Analysis of Amino Acids by HPLC
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydroxylation of the Eukaryotic Ribosomal Decoding Center Affects Translational Accuracy
Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy Christoph Loenarza,1, Rok Sekirnika,2, Armin Thalhammera,2, Wei Gea, Ekaterina Spivakovskya, Mukram M. Mackeena,b,3, Michael A. McDonougha, Matthew E. Cockmanc, Benedikt M. Kesslerb, Peter J. Ratcliffec, Alexander Wolfa,4, and Christopher J. Schofielda,1 aChemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom; bTarget Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom; and cCentre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom Edited by William G. Kaelin, Jr., Harvard Medical School, Boston, MA, and approved January 24, 2014 (received for review July 31, 2013) The mechanisms by which gene expression is regulated by oxygen Enzyme-catalyzed hydroxylation of intracellularly localized are of considerable interest from basic science and therapeutic proteins was once thought to be rare, but accumulating recent perspectives. Using mass spectrometric analyses of Saccharomyces evidence suggests it is widespread (11). Motivated by these cerevisiae ribosomes, we found that the amino acid residue in findings, we investigated whether the translation of mRNA to closest proximity to the decoding center, Pro-64 of the 40S subunit protein is affected by oxygen-dependent modifications. A rapidly ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes growing eukaryotic cell devotes most of its resources to the tran- posttranslational hydroxylation. We identify RPS23 hydroxylases scription, splicing, and transport of ribosomal proteins and rRNA as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglu- (12). We therefore reasoned that ribosomal modification is a tarate dependent oxygenases; their catalytic domain is closely re- candidate mechanism for the regulation of protein expression. -
Significance of Urinary Hydroxyproline in Man
SIGNIFICANCE OF URINARY HYDROXYPROLINE IN MAN Darwin J. Prockop, Albert Sjoerdsma J Clin Invest. 1961;40(5):843-849. https://doi.org/10.1172/JCI104318. Find the latest version: https://jci.me/104318/pdf SIGNIFICANCE OF URINARY HYDROXYPROLINE IN MAN By DARWIN J. PROCKOP AND ALBERT SJOERDSMA (From the Section of Experimental Therapeutics, National Heart Institute, Bethesda, Md.) (Submitted for publication September 27, 1960; accepted January 12, 1961) Since nearly all of the hydroxyproline of the of Marfan's syndrome (2) reflect a rapid rate of body is found in collagen, it has been suggested collagen degradation. (1, 2) that the urinary excretion of this imino An incidental discovery in the study was that acid may be an important index of collagen me- the increase in urinary hydroxyproline after in- tabolism. The origin of urinary hydroxyproline, gestion of gelatin represents an increased excre- however, is not definitely established. The iso- tion of hydroxyproline peptides. This appears to topic studies of Stetten (3) in rats indirectly sug- be the first demonstration that significant amounts gested that most of the free and peptide hydroxy- of peptides can be excreted following ingestion of proline in the body arises from the breakdown of a protein. collagen, since she found that hydroxyproline-N'5 was not significantly incorporated into collagen. MATERIALS AND METHODS Ziff, Kibrick, Dresner and Gribetz (1), on the The 8 subjects utilized in the study were hospitalized other hand, observed an increased excretion of for periods of 3 to 12 weeks; 3 were patients with Mar- hydroxyproline when it was added to the diet of fan's syndrome, 2 of whom were previously shown to have elevated excretions of hydroxyproline (2). -
Monitoring Flavor Quality, Composition and Ripening Changes of Cheddar Cheese Using Fourier-Transform Infrared Spectroscopy
MONITORING FLAVOR QUALITY, COMPOSITION AND RIPENING CHANGES OF CHEDDAR CHEESE USING FOURIER-TRANSFORM INFRARED SPECTROSCOPY DISSERTATION Presented in Partial Fulfillment of the Requirements for Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Anand S. Subramanian, M.S. ***** The Ohio State University 2009 Dissertation Committee: Approved by Dr. Luis E. Rodriguez-Saona, Advisor Dr. W. James Harper _______________________ Dr. V.M Balasubramaniam Advisor Dr. David B. Min Food Science and Nutrition Graduate Program Copyright by Anand Swaminathan Subramanian 2009 ABSTRACT Cheese flavor develops during the ripening process, when complex changes take place, leading to the formation of flavor compounds, including amino acids and organic acids. However, cheese ripening is not completely understood, making it difficult to produce cheese of uniform flavor quality. Currently, cheese characteristics are determined using sensory panels and chromatography, which are expensive, time- consuming, and laborious. The objective was to develop a rapid and cost-effective technique based on Fourier-transform infrared spectroscopy (FTIR) for simultaneous analysis of cheese composition and flavor quality and identify some of the biochemical changes occurring during ripening. Cheddar cheese samples were obtained from a cheese manufacturer, along with their composition, age and flavor quality data. The samples were powdered using liquid nitrogen and water-soluble compounds were extracted using water, chloroform and ethanol. The extracts were analyzed by reverse phase HPLC for 3 organic acids, GC-FID for 20 amino acids, and FTIR to collect the mid-infrared spectra (4000-700 cm-1). The collected spectra were correlated with flavor quality and composition data to develop classification models based on soft independent modeling of class analogy (SIMCA) and regression models based on partial least squares (PLS). -
(12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox Et Al
US 20070254315A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox et al. (43) Pub. Date: Nov. 1, 2007 (54) SCREENING FOR NEUROTOXIC AMINO (60) Provisional application No. 60/494.686, filed on Aug. ACID ASSOCATED WITH NEUROLOGICAL 12, 2003. DSORDERS Publication Classification (75) Inventors: Paul A. Cox, Provo, UT (US); Sandra A. Banack, Fullerton, CA (US); Susan (51) Int. Cl. J. Murch, Cambridge (CA) GOIN 33/566 (2006.01) GOIN 33/567 (2006.01) Correspondence Address: (52) U.S. Cl. ............................................................ 435/721 PILLSBURY WINTHROP SHAW PITTMAN LLP (57) ABSTRACT ATTENTION: DOCKETING DEPARTMENT Methods for screening for neurological disorders are dis P.O BOX 105OO closed. Specifically, methods are disclosed for screening for McLean, VA 22102 (US) neurological disorders in a Subject by analyzing a tissue sample obtained from the subject for the presence of (73) Assignee: THE INSTITUTE FOR ETHNO elevated levels of neurotoxic amino acids or neurotoxic MEDICINE, Provo, UT derivatives thereof associated with neurological disorders. In particular, methods are disclosed for diagnosing a neu (21) Appl. No.: 11/760,668 rological disorder in a subject, or predicting the likelihood of developing a neurological disorder in a Subject, by deter (22) Filed: Jun. 8, 2007 mining the levels of B-N-methylamino-L-alanine (BMAA) Related U.S. Application Data in a tissue sample obtained from the subject. Methods for screening for environmental factors associated with neuro (63) Continuation of application No. 10/731,411, filed on logical disorders are disclosed. Methods for inhibiting, treat Dec. 8, 2003, now Pat. No. 7,256,002. -
Searching for Inhibitors of the Protein Arginine Methyl Transferases: Synthesis and Characterisation of Peptidomimetic Ligands
SEARCHING FOR INHIBITORS OF THE PROTEIN ARGININE METHYL TRANSFERASES: SYNTHESIS AND CHARACTERISATION OF PEPTIDOMIMETIC LIGANDS by ASTRID KNUHTSEN B. Sc., Aarhus University, 2009 M. Sc., Aarhus University, 2012 A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Pharmaceutical Sciences) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) March 2016 © Astrid Knuhtsen, 2016 UNIVERSITY OF COPENH AGEN FACULTY OF HEALTH A ND MEDICAL SCIENCES PhD Thesis Astrid Knuhtsen Searching for Inhibitors of the Protein Arginine Methyl Transferases: Synthesis and Characterisation of Peptidomimetic Ligands December 2015 This thesis has been submitted to the Graduate School of The Faculty of Health and Medical Sciences, University of Copenhagen ii Thesis submission: 18th of December 2015 PhD defense: 11th of March 2016 Astrid Knuhtsen Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark and Faculty of Pharmaceutical Sciences University of British Columbia 2405 Wesbrook Mall BC V6T 1Z3, Vancouver Canada Supervisors: Principal Supervisor: Associate Professor Jesper Langgaard Kristensen Department of Drug Design and Pharmacology, University of Copenhagen, Denmark Co-Supervisor: Associate Professor Daniel Sejer Pedersen Department of Drug Design and Pharmacology, University of Copenhagen, Denmark Co-Supervisor: Assistant Professor Adam Frankel Faculty of Pharmaceutical -
Amino Acid Chemistry
Handout 4 Amino Acid and Protein Chemistry ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Amino Acid Chemistry I. Chemistry of amino acids A. General amino acid structure + HN3- 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon. 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group). 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH. II. Essential and nonessential amino acids A. Nonessential amino acids: can make the carbon skeleton 1. From glycolysis. 2. From the TCA cycle. B. Nonessential if it can be made from an essential amino acid. 1. Amino acid "sparing". 2. May still be essential under some conditions. C. Essential amino acids 1. Branched chain amino acids (isoleucine, leucine and valine) 2. Lysine 3. Methionine 4. Phenyalanine 5. Threonine 6. Tryptophan 1 Handout 4 Amino Acid and Protein Chemistry D. Essential during rapid growth or for optimal health 1. Arginine 2. Histidine E. Nonessential amino acids 1. Alanine (from pyruvate) 2. Aspartate, asparagine (from oxaloacetate) 3. Cysteine (from serine and methionine) 4. Glutamate, glutamine (from α-ketoglutarate) 5. Glycine (from serine) 6. Proline (from glutamate) 7. Serine (from 3-phosphoglycerate) 8. Tyrosine (from phenylalanine) E. Nonessential and not required for protein synthesis 1. Hydroxyproline (made postranslationally from proline) 2. Hydroxylysine (made postranslationally from lysine) III. Acidic, basic, polar, and hydrophobic amino acids A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution 1. -
THE SPORULATION of PERONOSPORA TABAOINA ADAM. on TOBACCO LEAF DISKS by C
EFFECTS OF METABOLITES AND ANTlMETABOLITES ON THE SPORULATION OF PERONOSPORA TABAOINA ADAM. ON TOBACCO LEAF DISKS By C. J. SHEI'HERD* and M. MANDRYK* [Manuscript received ~arch 13, 1964] Summary . The effects of 148 metabolites and a~tinietabolites on the sporulation or" Peronospora tabacina Adam. on leaf disks of Nieotiand tubacum cv. Virginia Gold. have been determined. (1) Normal metabolites, with the exception of flavin adenine dinucleotide, had slight althoU:gh statistically significant effects on sporulation intensIty, which suggests that inhibition-nutrition phenomena play no part in the sporulation process of P. tabacina. (2) Seven uracil analogues had an inhibitory effect on sporulation, and the reversal of inhibition by uracil suggests the active involvement of this compound in the sporulation process. (3) Canavanine at a final concentrat.ion of 120 ftgjml showed complete inhibition of sporulation. The reversal of the canavanine inhibition of sporulation by arginine, citrulline, and ornithine suggests the involvement of arginine and the functioning of an ornithine cycle in the sporulating system. (4) White, instead of the normal blue, conidia were produced in the presence of a number of sUlphur-containing compounds. It is suggested that this phenomenon depends on the chelating properties of these compounds towards copper ions, with the subsequent inactivation of tyrosinase activity in the conidia. (5) Sporulation intensities of 68 X 10'-}53 X 104 conidia per sqnare centimetre of leaf area were observed during the present study. I. INTRODUCTION Clayton and Gaines (1933), Armstrong and Sumner (1935), and Dixon, McLean, and Wolf (1936) have shown that sporulation by Peronospora tabacina Adam. occurred only under conditions of high humidity. -
Interpretive Guide for Amino Acids
Interpretive Guide for Amino Acids Intervention Options LOW HIGH Essential Amino Acids Arginine (Arg) Arg Mn Histidine (His) Folate, His Isoleucine (Ile) * B6, Check for insulin insensitivity Leucine (Leu) * B6, Check for insulin insensitivity Lysine (Lys) Carnitine Vitamin C, Niacin, B6, Iron, a-KG Methionine(Met) * B6, á-KG, Mg, SAM Phenylalanine (Phe) * Iron,VitaminC,Niacin,LowPhediet Threonine(Thr) * B6, Zn Tryptophan(Trp) Trpor5-HTP Niacin, B6 Valine (Val) * B6, Check for insulin insensitivity Essential Amino Acid Derivatives Neuroendocrine Metabolism y-Aminobutyric Acid (GABA) a-KG, B6 Glycine (Gly) Gly Folate, B6,B2,B5 Serine (Ser) B6, Mn, Folate * Taurine (Tau) Tau, B6 Vit. E, Vit. C, B-Carotene, CoQ10, Lipoate Tyrosine(Tyr) Iron,Tyr,VitaminC,Niacin Cu, Iron, Vitamin C, B6 Ammonia/Energy Metabolism a-Aminoadipic Acid B6, a-KG Asparagine (Asn) Mg Aspartic Acid (Asp) a-KG, B6 Mg, Zn Citrulline (Cit) Mg, Aspartic acid Glutamic Acid (Glu) B6, a-KG Niacin, B6 Glutamine (Gln) a-KG, B6 Ornithine (Orn) Arg Mg, a-KG, B6 Sulfur Metabolism Cystine (Cys) NAC B2 Cystathionine B6 Homocystine (HCys) B6, Folate, B12, Betaine Additional Metabolites a-Amino-N-Butyric Acid a-KG, B6 B6, a-KG Alanine (Ala) * B6 Anserine Zn n-Alanine Lactobacillus and Bifidobacteria, B6 n-Aminoisobutyric Acid B6 Carnosine Zn Ethanolamine Mg Hydroxylysine (HLys) Vitamin C, Iron, a-KG Hydroxyproline (HPro) Vitamin C, Iron, a-KG 1-Methylhistidine Vitamin E, B12, Folate 3-Methylhistidine BCAAs, Vit. E, Vit. C, n-Carotene, CoQ10, Lipoate Phosphoethanolamine (PE) SAM, B12, Folate, Betaine Phosphoserine Mg Proline (Pro) a-KG Vitamin C, Niacin Sarcosine B2 * Use balanced or custom mixtures of essential amino acids Nordic Laboratiroes∙ Nygade 6, 3.sal ∙ 1164 Copenhagen K ∙ DenmarkTel: +45 33 75 1000 ∙ e-mail: [email protected] In association with ©Metametrix, Inc. -
Ratio of Phosphate to Amino Acids
National Institute for Health and Care Excellence Final Neonatal parenteral nutrition [D10] Ratio of phosphate to amino acids NICE guideline NG154 Evidence reviews February 2020 Final These evidence reviews were developed by the National Guideline Alliance which is part of the Royal College of Obstetricians and Gynaecologists FINAL Error! No text of specified style in document. Disclaimer The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian. Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties. NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the Welsh Government, Scottish Government, and Northern Ireland Executive. -
L-Norvaline Reverses Cognitive Decline and Synaptic Loss in a Murine Model of Alzheimer's Disease
bioRxiv preprint doi: https://doi.org/10.1101/354290; this version posted June 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. L-norvaline reverses cognitive decline and synaptic loss in a murine model of Alzheimer's disease. Baruh Polis1,2*, Kolluru D Srikanth2, Evan Elliott3, Hava Gil-Henn2 , Abraham O. Samson1 1 Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel. 2 Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel. 3 Laboratory of Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel. * Correspondence should be addressed to: Baruh Polis, The Azrieli Faculty of Medicine, Bar-Ilan University, 8th Henrietta Szold Street, P.O. Box 1589, Safed 1311502, Israel. Phone: +972525654451, e-mail: [email protected] Keywords: Alzheimer’s disease, L-norvaline, L-arginine, arginase, memory, amyloid beta, ribosomal protein S6 kinase beta-1, mTOR. 1 bioRxiv preprint doi: https://doi.org/10.1101/354290; this version posted June 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The urea cycle plays a role in the pathogenesis of Alzheimer’s disease (AD). -
Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L
VOL. 48, 1962 BIOCHEMISTRY: E. L. SAIITH 677 18 Britten, R. J., and R. B. Roberts, Science, 131, 32 (1960). '9 Crestfield, A. M., K. C. Smith, and F. WV. Allen, J. Biol. Chem., 216, 185 (1955). 20 Gamow, G., Nature, 173, 318 (1954). 21 Brenner, S., these PROCEEDINGS, 43, 687 (1957). 22 Nirenberg, M. WV., J. H. Matthaei, and 0. WV. Jones, unpublished data. 23 Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature, 192, 1227 (1961). 24 Levene, P. A., and R. S. Tipson, J. Biol. Ch-nn., 111, 313 (1935). 25 Gierer, A., and K. W. Mundry, Nature, 182, 1437 (1958). 2' Tsugita, A., and H. Fraenkel-Conrat, J. Mllot. Biol., in press. 27 Tsugita, A., and H. Fraenkel-Conrat, personal communication. 28 Wittmann, H. G., Naturwissenschaften, 48, 729 (1961). 29 Freese, E., in Structure and Function of Genetic Elements, Brookhaven Symposia in Biology, no. 12 (1959), p. 63. NUCLEOTIDE BASE CODING AND AM1INO ACID REPLACEMIENTS IN PROTEINS* BY EMIL L. SMITHt LABORATORY FOR STUDY OF HEREDITARY AND METABOLIC DISORDERS AND THE DEPARTMENTS OF BIOLOGICAL CHEMISTRY AND MEDICINE, UNIVERSITY OF UTAH COLLEGE OF MEDICINE Communicated by Severo Ochoa, February 14, 1962 The problem of which bases of messenger or template RNA' specify the coding of amino acids in proteins has been largely elucidated by the use of synthetic polyri- bonucleotides.2-7 For these triplet nucleotide compositions (Table 1), it is of in- terest to examine some of the presently known cases of amino acid substitutions in polypeptides or proteins of known structure. -
Effect of L-Norvaline on the Small Intestinal
Effect of L-norvaline on the small intestinal wall blood perfusion in a model of acute segmental mesenteric thrombosis Effecto de L-norvalina en la perfusión sanguínea de la pared del intestino delgado en el modelo de trombosis mesentérica segmentaria aguda Elena N. Bezhina; Sergey A. Alekhin; Elena B. Artyushkova; Angelika Y. Orlova; Lev N. Sernov; Tatyana A. Denisuk; Anna A. Peresypkina 1Belgorod State University, Pobedy St., 85, Belgorod, 308015, Russia *Corresponding author: Sergey A. Alekhin, Belgorod State University, Pobedy St., 85, Belgorod, 308015, Russia; e-mail: [email protected] Received/Recibido: 06/28/2020 Accepted/Aceptado: 07/15/2020 Published/Publicado: 09/09/2020 DOI: 10.5281/zenodo.4266263 Abstract Introduction. Ischemic and reperfusion injury play one of the before occlusion of segmental mesenteric arteries. The most important roles in the pathogenesis of many disorders. speed of microcirculation was measured using laser Doppler Especially severe changes in the wall of the small intestine flowmetry by Biopac systems MP100 with TSD144 probe and are observed in acute mesenteric thrombosis, and restora- Acknowledge 3.9.0 program. tion of blood flow to the ischemic tissue initiates a cascade of events that may lead to additional cell injury known as reper- Results. Arginase inhibitor, L-norvaline, in doses of 5, 10, 15, fusion injury. This reperfusion damage frequently exceeds the 20 mg/kg decreased the level of post-occlusive hyperemia original ischemic insult. L-norvaline, as an arginase inhibitor from 1846.25± 54.97 BPU to 1738.49± 42.67, 1622.91± 17.15, was shown to be potentially strategy to combat hepatic isch- and 1412,88 ± 38,08 BPU, respectively.