabolism Journal McCune-Albright syndrome–aEuropeanCollaborativeStudy. Activating Gsalphamutations:analysisof113patientswithsigns (doi:10.1210/jc.2006-1497) ofClinicalEndocrinologyand Metabolism Journal imprinting ofGalpha(s)inthedevelopmenthumanobesity. versus pseudopseudohypoparathyroidismmayimplicatepaternal Bone (doi:10.1093/hmg/ddp553)

48 95 Endocrine Reviews 312–320. 651–658.

93 87 661–665. 4736–4740.

150 Nature

162 1059–1069. Journal ofClinicalEndocrinologyand Journal Biochemical Journal (doi:10.1016/j.bone.2010.09.032) (doi:10.1210/jc.2009-0176)

417 368 979–986. Endocrinology (doi:10.1210/jc.2007-0927)

858–861. 2532–2534. Human MolecularGenetics 21 (doi:10.1210/jc.2002-020183) 115–137. Journal ofClinicalEndocrinology Journal Journal ofClinicalEndocrinology Journal (doi:10.1530/EJE-09-0821) m et al

bastepe

© 2017SocietyforEndocrinology (doi:10.1038/nature00816) 142

. 2010 A cis-regulatory . 2010Acis-regulatory 251 (doi:10.1056/ (doi:10.1210/ 4047–4054. et al

89 92 207–213. andothers . 2010 Printed inGreatBritain 2107–2113. 1073–1079.

19 American

European

New Morvan F, Boulukos K, Clement-Lacroix P, Roman Roman S, Suc-Royer I, Clement-Lacroix P,Morvan F, Suc-Royer I, Boulukos K, RomanRoman S, 1998RNA-Proteinbinding &Naveh-Many T Silver J Kilav R, Moallem E, Kinning E, Klein C, Abhyankar A, Goldenberg A, LeGoff C, Michot C, &Goltzman D McPherson PS Panda D, Tong XK, Chan GK, Miao D, Ogata N, Shinoda Y, Takeda S, Wettschureck N,Ogata N, Offermanns S, 2007Continuous &Segre GV Roth SI Chung UI, Kawaguchi H, Ogata N, Allen MR, Gortazar AR, Goellner JJ, Galli C, Plotkin LI, O’Brien CA, 2003 vanderKemp AWNijenhuis T, &Bindels RJ Hoenderop JG, Cranston T, Head RA, Babinsky VN, Howles SA, Hannan FM, Nesbit MA, Reginster J, Gaich G, Prince R, Zanchetta J, Arnaud C, Neer R, Yoshida K &Yoshikawa H Higuchi C, 2011PKCalpha Nakura A, Dean T, PottsJTJr, Bergwitz C, Segawa H, Okazaki M, Nagai S, Nagelberg N, Weintrob N, Shalitin S, Shaharabany M, Mouallem M, Meir T, Durlacher K, Pan Z, Amir G, Richards WG, Silver J &Naveh- Silver J Richards WG, Amir G, Pan Z, Meir T, Durlacher K, G proteinsinPTHactions Published byBioscientifica Ltd. Vayssiere B, Ammann P,Vayssiere B, Martin P, Pognonec P, Pinho S, 273 impaired osteoblastdifferentiation. activation ofGalphaqinosteoblasts resultsinosteopeniathrough bone formationandmass. Deletion ofasinglealleletheDkk1geneleadstoanincreasein expression bycalciumandphosphate. and post-transcriptionalregulationofparathyroidhormonegene (doi:10.1016/j.ajhg.2012.03.003) acrodysostosis. sequencing identifiesPDE4Dmutationsasanothercauseof Flahaut P, Baujat G, Guerrot AM, Duncombe A, M101084200) Biological Chemistry mitogen-activated proteinkinasesignalingpathway. proliferation throughproteinkinaseCactivationoftheRas/ 2001 Parathyroidhormone-relatedpeptidestimulatesosteogeniccell 1106–1115. receptor Nurr1toinduceFGF23transcription. 2014Parathyroidhormoneactivatestheorphannuclear Many T 5427–5433. dependent mannerinosteoblasticcells. signal in osteoblasts is inhibitory totheosteoanabolicactionof signal inosteoblastsisinhibitory 2011Galpha(q) Segre GV, &Kawaguchi H Nakamura K, Chung UI 282 osteocytes. of bonemassandremodelingbyPTHreceptorsignalingin Turner CH, Schipani E, Bouxsein M, Robling AG, 2731–2740. the kidney. Localization andregulationoftheepithelialCa2+channelTRPV6in (doi:10.1056/NEJMoa1300253) hypocalcemia. affecting G-proteinsubunitalpha11inhypercalcemia and 2013Mutations 3rd&Thakker RV Heath H Rust N,Hobbs MR, NEJM200105103441904) ofMedicine Journal density inpostmenopausalwomenwithosteoporosis. of parathyroidhormone(1–34)onfracturesandbonemineral Genant H, Ish-Shalom S, Eriksen E, Hodsman A, (doi:10.1016/j.bone.2010.09.238) suppresses osteoblasticdifferentiation. Chemistry signaling-selective parathyroidhormoneanalogs. predominantly thecAMP/PKApathwayasrevealedby sodium-dependent phosphatetransporterNPT2ainvolves 2011Acutedown-regulationof &Jüppner H Gardella TJ Mahon MJ, Gsalpha. pseudopseudohypoparathyroidism: possiblecerebralimprintingof prevalent inpseudohypoparathyroidismtypeIa,butnot 2008Cognitiveimpairmentis &Farfel Z Zadik Z Shapira H, 21 934–945. 5253–5259. 35757–35764. Clinical Endocrinology

286 PLoS ONE Journal oftheAmericanSocietyNephrology Journal (doi:10.1038/ki.2014.215) (doi:10.1210/en.138.12.5427) (doi:10.1097/01.ASN.0000094081.78893.E8) (doi:10.1359/jbmr.060311) 1618–1626. New England Journal ofMedicine New EnglandJournal American Journal ofHumanGenetics American Journal (doi:10.1074/jbc.273.9.5253)

344 (doi:10.1074/jbc.M611902200) 276

3 e2942. 1434–1441. 32204–32213. (doi:10.1074/jbc.M110.198416) Downloaded fromBioscientifica.com at09/28/202101:35:51PM

68 (doi:10.1371/journal.pone.0002942) Journal ofBoneandMineralResearchJournal 233–239. Journal ofBiologicalChemistry Journal (doi:10.1056/ Bone Journal ofBiologicalChemistry Journal (doi:10.1074/jbc. Endocrinology

48 58

476–484. Kidney International 368 : et al 4 et al Journal ofBiological Journal et al

90 2476–2486. . 2012Exome Journal of Journal

740–745. . 2008Control 138 . 2001Effect

14 New England et al

. 2006 R220

86 via freeaccess

Review m bastepe and others G proteins in PTH actions 58:4 R221

parathyroid hormone. Journal of Biological Chemistry 286 Quamme G, Pfeilschifter J & Murer H 1989a Parathyroid hormone 13733–13740. (doi:10.1074/jbc.M110.200196) inhibition of Na+/phosphate cotransport in OK cells: generation of Onyia JE, Miles RR, Yang X, Halladay DL, Hale J, Glasebrook A, second messengers in the regulatory cascade. Biochemical and McClure D, Seno G, Churgay L, Chandrasekhar S, et al. 2000 In vivo Biophysical Research Communications 158 951–957. demonstration that human parathyroid hormone 1–38 inhibits the (doi:10.1016/0006-291X(89)92814-3) expression of osteoprotegerin in bone with the kinetics of an Quamme G, Pfeilschifter J & Murer H 1989b Parathyroid hormone immediate early gene. Journal of Bone and Mineral Research 15 inhibition of Na+/phosphate cotransport in OK cells: requirement of 863–871. (doi:10.1359/jbmr.2000.15.5.863) protein kinase C-dependent pathway. Biochimica et Biophysica Acta Pasolli H & Huttner W 2001 Expression of the extra-large G protein 1013 159–165. (doi:10.1016/0167-4889(89)90044-X) alpha-subunit XLalphas in neuroepithelial cells and young neurons Quinn JM, Elliott J, Gillespie MT & Martin TJ 1998 A combination of during development of the rat nervous system. Neuroscience Letters osteoclast differentiation factor and macrophage-colony stimulating 301 119–122. (doi:10.1016/S0304-3940(01)01620-2) factor is sufficient for both human and mouse osteoclast formation Pasolli H, Klemke M, Kehlenbach R, Wang Y & Huttner W 2000 in vitro. Endocrinology 139 4424–4427. (doi:10.1210/ Characterization of the extra-large G protein alpha-subunit endo.139.10.6331) XLalphas. I. Tissue distribution and subcellular localization. Journal Radeff JM, Singh AT & Stern PH 2004 Role of protein kinase A, of Biological Chemistry 275 33622–33632. (doi:10.1074/jbc. phospholipase C and phospholipase D in parathyroid hormone M001335200) receptor regulation of protein kinase Cα and interleukin-6 in Patten JL, Johns DR, Valle D, Eil C, Gruppuso PA, Steele G, UMR-106 osteoblastic cells. Cell Signalling 16 105–114. (doi:10.1016/ Smallwood PM & Levine MA 1990 Mutation in the gene encoding s0898-6568(03)00131-1) the stimulatory G protein of adenylate cyclase in Albright’s Rasmussen H, Wong M, Bikle D & Goodman DB 1972 Hormonal control hereditary osteodystrophy. New England Journal of Medicine 322 of the renal conversion of 25-hydroxycholecalciferol to 1412–1419. (doi:10.1056/NEJM199005173222002) 1,25-dihydroxycholecalciferol. Journal of Clinical Investigation 51 Pearman AT, Chou WY, Bergman KD, Pulumati MR & Partridge NC 1996 2502–2504. (doi:10.1172/JCI107065) Parathyroid hormone induces c-fos promoter activity in osteoblastic Regard JB, Malhotra D, Gvozdenovic-Jeremic J, Josey M, Chen M, cells through phosphorylated cAMP response element (CRE)-binding Weinstein LS, Lu J, Shore EM, Kaplan FS & Yang Y 2013 Activation protein binding to the major CRE. Journal of Biological Chemistry 271 of Hedgehog signaling by loss of GNAS causes heterotopic 25715–25721. (doi:10.1074/jbc.271.41.25715) ossification. Nature Medicine 19 1505–1512. (doi:10.1038/nm.3314) Pellicelli M, Miller JA, Arabian A, Gauthier C, Akhouayri O, Wu JY, Reynolds TB, Jacobson G, Edmondson HA, Martin HE & Nelson CH Kronenberg HM & St-Arnaud R 2014 The PTH-Galphas-protein 1952 Pseudohypoparathyroidism: report of a case showing bony kinase A cascade controls alphaNAC localization to regulate bone demineralization. Journal of Clinical Endocrinology and Metabolism mass. Molecular and Cellular Biology 34 1622–1633. (doi:10.1128/ 12 560. MCB.01434-13) Rezwan FI, Poole RL, Prescott T, Walker JM, Karen Temple I & Peterman MG & Garvey JL 1949 Pseudohypoparathyroidism; case report. Mackay DJ 2015 Very small deletions within the NESP55 gene in Pediatrics 4 790. pseudohypoparathyroidism type 1b. European Journal of Human Peters J, Wroe SF, Wells CA, Miller HJ, Bodle D, Beechey CV, Genetics 23 494–499. (doi:10.1038/ejhg.2014.133) Williamson CM & Kelsey G 1999 A cluster of oppositely imprinted Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, Olivos N, transcripts at the Gnas locus in the distal imprinting region of Passeri G, O’Brien CA, Bivi N, et al. 2011a PTH receptor signaling in mouse chromosome 2. PNAS 96 3830–3835. (doi:10.1073/ osteocytes governs periosteal bone formation and intracortical pnas.96.7.3830) remodeling. Journal of Bone and Mineral Research 26 1035–1046. Journal of Molecular Endocrinology Pfister MF, Ruf I, Stange G, Ziegler U, Lederer E, Biber J & Murer H 1998 (doi:10.1002/jbmr.304) Parathyroid hormone leads to the lysomal degradation of the renal Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI, White KE & Bellido T

type II Na/Pi cotransporter. PNAS 95 1909–1914. (doi:10.1073/ 2011b Parathyroid hormone receptor signaling in osteocytes pnas.95.4.1909) increases the expression of fibroblast growth factor-23 in vitro and Pfister MF, Forgo J, Ziegler U, Biber J & Murer H 1999 cAMP-dependent in vivo. Bone 49 636–643. (doi:10.1016/j.bone.2011.06.025) and -independent downregulation of type II Na-Pi cotransporters by Richard N, Abeguile G, Coudray N, Mittre H, Gruchy N, Andrieux J, PTH. American Journal of Physiology 276 F720–F725. Cathebras P & Kottler ML 2012 A new deletion ablating NESP55 Pi M, Chen L, Huang M, Luo Q & Quarles LD 2008 Parathyroid-specific causes loss of maternal imprint of A/B GNAS and autosomal interaction of the calcium-sensing receptor and G alpha q. Kidney dominant pseudohypoparathyroidism type Ib. Journal of Clinical International 74 1548–1556. (doi:10.1038/ki.2008.411) Endocrinology and Metabolism 97 E863–E867. (doi:10.1210/jc.2011- Piersanti S, Remoli C, Saggio I, Funari A, Michienzi S, Sacchetti B, 2804) Robey PG, Riminucci M & Bianco P 2010 Transfer, analysis, and Richard N, Molin A, Coudray N, Rault-Guillaume P, Jüppner H & reversion of the fibrous dysplasia cellular phenotype in human Kottler ML 2013 Paternal GNAS mutations lead to severe intrauterine skeletal progenitors. Journal of Bone and Mineral Research 25 growth retardation (IUGR) and provide evidence for a role of 1103–1116. XLalphas in fetal development. Journal of Clinical Endocrinology and Pignolo RJ, Xu M, Russell E, Richardson A, Kaplan J, Billings PC, Metabolism 98 E1549–E1556. (doi:10.1210/jc.2013-1667) Kaplan FS & Shore EM 2011 Heterozygous inactivation of Gnas in Riminucci M, Fisher LW, Shenker A, Spiegel AM, Bianco P & Gehron adipose-derived mesenchymal progenitor cells enhances osteoblast Robey P 1997 Fibrous dysplasia of bone in the McCune-Albright differentiation and promotes heterotopic ossification. Journal of Bone syndrome: abnormalities in bone formation. American Journal of and Mineral Research 26 2647–2655. (doi:10.1002/jbmr.481) Pathology 151 1587–1600. Plagge A, Gordon E, Dean W, Boiani R, Cinti S, Peters J & Kelsey G 2004 Riminucci M, Liu B, Corsi A, Shenker A, Spiegel AM, Robey PG & The imprinted signaling protein XLalphas is required for postnatal Bianco P 1999 The histopathology of fibrous dysplasia of bone in adaptation to feeding. Nature Genetics 36 818–826. (doi:10.1038/ patients with activating mutations of the Gs alpha gene: site-specific ng1397) patterns and recurrent histological hallmarks. Journal of Pathology Potts JT 2005 Parathyroid hormone: past and present. Journal of 187 249–258. (doi:10.1002/(SICI)1096-9896(199901)187:2<249::AID- Endocrinology 187 311–325. (doi:10.1677/joe.1.06057) PATH222>3.0.CO;2-J)

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access Journal of Molecular Endocrinology Shigematsu T, Horiuchi N & Ogura Y 1986Human parathyroid &Ogura Y Shigematsu T, Horiuchi N Voltz JW, Wade JBShenolikar S, &Weinman EJ 2002 Minkoff CM, 1993Loss of Shen V, &Lindsay R Dempster DW, Xu R Birchman R, 1978Calciumtransportacrosssegments of &Stoner LC Shareghi GR 2005SOSTisaligandforLRP5/LRP6and Tamai K &He X Semenov M, Chou WY, Pearman AT,Selvamurugan N, &Partridge NC Pulumati MR Tomoe Y, Yamanaka S, Onitsuka A, Ito M, Segawa H, Kuwahata M, 1992Identification of &Levine MA Schwindinger WF, Francomano CA 1995Aconstitutivelyactivemutant &Jüppner H Kruse K Schipani E, Sakamoto A, Chen M, Nakamura T, &Weinstein LS Xie T, Chen M, Karsenty G Sakamoto A, Ogata E, Kato S, Kusano K, Hirata M, Ohtomo S, Maeda A, Saito H, Robey PG, Sacchetti B, Cersosimo S, Spica E, Remoli C, Saggio I, 2006DistinctrolesforHedgehogand &McMahon AP Rodda SJ 1992Evidencethatactivationofprotein Tembe V &Favus MJ Ro HK, White KE, Corsi A, Cherman N, Collins MT, Fedarko NS, Riminucci M, DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org Review 25-hydroxyvitamin D3byamechanism involvingadenosine hormone inhibitsrenal24-hydroxylase activityof (doi:10.1073/pnas.162232699) type IIaandrenalphosphatewasting. internalization ofproximaltubulesodium-phosphate cotransporter Targeted disruptionofthe mouseNHERF-1genepromotes JCI116483) estradiol. restored bycombinedtreatmentwithparathyroidhormoneand cancellous bonemassandconnectivityinovariectomizedratscanbe F367-F375. the rabbitdistalnephroninvitro. 26770–26775. a Wntsignalinginhibitor. jbc.273.17.10647) ofBiologicalChemistry Journal activator protein-1siteandtheruntdomainbindingsequence. in osteoblasticcellsthroughthecooperativeinteractionof 1998 Parathyroidhormoneregulatestheratcollagenase-3promoter ajprenal.00100.2006) Physiology: RenalPhysiology endocytosis ofrenaltypeIIcNa-Picotransporter. 2007Parathyroidhormone-dependent Taketani Y &Miyamoto K syndrome. GproteinofadenylylcyclaseinMcCune-Albright stimulatory a mutationinthegeneencodingalphasubunitof Science PTH-PTHrP receptorinJansen-typemetaphysealchondrodysplasia. jbc.M500346200) bone. osteoblasts leadstodifferentialeffectsontrabecularandcortical 2005 DeficiencyoftheGproteinalpha-subunitGsalphain M408903200) vivo. regulated by1alpha,25-dihydroxyvitaminD3andphosphorusin 2005Circulating FGF-23is &Fukushima N Miyamoto K Segawa H, 2357–2368. its naturalhistory. replica ofhumanfibrousdysplasiabonepathologyanddemonstrates expression ofGsalpha(R201C)inmiceproducesaheritable,direct Bianco P, Boyde A, Cumano A, Holmbeck K, (doi:10.1242/dev.02480) maintenance ofosteoblastprogenitors. canonical Wntsignalinginspecification,differentiationand en.131.3.1424) proximal tubules. kinase-C canstimulate1,25-dihydroxyvitaminD3secretionbyrat JCI18399) wasting. fibrous dysplasiaofboneanditsrelationshiptorenalphosphate Hannon T, Econs MJ, Waguespack S, Gupta A, Journal ofBiologicalChemistry Journal Journal ofBiologicalChemistry Journal

268 Journal ofClinicalInvestigation Journal Journal ofClinicalInvestigation Journal PNAS 98–100. (doi:10.1002/jbmr.2267) (doi:10.1074/jbc.M504308200)

89 Endocrinology Journal ofBoneandMineralResearchJournal 5152–5156. (doi:10.1126/science.7701349)

Journal ofBiologicalChemistry Journal 292

273

F395–F403. 131 (doi:10.1073/pnas.89.11.5152) 10647–10657.

American Journal ofPhysiology American Journal

280 1424–1428. 280 m

PNAS 112 2543–2549.

Development

21369–21375. 91 bastepe © 2017SocietyforEndocrinology 2479–2487. 683–692.

(doi:10.1152/ 99 et al et al 11470–11475. andothers (doi:10.1210/ (doi:10.1074/ . 2014Constitutive American Journal of American Journal Printed inGreatBritain . 2003FGF-23in

(doi:10.1074/jbc. 133 (doi:10.1172/

29 (doi:10.1074/

(doi:10.1172/ 3231–3244. 280

235

Singh AT, Bhattacharyya RS, Radeff JM & Stern PH 2003Regulationof &Stern PH Singh AT, Radeff JM Bhattacharyya RS, 1985RegulationbyvitaminD &Sherwood LM Russell J Silver J, Zasloff MA, Gardner RJ, Xu M, Li M, JandeBeur S, Ahn J, Shore EM, 1990EffectsofPTH, Shimizu T, &Imai M Yoshitomi K, Nakamura M Yamazaki Y,Shimada T, Hasegawa H, Takeuchi Y, Muto T, Hino R, Muto T,Shimada T, Yoneya T, Mizutani S, Takeda S, Takeuchi Y, Hino R, Sneddon WB, Syme CA, Bisello A, Magyar CE, Rochdi MD, Parent JL, Parent JL, Rochdi MD, Magyar CE, Bisello A, Syme CA, Sneddon WB, 2002Theimprintedoedematous-small &Peters J Cattanach B Skinner J, Kimura T, Nachtrab G, Sinha P, Guo J, Aarnisalo P, Poulton IJ, Chubb R, Singh AT, Voyno-Yasenetskaya T, Gilchrist A, & Radeff-Huang JM Swarthout JT, Doggett TA, Lemker JL & Partridge NC 2001Stimulation &Partridge NC Swarthout JT, Lemker JL Doggett TA, &Weissman SM 1991 Bick D Gruen JR, Agarwal N, Swaroop A, Tachikawa K &Michigami T Kubota T, Kondou H, Ozono K, Suzuki A, Yang Y, 2007 &Friedman PA Sneddon WB, Harinstein LM Ba J, & Galbiati F, Bisello A Syme CA, Willick GE, Magyar CE, Sneddon WB, G proteinsinPTHactions Published byBioscientifica Ltd. parathyroid hormone-stimulatedphospholipaseDinUMR-106cells (doi:10.1073/pnas.82.12.4270) hormone inisolatedbovineparathyroidcells. metabolites ofmessengerribronucleicacidforpreproparathyroid (doi:10.1056/NEJMoa011262) heteroplasia. inactivating mutationsoftheGNAS1geneinprogressiveosseous 2002Paternallyinherited Whyte MP, &Kaplan FS Levine MA segments. calcitonin, andcAMPoncalciumtransportinrabbitdistalnephron (doi:10.1359/JBMR.0301264) homeostasis. potent regulatorofvitaminDmetabolismandphosphate &Yamashita T 2004FGF-23isa Fukumoto S Fujita T, Nakahara K, osteomalacia. characterization ofFGF23asacausativefactortumor-induced &Yamashita TFujita T, 2001Cloningand Fukumoto S (doi:10.1210/endo-118-4-1583) 3 of extracellularsignal-regulatedkinases andproliferationinrat nar/19.17.4725) cDNA species. Differential expressionofnovelGs alpha signaltransductionprotein (doi:10.1002/jcb.21626) Physiology hormone indistaltubulecells. Extracellular signal-regulatedkinaseactivationbyparathyroid 2815–2823. conditional efficacyofPTHpeptidefragments. internalization oftheparathyroidhormone(PTH)receptor: 2004Ligand-selective dissociationofactivationand Friedman PA Chemistry internalization isregulatedbyNHERF1(EBP50). Activation-independent parathyroidhormonereceptor 2003 &Friedman PA Weinman EJ, Abou-Samra AB geno.2002.6842) gnasxl indevelopment. mutation onmousechromosome2identifiesnewrolesforgnasand 291 anabolic parathyroidhormonetherapy. postnatal skeletonleadstolowbonemassandabluntedresponse Chen M, Saeed H, Swami S, (doi:10.1210/en.2004-1283) D inUMR-106osteoblasticcells. proteins mediateparathyroidhormoneactivationofphospholipase 2005Galpha12/Galpha13subunitsofheterotrimeric Stern PH Mineral Research by calcium,MAPkinase,andsmallGproteins. Saos-2 cells. via inactivationofglycogensynthasekinase-3betainosteoblastic 2008 PTH/cAMP/PKAsignalingfacilitatescanonicalWnt ′ ,5 ′ 1631–1642. -monophosphate inrats.

278 292 American Journal ofPhysiology American Journal (doi:10.1210/en.2003-1185) Journal ofCellularBiochemistry Journal New England Journal ofMedicine New EnglandJournal Journal ofBoneandMineralResearchJournal PNAS 43787–43796. F1028–F1034. Nucleic AcidsResearch

18 (doi:10.1074/jbc.M115.679753) 1453–1460.

98 6500–6505. Genomics Downloaded fromBioscientifica.com at09/28/202101:35:51PM et al (doi:10.1074/jbc.M306019200) (doi:10.1152/ajprenal.00288.2006) Endocrinology American Journal ofPhysiology:Renal American Journal (doi:10.1359/jbmr.2003.18.8.1453) . 2016LossofGsalphainthe

Endocrinology 80 (doi:10.1073/pnas.101545198)

19 373. 4725–4729.

Journal ofBiologicalChemistry Journal 259 (doi:10.1006/

104 118 F408–F414.

58 346

PNAS 146 304–317. 1583–1589. Endocrinology : Journal ofBoneand Journal 4

Journal ofBiological Journal 99–106. 19 2171–2175.

429–435. (doi:10.1093/ 82 4270–4273.

R222 145 via freeaccess

Review m bastepe and others G proteins in PTH actions 58:4 R223

osteoblastic cells by parathyroid hormone is protein kinase Wang B, Ardura JA, Romero G, Yang Y, Hall RA & Friedman PA 2010 C-dependent. Journal of Biological Chemistry 276 7586–7592. Na/H exchanger regulatory factors control parathyroid hormone (doi:10.1074/jbc.M007400200) receptor signaling by facilitating differential activation of G(alpha) Syrovatkina V, Alegre KO, Dey R & Huang XY 2016 Regulation, protein subunits. Journal of Biological Chemistry 285 26976–26986. signaling, and physiological functions of G-proteins. Journal of (doi:10.1074/jbc.M110.147785) Molecular Biology 428 3850–3868. (doi:10.1016/j.jmb.2016.08.002) Wang J, Gilchrist A & Stern PH 2011 Antagonist minigenes identify Takatani R, Molinaro A, Grigelioniene G, Tafaj O, Watanabe T, Reyes M, genes regulated by parathyroid hormone through G protein-selective Sharma A, Singhal V, Raymond FL, Linglart A, et al. 2016 Analysis of and G protein co-regulated mechanisms in osteoblastic cells. Cellular multiple families with single individuals affected by Signalling 23 380–388. (doi:10.1016/j.cellsig.2010.10.008) pseudohypoparathyroidism type Ib (PHP1B) reveals only one novel Wang B, Means CK, Yang Y, Mamonova T, Bisello A, Altschuler DL, maternally inherited GNAS deletion. Journal of Bone and Mineral Scott JD & Friedman PA 2012 Ezrin-anchored protein kinase A Research 31 796–805. (doi:10.1002/jbmr.2731) coordinates phosphorylation-dependent disassembly of a NHERF1 Tascau L, Gardner T, Anan H, Yongpravat C, Cardozo CP, Bauman WA, ternary complex to regulate hormone-sensitive phosphate transport. Lee FY, Oh DS & Tawfeek HA 2016 Activation of protein kinase A in Journal of Biological Chemistry 287 24148–24163. (doi:10.1074/jbc. mature osteoblasts promotes a major bone anabolic response. M112.369405) Endocrinology 157 112–126. (doi:10.1210/en.2015-1614) Ward DT 2004 Calcium receptor-mediated intracellular signalling. Cell Tawfeek HA & Abou-Samra AB 2008 Negative regulation of parathyroid Calcium 35 217–228. (doi:10.1016/j.ceca.2003.10.017) hormone (PTH)-activated phospholipase C by PTH/PTH-related Weinman EJ, Biswas RS, Peng G, Shen L, Turner CL, E X, Steplock D, peptide receptor phosphorylation and protein kinase A. Endocrinology Shenolikar S & Cunningham R 2007 Parathyroid hormone inhibits 149 4016–4023. (doi:10.1210/en.2007-1375) renal phosphate transport by phosphorylation of serine 77 of Thiele S, de Sanctis L, Werner R, Grotzinger J, Aydin C, Jüppner H, sodium-hydrogen exchanger regulatory factor-1. Journal of Clinical Bastepe M & Hiort O 2011 Functional characterization of GNAS Investigation 117 3412–3420. (doi:10.1172/JCI32738) mutations found in patients with pseudohypoparathyroidism type Ic Weinman EJ, Steplock D, Shenolikar S & Blanpied TA 2011 Dynamics of defines a new subgroup of pseudohypoparathyroidism affecting PTH-induced disassembly of Npt2a/NHERF-1 complexes in living OK selectively Gsalpha-receptor interaction. Human Mutation 32 cells. American Journal of Physiology: Renal Physiology 300 F231–F235. 653–660. (doi:10.1002/humu.21489) (doi:10.1152/ajprenal.00532.2010) Thouverey C & Caverzasio J 2016 Suppression of p38alpha MAPK Weinstein LS, Gejman PV, Friedman E, Kadowaki T, Collins RM, signaling in osteoblast lineage cells impairs bone anabolic action of Gershon ES & Spiegel AM 1990 Mutations of the Gs alpha-subunit parathyroid hormone. Journal of Bone and Mineral Research 31 gene in Albright hereditary osteodystrophy detected by denaturing 985–993. (doi:10.1002/jbmr.2762) gradient gel electrophoresis. PNAS 87 8287–8290. (doi:10.1073/ Traebert M, Volkl H, Biber J, Murer H & Kaissling B 2000 Luminal and pnas.87.21.8287) contraluminal action of 1–34 and 3–34 PTH peptides on renal type Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E & IIa Na-P(i) cotransporter. American Journal of Physiology: Renal Spiegel AM 1991 Activating mutations of the stimulatory G protein Physiology 278 F792–F798. in the McCune-Albright syndrome. New England Journal of Medicine Trechsel U, Bonjour JP & Fleisch H 1979 Regulation of the metabolism 325 1688–1695. (doi:10.1056/NEJM199112123252403) of 25-hydroxyvitamin D3 in primary cultures of chick kidney cells. Weinstein LS, Yu S, Warner DR & Liu J 2001 Endocrine manifestations Journal of Clinical Investigation 64 206–217. (doi:10.1172/JCI109441) of stimulatory G protein alpha-subunit mutations and the role of Unluturk U, Harmanci A, Babaoglu M, Yasar U, Varli K, Bastepe M & . Endocrine Reviews 22 675–705. (doi:10.1210/ Bayraktar M 2008 Molecular diagnosis and clinical characterization edrv.22.5.0439) Journal of Molecular Endocrinology of pseudohypoparathyroidism type-Ib in a patient with mild Wettschureck N, Lee E, Libutti SK, Offermanns S, Robey PG & Albright’s hereditary osteodystrophy-like features, epileptic seizures, Spiegel AM 2007 Parathyroid-specific double knockout of Gq and and defective renal handling of uric acid. American Journal of the G11 alpha-subunits leads to a phenotype resembling germline Medical Sciences 336 84–90. (doi:10.1097/MAJ.0b013e31815b218f) knockout of the extracellular Ca2+-sensing receptor. Molecular Usdin TB, Gruber C & Bonner TI 1995 Identification and functional Endocrinology 21 274–280. (doi:10.1210/me.2006-0110) expression of a receptor selectively recognizing parathyroid Williams SR, Aldred MA, Der Kaloustian VM, Halal F, Gowans G, hormone, the PTH2 receptor. Journal of Biological Chemistry 270 McLeod DR, Zondag S, Toriello HV, Magenis RE & Elsea SH 2010 15455–15458. (doi:10.1074/jbc.270.26.15455) Haploinsufficiency of HDAC4 causes brachydactyly mental Usdin TB, Hoare SRJ, Wang T, Mezey E & Kowalak JA 1999 Tip39: a new retardation syndrome, with brachydactyly type E, developmental neuropeptide and PTH2-receptor agonist from hypothalamus. Nature delays, and behavioral problems. American Journal of Human Genetics Neuroscience 2 941–943. (doi:10.1038/14724) 87 219–228. (doi:10.1016/j.ajhg.2010.07.011) van de Graaf SF, Hoenderop JG & Bindels RJ 2006 Regulation of TRPV5 Wiren KM, Ivashkiv L, Ma P, Freeman MW, Potts JT Jr & Kronenberg HM and TRPV6 by associated proteins. American Journal of Physiology: 1989 Mutations in signal sequence cleavage domain of Renal Physiology 290 F1295–F1302. (doi:10.1152/ preproparathyroid hormone alter protein translocation, signal ajprenal.00443.2005) sequence cleavage, and membrane-binding properties. Molecular Verheijen MH & Defize LH 1997 Parathyroid hormone activates Endocrinology 3 240–250. (doi:10.1210/mend-3-2-240) mitogen-activated protein kinase via a cAMP-mediated pathway Wroe SF, Kelsey G, Skinner JA, Bodle D, Ball ST, Beechey CV, Peters J & independent of Ras. Journal of Biological Chemistry 272 3423–3429. Williamson CM 2000 An imprinted transcript, antisense to Nesp, (doi:10.1074/jbc.272.6.3423) adds complexity to the cluster of imprinted genes at the mouse Wan M, Yang C, Li J, Wu X, Yuan H, Ma H, He X, Nie S, Chang C & Gnas locus. PNAS 97 3342–3346. (doi:10.1073/pnas.97.7.3342) Cao X 2008 Parathyroid hormone signaling through low-density Wu JY, Aarnisalo P, Bastepe M, Sinha P, Fulzele K, Selig MK, Chen M, lipoprotein-related protein 6. Genes and Development 22 2968–2979. Poulton IJ, Purton LE, Sims NA, et al. 2011 Gsalpha enhances (doi:10.1101/gad.1702708) commitment of mesenchymal progenitors to the osteoblast lineage Wang B, Bisello A, Yang Y, Romero GG & Friedman PA 2007 NHERF1 but restrains osteoblast differentiation in mice. Journal of Clinical regulates parathyroid hormone receptor membrane retention Investigation 121 3492–3504. (doi:10.1172/JCI46406) without affecting recycling. Journal of Biological Chemistry 282 Yamamoto T, Ozono K, Kasayama S, Yoh K, Hiroshima K, Takagi M, 36214–36222. (doi:10.1074/jbc.M707263200) Matsumoto S, Michigami T, Yamaoka K, Kishimoto T, et al. 1996

http://jme.endocrinology-journals.org © 2017 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-16-0221 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 01:35:51PM via free access Journal of Molecular Endocrinology Yu S, Yu D, Lee E, Eckhaus M, Lee R, Corria Z, Accili D, Westphal H & Accili D, Corria Z, Lee R, Eckhaus M, Yu S, Yu D, Lee E, Yamaguchi K, Kinosaki M, Nakagawa N, Yasuda H, Shima N, 2006Parathyroidhormone &Bringhurst FR Divieti P Yang D, Guo J, DOI: 10.1530/JME-16-0221 http://jme.endocrinology-journals.org Review (doi:10.1073/pnas.95.15.8715) tissue-specific imprintingoftheG heterotrimeric G Weinstein LS 1998Variable andtissue-specifichormoneresistancein pnas.95.7.3597) to TRANCE/RANKL. factorandisidentical osteoprotegerin/osteoclastogenesis-inhibitory 1998 Osteoclastdifferentiationfactorisaligandfor Murakami A, Tomoyasu A, Yano K, Goto M, Mochizuki SI, bone.2005.10.009) PLC-independent pathway. activates PKC-deltaandregulatesosteoblasticdifferentiationviaa of ClinicalInvestigation dysplasia tissuesinpatientswithMcCune-Albrightsyndrome. Increased IL-6-productionbycellsisolatedfromthefibrousbone s proteina-subunit(G PNAS

98 30–35.

95 Bone 3597–3602.

38 (doi:10.1172/JCI118773) s a gene. 485–496. m s a) knockoutmiceisdueto

bastepe © 2017SocietyforEndocrinology PNAS (doi:10.1073/ (doi:10.1016/j. andothers

95 Printed inGreatBritain 8715–8720. et al Journal Journal . Zierold C, Mings JA & DeLuca HF 2001Parathyroidhormoneregulates &DeLuca HF Mings JA Zierold C, Weinstein LS, Tauc M, Chen M, Rubera I, Aydin C, Zhu Y, He Q, Takeda K &Weinstein LS 2001 Lee R, Chen M, Yu S, Castle A, Quon M, Parlow A, Pacak K, Liu J, Lee R, Chen H, Yu S, Gavrilova O, Accepted 17 February 2017 Accepted 17February 2017 Received infinalform9February G proteinsinPTHactions Published byBioscientifica Ltd. stability. 25-hydroxyvitamin D(3)-24-hydroxylasemRNAbyalteringits Endocrinology mRNA abundanceandreducedserum1,25-dihydroxyvitaminD. to parathyroidhormone-resistancewithincreasedrenalCyp24a1 Gproteinalpha-subunitinrenalproximaltubulesleads stimulatory 2016Ablationofthe Marshansky V, &Bastepe M Jüppner H M010313200) Biological Chemistry Increased insulinsensitivityinGsalphaknockoutmice. Investigation produces oppositeeffectsonenergymetabolism. G-proteinalphasubunitknockout transmission ofastimulatory &Weinstein L 2000Paternalversusmaternal Reitman M PNAS

105

157

98 615–623. 497–507. 13572–13576.

276 19994–19998. (doi:10.1172/JCI8437) Downloaded fromBioscientifica.com at09/28/202101:35:51PM (doi:10.1210/en.2015-1639) (doi:10.1073/pnas.241516798) (doi:10.1074/jbc. 58 : 4 Journal ofClinical Journal Journal of Journal R224 via freeaccess