Apoptosis of Leukemia Cells Induced by Valine-Deficient Medium

Total Page:16

File Type:pdf, Size:1020Kb

Apoptosis of Leukemia Cells Induced by Valine-Deficient Medium Leukemia (1998) 12, 1651–1656 1998 Stockton Press All rights reserved 0887-6924/98 $12.00 http://www.stockton-press.co.uk/leu CORRESPONDENCE Apoptosis of leukemia cells induced by valine-deficient medium TO THE EDITOR pase-3 activity of L1210 cells treated with valine, isoleucine and asparagine is shown by curves a, b and c, respectively. l-Asparaginase from Escherichia coli, which catalyzes the From the results obtained above, it can be concluded that hydrolysis of l-asparagine to l-asparatic acid and ammonia, DNA fragmentation of L5178Y or L1210 cells is closely asso- has been used as an effective therapeutic agent for the treat- ciated with the enhancement of caspase-3 activity. In human ment of acute lymphoblastic leukemia and lymphosarcoma.1,2 leukemia cells (THP-1 and U937 cells), apoptosis was effec- However, only limited types of leukemia cells are sensitive to tively induced by valine-deficient medium in comparison with l-asparaginase treatment. Murine leukemia cells treated with other amino acid deficiency (isoleucine or asparagine). l-asparaginase undergo apoptosis,3 which is closely associa- Experiments are now in progress not only to clarify the ted with the cell cycle arrest in G1 phase.4 Apoptosis of leuke- mechanism of apoptosis induced by valine-deficient medium mia cells is also induced by lacking l-asparagine from the cul- but also to apply to the therapy of human leukemia using ture medium.4 Apoptosis is closely associated with the valine-degrading enzyme. activation of caspases, mitochondrial permeability transition, cell volume loss, chromatin condensation and nucleosomal DNA fragmentation.5–8 The present study deals with the frag- Acknowledgements mentation of chromosomal DNA and activation of caspase-3 (CPP32, Yama or apopain) in murine and human leukemia We thank Dr T Shirai (Juntendo University, Tokyo, Japan) and cells treated with amino acid-deficient medium. Dr J Takagi (Tokyo Institute of Technology, Tokyo, Japan) for First, we examined the fragmentation of chromosomal DNA providing murine leukemia cells (L1210) and human leukemia in murine leukemia cells (L5178Y and L1210) induced by cells (U937 and THP-1), respectively. treatment with one amino acid-deficient medium out of total 20 amino acids in the RPMI 1640 medium containing 10% K Ohtawa11Toin Human Science dialyzed fetal bovine serum, penicillin (50 U/ml) and strepto- T Ueno1 and Technology Center, mycin (50 ␮g/ml) for 24 h. Among them, valine- and iso- K Mitsui1,2 Department of Materials Science leucine-deficient media induced the fragmentation of chromo- Y Kodera1 and Technology, somal DNA within 24 h incubation. Then, DNA fragmentation M Hiroto1 Toin University of Yokohama, and caspase-3 activity of murine leukemia cells (L5178Y and A Matsushima1 Yokohama, Japan; and L1210) treated with one of the amino acid-deficient media (l- H Nishimura1,2 2CREST, Japan Science and valine, l-isoleucine and l-asparagine) was tested (Figure 1). Y Inada1 Technology Corporation (JST) The treatment of L5178Y or L1210 cells with valine-deficient Saitama, Japan medium for 8, 12, 16, 20 and 24 h causes the fragmentation of chromosomal DNA into the size equivalent to single and multiple nucleosomes (Figure 1a). A similar phenomenon is References also observed for L5178Y and L1210 cells treated with iso- leucine-deficient medium for 12, 16, 20 and 24 h incubation. 1 Kamisaki Y, Wada H, Yagura T, Nishimura H, Matsushima A, l DNA fragmentation was also observed in L5178Y cells treated Inada Y. Increased antitumor activity of Escherichia coli -asparag- inase by modification with monomethoxypolyethylene glycol. with asparagine-deficient medium for 20 and 24 h incubation Gann 1982; 73: 470–474. but was not observed in L1210 cells within 24 h incubation 2 Ertel IJ, Nesbit ME, Hammond D, Weiner J, Sather H. Effective (data not shown). dose of l-asparaginase for induction of remission in previously Figure 1b shows the caspase-3 activity of L5178Y and treated children with acute lymphocytic leukemia: a report from a L1210 cells treated with one amino acid-deficient medium children’s cancer study group. Cancer Res 1979; 39: 3893–3896. l (valine, isoleucine or asparagine) during the course of incu- 3 Story MD, Voehringer DW, Stephens LC, Meyn RE. -asparaginase kills lymphoma cells by apoptosis. Cancer Chemother Pharmacol bation (0–24 h). In the case of L5178Y cells, the caspase-3 1993; 32: 129–133. activity of valine-deficient medium increases with incubation 4 Ueno T, Ohtawa K, Mitsui K, Kodera Y, Hiroto M, Matsushima A, time and becomes maximal for 12 h followed by decreasing Inada Y, Nishimura H. Cell cycle arrest and apoptosis of leukemia activity (curve a). In the treatment with isoleucine-deficient cells induced by l-asparaginase. Leukemia 1997; 11: 1858–1861. medium, the activity appears at more than 12 h incubation 5 Arends MJ, Morris RG, Wyllie AH. Apoptosis: the role of the and increases linearly with time (curve b). In asparagine- endonuclease. Am J Pathol 1990; 136: 593–608. 6 Matthew GVH, Navdeep SC, Edward KW, Paul TS, Craig BT. Bcl- deficient medium, the caspase-3 activity was little observed xL regulates the membrane potential and volume homeostasis of (curve c). A similar result was obtained for L1210 cells as mitochondria. Cell 1997; 91: 627–637. shown by the lower column of Figure 1b in which the cas- 7 Sellins KS, Cohen JJ. Gene induction by ␥-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 1987; 139: 3199–3206. 8 Enari M, Talanian RV, Wong WW, Nagata S. Sequential activation Correspondence: Y Inada, Toin Human Science and Technology of ICE-like and CPP32-like proteases during Fas-mediated Center, Department of Materials Science and Technology, Toin Uni- apoptosis. Nature 1996; 380: 723–726. versity of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225- 8502, Japan; Fax: 81 45 972 5972 Received 26 March 1998; accepted 10 June 1998 Correspondence 1652 Figure 1 DNA fragmentation and caspase-3 activity of L5178Y or L1210 cells induced by treatment with one amino acid-deficient medium (valine, isoleucine or asparagine). (a) DNA fragmentation of L5178Y cells or L1210 cells treated with valine- or isoleucine-deficient medium for 0, 4, 8, 12, 16, 20 and 24 h. (b) Caspase-3 activity of L5178Y cells or L1210 cells treated with one amino acid-deficient medium for various times. Curves a, b and c: valine-, isoleucine- and asparagine-deficiency, respectively. The fragmentation of chromosomal DNA was analyzed by the method of Sellins et al.7 The protease activity of caspase-3 was determined by the method of Enari et al.8.
Recommended publications
  • Effect of Peptide Histidine Isoleucine on Water and Electrolyte Transport in the Human Jejunum
    Gut: first published as 10.1136/gut.25.6.624 on 1 June 1984. Downloaded from Gut, 1984, 25, 624-628 Alimentary tract and pancreas Effect of peptide histidine isoleucine on water and electrolyte transport in the human jejunum K J MORIARTY, J E HEGARTY, K TATEMOTO, V MUTT, N D CHRISTOFIDES, S R BLOOM, AND J R WOOD From the Department of Gastroenterology, St Bartholomew's Hospital, London, The Liver Unit, King's College Hospital, London, Department ofMedicine, Hammersmith Hospital, London, and Department of Biochemistry, Karolinska Institute, Stockholm, Sweden SUMMARY Peptide histidine isoleucine, a 27 amino acid peptide with close amino acid sequence homology to vasoactive intestinal peptide and secretin, is distributed throughout the mammalian intestinal tract, where it has been localised to intramural neurones. An intestinal perfusion technique has been used to study the effect of intravenous peptide histidine isoleucine (44.5 pmol/kg/min) on water and electrolyte transport from a plasma like electrolyte solution in human jejunum in vivo. Peptide histidine isoleucine infusion produced peak plasma peptide histidine isoleucine concentrations in the range 2000-3000 pmolIl, flushing, tachycardia and a reduction in diastolic blood pressure. Peptide histidine isoleucine caused a significant inhibition of net absorption of water, sodium, potassium and bicarbonate and induced a net secretion of chloride, these changes being completely reversed during the post-peptide histidine isoleucine period. These findings suggest that endogenous peptide histidine isoleucine may participate in the neurohumoral regulation of water and electrolyte transport in the human jejunum. http://gut.bmj.com/ Peptide histidine isoleucine, isolated originally from INTESTINAL PERFUSION mammalian small intestine, is a 27-amino acid After an eight hour fast, each subject swallowed a peptide having close amino acid sequence homology double lumen intestinal perfusion tube, incorpo- to vasoactive intestinal peptide and secretin.
    [Show full text]
  • Workshop 1 – Biochemistry (Chem 160)
    Workshop 1 – Biochemistry (Chem 160) 1. Draw the following peptide at pH = 7 and make sure to include the overall charge, label the N- and C-terminus, the peptide bond and the -carbon. AVDKY Give the overall charge of the peptide at pH = 3 and 12. 2. Draw a titration curve for Arg, make sure to label the different points. Determine the pI for Arg. 3. Nonpolar solute + water = solution a. What is the S of the universe, system and surroundings? The S of the universe would decrease this is why it is not spontaneous, the S of the system would increase but to a lesser extent to which the S of the surrounding would decrease S universe = S system + S surroundings 4. What is the hydrophobic effect and explain why it is thermodynamically favorable. The hydrophobic effect is when hydrophobic molecules tend to clump together burying them and placing hydrophilic molecules on the outside. The reason this is thermodynamically favorable is because it frees caged water molecules when burying clumping the hydrophobic molecules together. 5. Urea dissolves very readily in water, but the solution becomes very cold as the urea dissolves. How is this possible? Urea dissolves in water because when dissolving there is a net increase in entropy of the universe. The heat exchange, getting colder only reflects the enthalpy (H) component of the total energy change. The entropy change is high enough to offset the enthalpy component and to add up to an overall -G 6. A mutation that changes an alanine residue in the interior of a protein to valine is found to lead to a loss of activity.
    [Show full text]
  • Amino Acid Recognition by Aminoacyl-Trna Synthetases
    www.nature.com/scientificreports OPEN The structural basis of the genetic code: amino acid recognition by aminoacyl‑tRNA synthetases Florian Kaiser1,2,4*, Sarah Krautwurst3,4, Sebastian Salentin1, V. Joachim Haupt1,2, Christoph Leberecht3, Sebastian Bittrich3, Dirk Labudde3 & Michael Schroeder1 Storage and directed transfer of information is the key requirement for the development of life. Yet any information stored on our genes is useless without its correct interpretation. The genetic code defnes the rule set to decode this information. Aminoacyl-tRNA synthetases are at the heart of this process. We extensively characterize how these enzymes distinguish all natural amino acids based on the computational analysis of crystallographic structure data. The results of this meta-analysis show that the correct read-out of genetic information is a delicate interplay between the composition of the binding site, non-covalent interactions, error correction mechanisms, and steric efects. One of the most profound open questions in biology is how the genetic code was established. While proteins are encoded by nucleic acid blueprints, decoding this information in turn requires proteins. Te emergence of this self-referencing system poses a chicken-or-egg dilemma and its origin is still heavily debated 1,2. Aminoacyl-tRNA synthetases (aaRSs) implement the correct assignment of amino acids to their codons and are thus inherently connected to the emergence of genetic coding. Tese enzymes link tRNA molecules with their amino acid cargo and are consequently vital for protein biosynthesis. Beside the correct recognition of tRNA features3, highly specifc non-covalent interactions in the binding sites of aaRSs are required to correctly detect the designated amino acid4–7 and to prevent errors in biosynthesis5,8.
    [Show full text]
  • Amino Acid Chemistry
    Handout 4 Amino Acid and Protein Chemistry ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Amino Acid Chemistry I. Chemistry of amino acids A. General amino acid structure + HN3- 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon. 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group). 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH. II. Essential and nonessential amino acids A. Nonessential amino acids: can make the carbon skeleton 1. From glycolysis. 2. From the TCA cycle. B. Nonessential if it can be made from an essential amino acid. 1. Amino acid "sparing". 2. May still be essential under some conditions. C. Essential amino acids 1. Branched chain amino acids (isoleucine, leucine and valine) 2. Lysine 3. Methionine 4. Phenyalanine 5. Threonine 6. Tryptophan 1 Handout 4 Amino Acid and Protein Chemistry D. Essential during rapid growth or for optimal health 1. Arginine 2. Histidine E. Nonessential amino acids 1. Alanine (from pyruvate) 2. Aspartate, asparagine (from oxaloacetate) 3. Cysteine (from serine and methionine) 4. Glutamate, glutamine (from α-ketoglutarate) 5. Glycine (from serine) 6. Proline (from glutamate) 7. Serine (from 3-phosphoglycerate) 8. Tyrosine (from phenylalanine) E. Nonessential and not required for protein synthesis 1. Hydroxyproline (made postranslationally from proline) 2. Hydroxylysine (made postranslationally from lysine) III. Acidic, basic, polar, and hydrophobic amino acids A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution 1.
    [Show full text]
  • Amino Acids Amino Acids
    Amino Acids Amino Acids What Are Amino Acids? Essential Amino Acids Non Essential Amino Acids Amino acids are the building blocks of proteins; proteins are made of amino acids. Isoleucine Arginine (conditional) When you ingest a protein your body breaks it down into the individual aminos, Leucine Glutamine (conditional) reorders them, re-folds them, and turns them into whatever is needed by the body at Lysine Tyrosine (conditional) that time. From only 20 amino acids, the body is able to make thousands of unique proteins with different functions. Methionine Cysteine (conditional) Phenylalanine Glycine (conditional) Threonine Proline (conditional) Did You Know? Tryptophan Serine (conditional) Valine Ornithine (conditional) There are 20 different types of amino acids that can be combined to make a protein. Each protein consists of 50 to 2,000 amino acids that are connected together in a specific Histidine* Alanine sequence. The sequence of the amino acids determines each protein’s unique structure Asparagine and its specific function in the body. Asparate Popular Amino Acid Supplements How Do They Benefit Our Health? Acetyl L- Carnitine: As part of its role in supporting L-Lysine: L-Lysine, an essential amino acid, is mental function, Acetyl L-Carnitine may help needed to support proper growth and bone Proteins (amino acids) are needed by your body to maintain muscles, bones, blood, as support memory, attention span and mental development. It can also support immune function. well as create enzymes, neurotransmitters and antibodies, as well as transport and performance. store molecules. N-Acetyl Cysteine: N-Acetyl Cysteine (NAC) is a L-Arginine: L-Arginine is a nonessential amino acid form of the amino acid cysteine.
    [Show full text]
  • Solutions to 7.012 Problem Set 1
    MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 1 Question 1 Bob, a student taking 7.012, looks at a long-standing puddle outside his dorm window. Curious as to what was growing in the cloudy water, he takes a sample to his TA, Brad Student. He wanted to know whether the organisms in the sample were prokaryotic or eukaryotic. a) Give an example of a prokaryotic and a eukaryotic organism. Prokaryotic: Eukaryotic: All bacteria Yeast, fungi, any animial or plant b) Using a light microscope, how could he tell the difference between a prokaryotic organism and a eukaryotic one? The resolution of the light microscope would allow you to see if the cell had a true nucleus or organelles. A cell with a true nucleus and organelles would be eukaryotic. You could also determine size, but that may not be sufficient to establish whether a cell is prokaryotic or eukaryotic. c) What additional differences exist between prokaryotic and eukaryotic organisms? Any answer from above also fine here. In addition, prokaryotic and eukaryotic organisms differ at the DNA level. Eukaryotes have more complex genomes than prokaryotes do. Question 2 A new startup company hires you to help with their product development. Your task is to find a protein that interacts with a polysaccharide. a) You find a large protein that has a single binding site for the polysaccharide cellulose. Which amino acids might you expect to find in the binding pocket of the protein? What is the strongest type of interaction possible between these amino acids and the cellulose? Cellulose is a polymer of glucose and as such has many free hydroxyl groups.
    [Show full text]
  • Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L
    VOL. 48, 1962 BIOCHEMISTRY: E. L. SAIITH 677 18 Britten, R. J., and R. B. Roberts, Science, 131, 32 (1960). '9 Crestfield, A. M., K. C. Smith, and F. WV. Allen, J. Biol. Chem., 216, 185 (1955). 20 Gamow, G., Nature, 173, 318 (1954). 21 Brenner, S., these PROCEEDINGS, 43, 687 (1957). 22 Nirenberg, M. WV., J. H. Matthaei, and 0. WV. Jones, unpublished data. 23 Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature, 192, 1227 (1961). 24 Levene, P. A., and R. S. Tipson, J. Biol. Ch-nn., 111, 313 (1935). 25 Gierer, A., and K. W. Mundry, Nature, 182, 1437 (1958). 2' Tsugita, A., and H. Fraenkel-Conrat, J. Mllot. Biol., in press. 27 Tsugita, A., and H. Fraenkel-Conrat, personal communication. 28 Wittmann, H. G., Naturwissenschaften, 48, 729 (1961). 29 Freese, E., in Structure and Function of Genetic Elements, Brookhaven Symposia in Biology, no. 12 (1959), p. 63. NUCLEOTIDE BASE CODING AND AM1INO ACID REPLACEMIENTS IN PROTEINS* BY EMIL L. SMITHt LABORATORY FOR STUDY OF HEREDITARY AND METABOLIC DISORDERS AND THE DEPARTMENTS OF BIOLOGICAL CHEMISTRY AND MEDICINE, UNIVERSITY OF UTAH COLLEGE OF MEDICINE Communicated by Severo Ochoa, February 14, 1962 The problem of which bases of messenger or template RNA' specify the coding of amino acids in proteins has been largely elucidated by the use of synthetic polyri- bonucleotides.2-7 For these triplet nucleotide compositions (Table 1), it is of in- terest to examine some of the presently known cases of amino acid substitutions in polypeptides or proteins of known structure.
    [Show full text]
  • Valine and Isoleucine: the Next Limiting Amino Acids in Broiler Diets Vol
    Valine and Isoleucine: The next limiting amino acids in broiler diets Vol. 46 (1), April 2011, Page 59 Valine and Isoleucine: The next limiting amino acids in broiler diets Etienne Corrent (Ajinomoto Eurolysine S.A.S.) and Dr. Jörg Bartelt (Lohmann Animal Health GmbH & Co. KG) Drastic genetic changes have occurred in many commercial broiler lines during the last years with regard to performance. This genetic improvement needs a corresponding adjustment of our knowledge about amino acid nutrition in broilers. Additionally, today broiler feed formulators are not only focused on minimising the costs. They also have to take into consideration environmental issues and the impact of feed on broiler health. Reducing excess dietary crude protein (CP) is an important way of addressing these issues. The least cost formulation of the diet according to the ideal protein concept is the best way to supply an economic and a balanced amino acids feed for broiler, which can help to reduce the nitrogen excretion during the rearing period. What are the next limiting amino acids in broiler diets? To reduce dietary crude protein levels in broiler feed, it is necessary to know which indispensable amino acids become limiting in diets and what the requirement of broilers is. The usage of feed use amino acids (methionine sources, L-Lysine sources, L-Threonine) in broiler feed is well established. Depending on the requirement assumed for each amino acid, Valine, Isoleucine, Tryptophan and Arginine are generally considered as the next limiting amino acids in broiler feed. Indeed, the amino acid composition of protein differs between feedstuffs and can impact the order in which amino acids become limiting in diets.
    [Show full text]
  • An Integrated Meta-Analysis of Peripheral Blood Metabolites and Biological Functions in Major Depressive Disorder
    Molecular Psychiatry https://doi.org/10.1038/s41380-020-0645-4 ARTICLE An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder 1,2,3 1,2,3 1,2,3 1,3 1,3 4,5 1,3 1,3 Juncai Pu ● Yiyun Liu ● Hanping Zhang ● Lu Tian ● Siwen Gui ● Yue Yu ● Xiang Chen ● Yue Chen ● 1,2,3 1,3 1,3 1,3 1,3 1,2,3 Lining Yang ● Yanqin Ran ● Xiaogang Zhong ● Shaohua Xu ● Xuemian Song ● Lanxiang Liu ● 1,2,3 1,3 1,2,3 Peng Zheng ● Haiyang Wang ● Peng Xie Received: 3 June 2019 / Revised: 24 December 2019 / Accepted: 10 January 2020 © The Author(s) 2020. This article is published with open access Abstract Major depressive disorder (MDD) is a serious mental illness, characterized by high morbidity, which has increased in recent decades. However, the molecular mechanisms underlying MDD remain unclear. Previous studies have identified altered metabolic profiles in peripheral tissues associated with MDD. Using curated metabolic characterization data from a large sample of MDD patients, we meta-analyzed the results of metabolites in peripheral blood. Pathway and network analyses were then performed to elucidate the biological themes within these altered metabolites. We identified 23 differentially 1234567890();,: 1234567890();,: expressed metabolites between MDD patients and controls from 46 studies. MDD patients were characterized by higher levels of asymmetric dimethylarginine, tyramine, 2-hydroxybutyric acid, phosphatidylcholine (32:1), and taurochenode- soxycholic acid and lower levels of L-acetylcarnitine, creatinine, L-asparagine, L-glutamine, linoleic acid, pyruvic acid, palmitoleic acid, L-serine, oleic acid, myo-inositol, dodecanoic acid, L-methionine, hypoxanthine, palmitic acid, L-tryptophan, kynurenic acid, taurine, and 25-hydroxyvitamin D compared with controls.
    [Show full text]
  • Inhibition of Glycine Oxidation in Cultured Fibroblasts by Isoleucine
    Pediat. Res. 7: 945-947 (1973) Glycine isoleucine hyperglycemia Inhibition of Glycine Oxidation in Cultured Fibroblasts by Isoleucine RICHARD E. HILLMAN, [1S1 LUCILLE H. SOWERS, AND JACK L. COHEN Division of Medical Genetics, Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri USA Extract Cultured fibroblasts were shown to oxidize glycine to CO2- Isoleucine (10 HIM) in- hibited glycine oxidation to CO2 by about 60% in a concentration range of from 0.025 to 10 mM glycine in fibroblasts grown from a patient with ^-ketothiolase defi- cienty. Glycine oxidation by control cell lines was not inhibited by isoleucine. These studies demonstrate an interrelation between isoleucine catabolism and glycine oxida- tion in fibroblasts cultured from a patient with the ketotic hyperglycinemia syndrome. Speculation Hyperglycinemia and hyperglycinuria seen in the "ketotic hyperglycinemia" syn- drome would appear to be secondary to accumulation of products of isoleucine catabolism. Thus, the varying levels of glycine reported in the serum and urine of these patients probably reflect differences in protein and isoleucine intake than rather primary blocks in glycine metabolism. Introduction deficiency [6], methylmalonyl-CoA mutase deficiency [8], and /?-ketothiolase deficiency [3]. a-Methyl-/3-hy- Since its original description by Childs et at. [2], the droxybutyrate was found in the patient with /?-keto- "ketotic hyperglycinemia" syndrome has been shown thiolase deficiency [3]. to be associated with three different defects in the pathway from isoleucine to succinyl-CoA. The sister of There has never been a satisfactory explanation of Childs' original patient was demonstrated to have pro- the elevated levels of glycine in serum and urine of pionyl-CoA carboxylase deficiency [4], other cases have patients with these disorders of isoleucine metabolism.
    [Show full text]
  • Amino Acid Requirements of the Free-Living Nematode Caenorhabditis Briggsae
    AMINO ACID REQUIREMENTS OF THE FREE-LIVING NEMATODE CAENORHABDITIS BRIGGSAE BY J. R. VANFLETEREN Instituut voor Dierkunde, Laboratoria voor Morfologie en Systematiek, RijksuniversiteitGent, Belgium Washed yeast ribosomes promote growth and reproduction of C. briggsae, even when supple- mented to the basal medium at dosages too low to provide the organisms with sufficient amounts of essential amino acids. Hence, a re-investigation of the amino acid requirements of C. briggsae by single and multiple omission of amino acids from the basal medium revealed unambiguously that arginine, histidine, lysine, tryptophan, phenylalanine, methionine, threonine, leucine, isoleucine and valine are not synthetized at levels to permit reproduction; they are called essential amino acids. The requirement for arginine and isoleucinehowever appears to be less clear-cut. On the contrary, evidence is presented that alanine, asparagine, cysteine, glutamate, glutamine, glycine, proline, serine and tryosine can be synthetized at adequate levels; they are called non- essential amino acids. In addition it was shown that multiple omission of the non-essential amino acids is not deleterious. This is believed to be an important step towards the development of a minimum essential medium (MEM) for growth and reproduction of C. briggsae. Sustained growth of the free-living nematode Caenorhabditis brigg.rae can be obtained on a chemically defined medium, supplemented with adequate levels of a proteinaceous growth factor. The most satisfactory, chemically defined medium hitherto reported (Buecher, Hansen & Yarwood, 1966), has been called C. brigg.iae Maintenance Medium (CbMM) and is now commercially available. CbMM is an extremely rich medium, being composed of 53 components, all present at high concentrations.
    [Show full text]
  • The Cardioprotective Effects of the New Crystal Form of Puerarin in Isoproterenol-Induced Myocardial Ischemia Rats Based on Meta
    www.nature.com/scientificreports OPEN The cardioprotective efects of the new crystal form of puerarin in isoproterenol‑induced myocardial ischemia rats based on metabolomics Yuzhi Zhou1,2,3, Mengru Li3, Jia Song3, Yongqiang Shi2, Xuemei Qin3, Zhaolin Gao2, Yang Lv1 & Guanhua Du1* Puerarin has shown unique pharmacological efects on myocardial ischemia (MI). Changing the crystal form is an efective approach to improve the cardioprotective efects of puerarin. However, the mechanisms of the new crystal form of puerarin are unclear. In this study, an electrocardiogram, echocardiography, cardiac marker enzymatic activity, oxidative stress indices, and myocardial histology analysis of cardiac tissues were performed to evaluate the cardioprotective efects of the new crystal form of puerarin. Moreover, serum and cardiac tissue metabolomics based on nuclear magnetic resonance (NMR) were used to investigate the potential mechanism of the new crystal form. The results indicated that the new crystal form of puerarin (30 mg/kg) could improve oxidative stress indices, and these improvements were similar to those of the original crystal form of puerarin (120 mg/ kg). The new crystal form of puerarin (30 mg/kg) could efectively improve the activities of cardiac marker enzymes, and the improvement efects were better than those of the original crystal form (120 mg/kg). Moreover, metabolomics analysis showed that amino acid metabolism, oxidative stress and energy metabolism were disturbed after MI and could be improved by puerarin. These results demonstrated
    [Show full text]