Supplementary Table S2. in Vitro and in Vivo Growth Analyses

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Table S2. in Vitro and in Vivo Growth Analyses Supplementary Table S2. In vitro and in vivo growth analyses. Cell In Vitro Growth (10% FBS) Soft Agar Tumors/Sites Injected Population Doubling Time Saturation Growth SC IM Density PAX-FKHR Populations MSC 41.4 16.8 0 0/4 V1 40.6 16.2 0 0/4 V2 36.4 14.6 0 0/4 P3F1 30.8 57.7 0 0/8 P3F2 32.0 54.4 0 0/8 P7F1 31.3 66.0 0 0/6 P7F2 32.2 56.2 0 0/6 + SV40-LT Populations V1-Zeo 40.2 25.8 0 0/4 V2-Zeo 41.5 25.1 0 0/6 P3F1-Zeo 26.4 74.7 0 0/4 P3F2-Zeo 31.4 84.0 0 0/4 P7F1-Zeo 27.7 75.0 0 0/4 P7F2-Zeo 29.4 34.9 0 0/4 V1-LT 18.5 176.6 0.72 ± 0.19 4/8 V2-LT 20.2 214.9 0.56 ± 0.12 0/4 P3F1-LT 22.0 261.8 0.54 ± 0.04 0/4 P3F2-LT 23.0 269.3 0.61 ± 0.06 8/8 P7F1-LT 23.7 251.3 0.63 ± 0.04 0/4 P7F2-LT 23.9 239.3 0.69 ± 0.24 0/4 + SV40-LT/H-rasG12V Populations V1-LTR 1.37 ± 0.30 3/3 V2-LTR 1.49 ± 0.16 3/3 P3F1-LTR 1.56 ± 0.11 3/3 P3F2-LTR 1.50 ± 0.08 3/3 P7F1-LTR 1.41 ± 0.01 3/3 P7F2-LTR 1.30 ± 0.14 3/3 + p53DD Populations V1-DD 0.55 ± 0.06 0/4 0/4 P3F2-DD 0.59 ± 0.01 2/4 3/3 P7F1-DD 0.52 ± 0.04 0/4 0/6 + p53DD/H-rasG12V Populations V1-DDR 1.22 ± 0.03 3/3 P3F2-DDR 1.36 ± 0.11 3/3 P7F1-DDR 1.34 ± 0.04 3/3 Doubling Time: Number of hours to undergo one population doubling, while growing exponentially. Saturation Density: Number of live cells (X 10,000) present once the culture became confluent. Soft Agar Growth: Percentage of seeded cells that formed colonies ≥ 0.1 mm in diameter. SC, subcutaneous; IM, intramuscular (gastrocnemius). Supplementary Table S3. P3F2-LT versus V1-LT up-regulated gene list. Transcript Gene Fold- Gene Name V1-LT P3F2-LT p-value Cluster ID Symbol Differenc e 6759997 Scg2 secretogranin II 5.59 11.84 76.0 1.7E-11 6972317 Igf2 insulin-like growth factor 2 6.49 12.60 69.1 1.1E-03 6978309 Slc12a3 solute carrier family 12, member 3 5.86 11.36 45.4 5.4E-11 6972405 Cdkn1c cyclin-dependent kinase inhibitor 1C (P57) 6.85 12.13 39.0 5.0E-05 6766046 Plagl1 pleiomorphic adenoma gene-like 1 7.07 12.17 34.3 3.9E-03 7018847 Itm2a integral membrane protein 2A 7.92 12.97 33.1 2.0E-06 6963271 Ppfibp2 protein tyrosine phosphatase, receptor-type, F interacting5.82 protein, binding10.47 protein 2 25.1 2.9E-08 6945113 Cpa5 carboxypeptidase A5 5.75 10.28 23.2 8.4E-04 6819250 1110028A07Rik RIKEN cDNA 1110028A07 gene 5.84 10.31 22.2 1.6E-06 6753268 Myog myogenin 6.55 10.99 21.7 6.5E-06 6954557 Smyd1 SET and MYND domain containing 1 6.28 10.66 20.9 1.9E-04 6885516 1110002H13Rik RIKEN cDNA 1110002H13 gene 6.23 10.56 20.1 4.8E-05 6802727 Dio2 deiodinase, iodothyronine, type II 6.96 11.29 20.1 2.0E-07 6900052 Casq2 calsequestrin 2 6.20 10.44 18.9 7.4E-03 7019970 Dcx doublecortin 5.59 9.82 18.8 1.3E-03 6960454 Myod1 myogenic differentiation 1 5.96 10.18 18.7 9.9E-10 6912565 Cnr1 cannabinoid receptor 1 (brain) 6.09 10.25 17.9 7.7E-10 6972750 --- --- 6.32 10.45 17.5 1.3E-08 6751326 Chrnd cholinergic receptor, nicotinic, delta polypeptide 6.39 10.48 17.1 1.1E-08 6892955 Tnnc2 troponin C2, fast 6.85 10.87 16.3 5.3E-04 6778044 Erbb3 v-erb-b2 erythroblastic leukemia viral oncogene homolog6.10 3 (avian) 10.08 15.8 2.9E-07 6751330 Chrng cholinergic receptor, nicotinic, gamma polypeptide 6.26 10.24 15.7 1.6E-05 6771569 Stac3 SH3 and cysteine rich domain 3 6.64 10.49 14.4 1.3E-03 6789908 Pipox pipecolic acid oxidase 5.91 9.75 14.4 2.9E-11 6972314 H19 H19 fetal liver mRNA 8.53 12.37 14.3 5.2E-06 6795033 Coch coagulation factor C homolog (Limulus polyphemus) 5.46 9.22 13.5 1.0E-02 6867859 Pygm muscle glycogen phosphorylase 7.08 10.78 13.0 3.0E-03 6801807 Kcnh5 potassium voltage-gated channel, subfamily H (eag-related),5.92 member 59.60 12.8 2.0E-08 6964285 Mylpf myosin light chain, phosphorylatable, fast skeletal muscle7.39 10.99 12.1 1.9E-03 6787743 Cyfip2 cytoplasmic FMR1 interacting protein 2 6.81 10.39 11.9 6.0E-10 6843355 Sim2 single-minded homolog 2 (Drosophila) 6.26 9.81 11.7 4.9E-03 6998603 Dock3 dedicator of cyto-kinesis 3 6.27 9.81 11.7 7.9E-07 6990663 Klhl31 kelch-like 31 (Drosophila) 5.89 9.43 11.6 7.9E-03 6913195 Tmod1 tropomodulin 1 5.98 9.47 11.3 1.0E-05 6753397 Tnni1 troponin I, skeletal, slow 1 6.70 10.19 11.2 9.9E-05 6843642 Srl sarcalumenin 6.48 9.96 11.2 2.2E-05 6999522 Cck cholecystokinin 5.76 9.21 11.0 6.3E-03 6959000 Rtn2 reticulon 2 (Z-band associated protein), transcript variant7.47 C 10.91 10.9 2.4E-05 6834108 Cdh6 cadherin 6 6.03 9.47 10.9 1.0E-05 6807214 Fgfr4 fibroblast growth factor receptor 4 6.21 9.63 10.7 1.0E-06 6925654 Serinc2 serine incorporator 2 7.11 10.44 10.1 3.3E-07 7018819 Zcchc5 zinc finger, CCHC domain containing 5 5.48 8.81 10.0 2.7E-03 6800314 Lrrn3 leucine rich repeat protein 3, neuronal 6.73 10.05 10.0 2.4E-08 6776156 Plxnc1 plexin C1 6.80 10.11 9.9 9.0E-08 6757035 Eya1 eyes absent 1 homolog (Drosophila) 5.76 9.03 9.7 4.3E-05 6868845 Dmrt2 doublesex and mab-3 related transcription factor 2 5.89 9.14 9.5 3.7E-03 6759664 Igfbp5 insulin-like growth factor binding protein 5 9.22 12.45 9.4 1.2E-06 6953144 --- --- 6.74 9.90 9.0 1.4E-07 6979655 Cdh15 cadherin 15 6.33 9.47 8.9 5.3E-07 6763295 Ralgps2 Ral GEF with PH domain and SH3 binding motif 2 7.04 10.16 8.7 6.2E-05 6908748 Tmem56 transmembrane protein 56 5.50 8.60 8.6 4.0E-04 6879015 Rapsn receptor-associated protein of the synapse 6.11 9.21 8.6 5.9E-06 6756536 Plxna2 plexin A2 7.21 10.29 8.5 1.7E-05 6766491 Slc2a12 solute carrier family 2 (facilitated glucose transporter), member5.82 12 8.90 8.5 5.9E-04 6771092 Grip1 glutamate receptor interacting protein 1 5.94 9.01 8.4 9.5E-05 6955514 Nup210 nucleoporin 210 6.15 9.22 8.4 3.9E-04 6966198 Spint2 serine protease inhibitor, Kunitz type 2 6.02 9.09 8.4 2.4E-05 6966183 Ryr1 ryanodine receptor 1, skeletal muscle 6.13 9.13 8.0 2.1E-04 6952436 Tsga14 testis specific gene A14 7.26 10.24 7.9 2.3E-06 7012265 Tmem47 transmembrane protein 47 7.27 10.25 7.9 3.5E-05 6848947 Lix1 limb expression 1 homolog (chicken) 5.73 8.69 7.8 3.6E-04 6861173 Megf10 multiple EGF-like-domains 10 6.21 9.15 7.7 3.9E-07 6942503 Emid2 EMI domain containing 2 6.23 9.13 7.5 2.0E-03 6801902 Spnb1 spectrin beta 1 6.03 8.92 7.4 4.5E-04 6967269 Dbx1 developing brain homeobox 1 5.97 8.79 7.0 8.4E-06 6962491 Sytl2 synaptotagmin-like 2 7.01 9.81 7.0 9.7E-06 6760251 4930544G21Rik RIKEN cDNA 4930544G21 gene 5.44 8.25 7.0 2.8E-03 6758027 Tbc1d8 TBC1 domain family, member 8 6.39 9.17 6.8 4.9E-07 6998643 Slc38a3 solute carrier family 38, member 3 5.68 8.44 6.7 2.8E-04 6777956 Nxph4 neurexophilin 4 6.55 9.30 6.7 5.4E-03 6912517 Rragd Ras-related GTP binding D 6.13 8.85 6.6 1.7E-06 6979318 AI427515 expressed sequence AI427515 6.04 8.76 6.6 1.1E-04 6803918 Nudt14 nudix (nucleoside diphosphate linked moiety X)-type motif7.33 14 10.05 6.6 2.9E-05 6789343 Chrnb1 cholinergic receptor, nicotinic, beta polypeptide 1 (muscle)7.78 10.49 6.6 1.3E-05 6945111 Cpa4 carboxypeptidase A4 5.78 8.50 6.6 5.9E-03 6817645 LOC100039227 similar to RIKEN cDNA 1110051B16 gene 5.78 8.47 6.5 1.0E-06 6965264 Tnni2 troponin I, skeletal, fast 2 6.98 9.65 6.3 2.6E-03 7014085 Nrk Nik related kinase 6.64 9.29 6.3 2.5E-06 6798313 Crip2 cysteine rich protein 2 8.07 10.72 6.3 7.6E-06 6882700 Ctnnbl1 catenin, beta like 1 8.29 10.91 6.2 6.2E-07 6992946 Entpd3 ectonucleoside triphosphate diphosphohydrolase 3 5.74 8.31 6.0 4.7E-05 6947985 Hdac11 histone deacetylase 11 6.53 9.07 5.8 4.4E-03 6837090 --- --- 6.05 8.57 5.7 4.5E-05 6786045 Ddc dopa decarboxylase 5.77 8.26 5.6 3.9E-06 6952070 Tspan12 tetraspanin 12 8.02 10.52 5.6 3.7E-03 6948274 Kbtbd8 kelch repeat and BTB (POZ) domain containing 8 6.64 9.14 5.6 1.2E-06 6781492 Kcnj12 potassium inwardly-rectifying channel, subfamily J, member5.63 12 8.10 5.5 3.6E-07 6822485 --- --- 6.32 8.78 5.5 1.7E-06 6958984 Dmpk dystrophia myotonica-protein kinase 7.86 10.30 5.4 2.2E-07 6769448 Rfx4 regulatory factor X, 4 (influences HLA class II expression)5.88 8.32 5.4 3.9E-04 6870622 Adrb1 adrenergic receptor, beta 1 6.17 8.60 5.4 4.6E-03 6917277 Fndc5 fibronectin type III domain containing 5 5.94 8.37 5.4 8.4E-03 6762353 Adora1 adenosine A1 receptor 6.42 8.82 5.3 8.7E-04 6760292 Dner delta/notch-like EGF-related receptor 6.05 8.42 5.2 2.7E-04 6772906 Lama2 laminin, alpha 2 6.62 8.97 5.1 1.1E-05 6750625 Des desmin 7.94 10.28 5.1 2.2E-05 6883186 Eya2 eyes absent 2 homolog (Drosophila) 6.48 8.79 5.0 7.6E-04 6949850 --- --- 7.82 10.12 4.9 5.9E-04 6845943 Boc biregional cell adhesion molecule-related/down-regulated6.90 by oncogenes9.19 (Cdon) binding4.9 protein 3.9E-05 6840841 Popdc2 popeye domain containing 2 5.59 7.87 4.9 2.4E-03 6817978 Tnnc1 troponin C, cardiac/slow skeletal 7.15 9.43 4.9 9.4E-03 6806791 Cap2 CAP, adenylate cyclase-associated protein, 2 (yeast) 6.66 8.95 4.9 6.6E-04 6799054 Mycn v-myc myelocytomatosis viral related oncogene, neuroblastoma6.30 derived8.58 (avian) 4.9 2.4E-03 6825410 Fzd3 frizzled homolog 3 (Drosophila) 7.54 9.82 4.9 4.1E-06 6965233 Brsk2 BR serine/threonine kinase 2 5.65 7.92 4.8 2.7E-03 6852031 Myom1 myomesin 1 6.10 8.38 4.8 2.9E-03 6932409 --- --- 6.29 8.56 4.8 3.4E-04 7012860 Foxo4 forkhead box O4 7.34 9.57 4.7 3.8E-05 6757157 Jph1 junctophilin 1 5.87 8.11 4.7 5.1E-04 6791000 Sgca sarcoglycan, alpha (dystrophin-associated glycoprotein)5.99 8.22 4.7 5.2E-04 6953762 Scrn1 secernin 1 7.71 9.93 4.7 2.5E-05 6960390 --- --- 7.33 9.56 4.7 1.1E-06 6812215 Tubb2b tubulin, beta 2b 7.36 9.58 4.7 2.9E-04 6899254 Kcnn3 potassium intermediate/small conductance calcium-activated6.48 channel, 8.68subfamily N, member4.6 3 7.8E-03 6979675 Cpne7 copine VII 5.98 8.18 4.6 3.4E-04 6819442 Fgf9 fibroblast growth factor 9 6.69 8.88 4.6 5.6E-04 6912371 Epha7 Eph receptor A7 7.20 9.38 4.5 2.7E-05 6949884 Vwf Von Willebrand factor homolog 6.26 8.42 4.5 1.1E-04
Recommended publications
  • The Impact of Endogenous Annexin A1 on Glucocorticoid Control of Infl Ammatory Arthritis
    Basic and translational research Ann Rheum Dis: first published as 10.1136/annrheumdis-2011-201180 on 5 May 2012. Downloaded from EXTENDED REPORT The impact of endogenous annexin A1 on glucocorticoid control of inß ammatory arthritis Hetal B Patel,1 Kristin N Kornerup,1 AndreÕ LF Sampaio,1 Fulvio DÕAcquisto,1 Michael P Seed,1 Ana Paula Girol,2 Mohini Gray,3 Costantino Pitzalis,1 Sonia M Oliani,2 Mauro Perretti1 ▶ Additional (Þ gures and tables) ABSTRACT Annexin A1 (AnxA1) is an effector of resolution.4 are published online only. To view Objectives To establish the role and effect of Highly expressed in immune cells (eg, polymorpho- these Þ les please visit the journal nuclear cells and macrophages), this protein is exter- online (http://ard.bmj.com/ glucocorticoids and the endogenous annexin A1 (AnxA1) content/early/recent). pathway in inß ammatory arthritis. nalised to exert paracrine and juxtacrine effects, the vast majority of which are mediated by the formyl- 1William Harvey Research Methods Ankle joint mRNA and protein expression Institute, Barts and The London of AnxA1 and its receptors were analysed in peptide receptor type 2 (FPR2/ALX ([Lipoxin A4 School of Medicine, London UK naive and arthritic mice by real-time PCR and receptor]) or FPR2, in rodents).5 Intriguingly, FPR2/ 2Department of Biology; 6 immunohistochemistry. Inß ammatory arthritis was ALX is also the lipoxin A4 receptor indicating the Instituto de Bioci•ncias, Letras +/+ existence of important – yet not fully appreci- e Ci•ncias Exatas (IBILCE), S‹o induced with the K/BxN arthritogenic serum in AnxA1 −/− ated – networks in resolution.7 Paulo State University, S‹o JosŽ and AnxA1 mice; in some experiments, animals Another receptor do Rio Preto, Brazil were treated with dexamethasone (Dex) or with human is also advocated to mediate the effects of AnxA1, 3Medical Research Council recombinant AnxA1 or a protease-resistant mutant the formyl-peptide receptor type 1 or FPR1 (FPR1 Centre for Inß ammation, (termed SuperAnxA1).
    [Show full text]
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Alpha Actinin 4: an Intergral Component of Transcriptional
    ALPHA ACTININ 4: AN INTERGRAL COMPONENT OF TRANSCRIPTIONAL PROGRAM REGULATED BY NUCLEAR HORMONE RECEPTORS By SIMRAN KHURANA Submitted in partial fulfillment of the requirements for the degree of doctor of philosophy Thesis Advisor: Dr. Hung-Ying Kao Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY August, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of SIMRAN KHURANA ______________________________________________________ PhD candidate for the ________________________________degree *. Dr. David Samols (signed)_______________________________________________ (chair of the committee) Dr. Hung-Ying Kao ________________________________________________ Dr. Edward Stavnezer ________________________________________________ Dr. Leslie Bruggeman ________________________________________________ Dr. Colleen Croniger ________________________________________________ ________________________________________________ May 2011 (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS LIST OF TABLES vii LIST OF FIGURES viii ACKNOWLEDEMENTS xii LIST OF ABBREVIATIONS xiii ABSTRACT 1 CHAPTER 1: INTRODUCTION Family of Nuclear Receptors 3 Mechanism of transcriptional regulation by co-repressors and co-activators 8 Importance of LXXLL motif of co-activators in NR mediated transcription 12 Cyclic recruitment of co-regulators on the target promoters 15 Actin and actin related proteins (ABPs) in transcription
    [Show full text]
  • Annexin A1 Expression Is Associated with Epithelial–Mesenchymal Transition (EMT), Cell Proliferation, Prognosis, and Drug Response in Pancreatic Cancer
    cells Article Annexin A1 Expression Is Associated with Epithelial–Mesenchymal Transition (EMT), Cell Proliferation, Prognosis, and Drug Response in Pancreatic Cancer Masanori Oshi 1,2 , Yoshihisa Tokumaru 1,3 , Swagoto Mukhopadhyay 1, Li Yan 4, Ryusei Matsuyama 2, Itaru Endo 2 and Kazuaki Takabe 1,2,5,6,7,8,* 1 Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; [email protected] (M.O.); [email protected] (Y.T.); [email protected] (S.M.) 2 Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan; [email protected] (R.M.); [email protected] (I.E.) 3 Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan 4 Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; [email protected] 5 Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan 6 Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo the State University of New York, Buffalo, NY 14263, USA 7 Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan Citation: Oshi, M.; Tokumaru, Y.; 8 Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan Mukhopadhyay, S.; Yan, L.; * Correspondence: [email protected]; Tel.: +1-716-8-455-540; Fax: +1-716-8-451-668 Matsuyama, R.; Endo, I.; Takabe, K. Annexin A1 Expression Is Associated Abstract: Annexin A1 (ANXA1) is a calcium-dependent phospholipid-binding protein overexpressed with Epithelial–Mesenchymal in pancreatic cancer (PC).
    [Show full text]
  • List of Genes Associated with Sudden Cardiac Death (Scdgseta) Gene
    List of genes associated with sudden cardiac death (SCDgseta) mRNA expression in normal human heart Entrez_I Gene symbol Gene name Uniprot ID Uniprot name fromb D GTEx BioGPS SAGE c d e ATP-binding cassette subfamily B ABCB1 P08183 MDR1_HUMAN 5243 √ √ member 1 ATP-binding cassette subfamily C ABCC9 O60706 ABCC9_HUMAN 10060 √ √ member 9 ACE Angiotensin I–converting enzyme P12821 ACE_HUMAN 1636 √ √ ACE2 Angiotensin I–converting enzyme 2 Q9BYF1 ACE2_HUMAN 59272 √ √ Acetylcholinesterase (Cartwright ACHE P22303 ACES_HUMAN 43 √ √ blood group) ACTC1 Actin, alpha, cardiac muscle 1 P68032 ACTC_HUMAN 70 √ √ ACTN2 Actinin alpha 2 P35609 ACTN2_HUMAN 88 √ √ √ ACTN4 Actinin alpha 4 O43707 ACTN4_HUMAN 81 √ √ √ ADRA2B Adrenoceptor alpha 2B P18089 ADA2B_HUMAN 151 √ √ AGT Angiotensinogen P01019 ANGT_HUMAN 183 √ √ √ AGTR1 Angiotensin II receptor type 1 P30556 AGTR1_HUMAN 185 √ √ AGTR2 Angiotensin II receptor type 2 P50052 AGTR2_HUMAN 186 √ √ AKAP9 A-kinase anchoring protein 9 Q99996 AKAP9_HUMAN 10142 √ √ √ ANK2/ANKB/ANKYRI Ankyrin 2 Q01484 ANK2_HUMAN 287 √ √ √ N B ANKRD1 Ankyrin repeat domain 1 Q15327 ANKR1_HUMAN 27063 √ √ √ ANKRD9 Ankyrin repeat domain 9 Q96BM1 ANKR9_HUMAN 122416 √ √ ARHGAP24 Rho GTPase–activating protein 24 Q8N264 RHG24_HUMAN 83478 √ √ ATPase Na+/K+–transporting ATP1B1 P05026 AT1B1_HUMAN 481 √ √ √ subunit beta 1 ATPase sarcoplasmic/endoplasmic ATP2A2 P16615 AT2A2_HUMAN 488 √ √ √ reticulum Ca2+ transporting 2 AZIN1 Antizyme inhibitor 1 O14977 AZIN1_HUMAN 51582 √ √ √ UDP-GlcNAc: betaGal B3GNT7 beta-1,3-N-acetylglucosaminyltransfe Q8NFL0
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Expression Analysis of an in Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets
    Journal of Personalized Medicine Article Protein Expression Analysis of an In Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets Hisham F. Bahmad 1,2,3 , Wenjing Peng 4, Rui Zhu 4, Farah Ballout 1, Alissar Monzer 1, 1,5 6, , 1, , 4, , Mohamad K. Elajami , Firas Kobeissy * y , Wassim Abou-Kheir * y and Yehia Mechref * y 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; [email protected] (H.F.B.); [email protected] (F.B.); [email protected] (A.M.); [email protected] (M.K.E.) 2 Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 3 Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA 4 Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; [email protected] (W.P.); [email protected] (R.Z.) 5 Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 6 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon * Correspondence: [email protected] (F.K.); [email protected] (W.A.-K.); [email protected] (Y.M.); Tel.: +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 4778) (W.A.K.); +1-806-834-8246 (Y.M.); Fax: +1-806-742-1289 (Y.M.); 961-1-744464 (W.A.K.) These authors have contributed equally to this work as joint senior authors.
    [Show full text]
  • Annexin A7 Is Required for ESCRT III-Mediated Plasma Membrane Repair
    Annexin A7 is required for ESCRT III-mediated plasma membrane repair Sønder, Stine Lauritzen; Boye, Theresa Louise; Tölle, Regine; Dengjel, Jörn; Maeda, Kenji; Jäättelä, Marja; Simonsen, Adam Cohen; Jaiswal, Jyoti K.; Nylandsted, Jesper Published in: Scientific Reports DOI: 10.1038/s41598-019-43143-4 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Sønder, S. L., Boye, T. L., Tölle, R., Dengjel, J., Maeda, K., Jäättelä, M., ... Nylandsted, J. (2019). Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Scientific Reports, 9(1), [6726]. https://doi.org/10.1038/s41598-019-43143-4 Download date: 09. apr.. 2020 www.nature.com/scientificreports OPEN Annexin A7 is required for ESCRT III-mediated plasma membrane repair Received: 16 November 2018 Stine Lauritzen Sønder1, Theresa Louise Boye1, Regine Tölle2,3, Jörn Dengjel 2,3, Accepted: 15 April 2019 Kenji Maeda1, Marja Jäättelä 1,4, Adam Cohen Simonsen 5, Jyoti K. Jaiswal 6,7 & Published: xx xx xxxx Jesper Nylandsted 1,4 The plasma membrane of eukaryotic cells forms the essential barrier to the extracellular environment, and thus plasma membrane disruptions pose a fatal threat to cells. Here, using invasive breast cancer cells we show that the Ca2+ - and phospholipid-binding protein annexin A7 is part of the plasma membrane repair response by enabling assembly of the endosomal sorting complex required for transport (ESCRT) III. Following injury to the plasma membrane and Ca2+ fux into the cytoplasm, annexin A7 forms a complex with apoptosis linked gene-2 (ALG-2) to facilitate proper recruitment and binding of ALG-2 and ALG-2-interacting protein X (ALIX) to the damaged membrane.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Triplet Repeat Length Bias and Variation in the Human Transcriptome
    Triplet repeat length bias and variation in the human transcriptome Michael Mollaa,1,2, Arthur Delcherb,1, Shamil Sunyaevc, Charles Cantora,d,2, and Simon Kasifa,e aDepartment of Biomedical Engineering and dCenter for Advanced Biotechnology, Boston University, Boston, MA 02215; bCenter for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742; cDepartment of Medicine, Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; and eCenter for Advanced Genomic Technology, Boston University, Boston, MA 02215 Contributed by Charles Cantor, July 6, 2009 (sent for review May 4, 2009) Length variation in short tandem repeats (STRs) is an important family including Huntington’s disease (10) and hereditary ataxias (11, 12). of DNA polymorphisms with numerous applications in genetics, All Huntington’s patients exhibit an expanded number of copies in medicine, forensics, and evolutionary analysis. Several major diseases the CAG tandem repeat subsequence in the N terminus of the have been associated with length variation of trinucleotide (triplet) huntingtin gene. Moreover, an increase in the repeat length is repeats including Huntington’s disease, hereditary ataxias and spi- anti-correlated to the onset age of the disease (13). Multiple other nobulbar muscular atrophy. Using the reference human genome, we diseases have also been associated with copy number variation of have catalogued all triplet repeats in genic regions. This data revealed tandem repeats (8, 14). Researchers have hypothesized that inap- a bias in noncoding DNA repeat lengths. It also enabled a survey of propriate repeat variation in coding regions could result in toxicity, repeat-length polymorphisms (RLPs) in human genomes and a com- incorrect folding, or aggregation of a protein.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]