(12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox Et Al US 20070254315A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox et al. (43) Pub. Date: Nov. 1, 2007 (54) SCREENING FOR NEUROTOXIC AMINO (60) Provisional application No. 60/494.686, filed on Aug. ACID ASSOCATED WITH NEUROLOGICAL 12, 2003. DSORDERS Publication Classification (75) Inventors: Paul A. Cox, Provo, UT (US); Sandra A. Banack, Fullerton, CA (US); Susan (51) Int. Cl. J. Murch, Cambridge (CA) GOIN 33/566 (2006.01) GOIN 33/567 (2006.01) Correspondence Address: (52) U.S. Cl. ............................................................ 435/721 PILLSBURY WINTHROP SHAW PITTMAN LLP (57) ABSTRACT ATTENTION: DOCKETING DEPARTMENT Methods for screening for neurological disorders are dis P.O BOX 105OO closed. Specifically, methods are disclosed for screening for McLean, VA 22102 (US) neurological disorders in a Subject by analyzing a tissue sample obtained from the subject for the presence of (73) Assignee: THE INSTITUTE FOR ETHNO elevated levels of neurotoxic amino acids or neurotoxic MEDICINE, Provo, UT derivatives thereof associated with neurological disorders. In particular, methods are disclosed for diagnosing a neu (21) Appl. No.: 11/760,668 rological disorder in a subject, or predicting the likelihood of developing a neurological disorder in a Subject, by deter (22) Filed: Jun. 8, 2007 mining the levels of B-N-methylamino-L-alanine (BMAA) Related U.S. Application Data in a tissue sample obtained from the subject. Methods for screening for environmental factors associated with neuro (63) Continuation of application No. 10/731,411, filed on logical disorders are disclosed. Methods for inhibiting, treat Dec. 8, 2003, now Pat. No. 7,256,002. ing or preventing neurological disorders are disclosed. concentration I maximum concentration Sa S 3 Sh 3 3 aS S as s root, non-coralloid root, coralold, non-infected " root, coralloid, rid infection root, coratoid, heavy fection roots, corallold, senscent stem, inner cortex stsm, oster core eaf nuclage raie sporophyll, miniature male sporangla, irrature male sporophyll, nature male sporangia, mature female sporophy seed gametophyte cotyledons seed sarcotesta seed sarcotesta, outer layer Eises Patent Application Publication Nov. 1, 2007 US 2007/0254315 A1 A. concentration I maximum concentration with asa asNo asto asa asu gie5 oN Oa O2 S.9 root, non-coralloid root, corallold, nonfected root, coralold, mild infection root, coralloid, heavy infection roots, coralloid, senscent A. stem, xylem stem, inner cortex stem, outer cortex leaf mucilage leaf male sporophyll, immature six male sporangla, nature male sporophyll, nature male sporangla, nature female sporophyll seed gametophyte cotyledons seed sarcotesta seed sarcotesta, outer layer FIG. US 2007/0254315 A1 Nov. 1, 2007 SCREENING FOR NEUROTOXC AMNO ACID bound and free neurotoxic amino acid or neurotoxic deriva ASSOCATED WITH NEUROLOGICAL tive thereof can be analyzed in a sample. In a tissue sample, DISORDERS protein-bound BMAA, free BMAA, or both protein-bound BMAA and free BMAA can be analyzed. The subject may RELATED APPLICATIONS have symptoms of a neurological disorder, or may be asymptomatic for a neurological disorder, or may have been 0001. This application is a continuation of U.S. patent identified as being at risk for developing a neurological application Ser. No. 10/731,411, filed Dec. 8, 2003, which disorder. The neurotoxic derivative may be any derivative claims the benefit of U.S. Provisional Patent Application No. having neurotoxic activity, Such as a carbamate adduct or 60/494.686, filed Aug. 13, 2003. metabolite of the neurotoxic amino acid. FIELD OF THE INVENTION 0005 The present invention provides methods of screen 0002 The present invention relates to screening for neu ing a subject having or at risk of having a neurological rological disorders. Specifically, the invention relates to disorder by analyzing a tissue sample from the Subject to screening for neurological disorders in a Subject by analyZ determine the presence of a neurotoxic amino acid or ing a tissue sample from the Subject to determine the neurotoxic derivative thereof associated with the neurologi presence of neurotoxic amino acids or neurotoxic deriva cal disorder, wherein the presence of a detectable level of a tives thereof associated with neurological disorders. In par neurotoxic amino acid or neurotoxic derivative thereof indi ticular, the present invention relates to methods for diag cates a neurological disorder. Methods of the invention can nosing a neurological disorder in a Subject, or predicting the be used to detect neurological disorders including a neu likelihood of developing a neurological disorder in a Subject, rofibrillary tangle disorder (NFT disorder) such as amyo by determining the levels of B-N-methylamino-L-alanine trophic lateral sclerosis-Parkinsonism dementia complex (BMAA) or a neurotoxic derivative thereof, in a tissue (ALS-PDC), Alzheimer's disease, or progressive supra sample obtained from the subject. Further, the invention nuclear palsy (PSP), a movement disorder such as Parkin relates to screening environmental samples for a neurotoxic son's disease, or a motor neuron disease Such as amyo amino acid or neurotoxic derivative thereof associated with trophic lateral sclerosis (ALS). neurological disorders. Further, the invention relates to 0006 The present invention provides methods of screen inhibiting neurological disorders. ing a subject having or at risk of having a neurological BACKGROUND OF THE INVENTION disorder by analyzing a tissue sample from the subject to determine the presence of a neurotoxic amino acid or 0003. A unique neurological disease initially identified neurotoxic derivative thereof associated with the neurologi among the Chamorro people of Guam by Kurland and cal disorder, wherein the methods can be used to predict the Mulder (1954) is characterized by a combination of symp likelihood of developing a neurological disease, and/or to toms including Stooped posture, a blank expressionless face, predict the latency period prior to onset of the neurological dementia, slow shuffling movement, a resting tremor that disorder, and/or to predict the severity of the neurological stops upon deliberate action, slow movements, and muscle disorder. Methods of the present invention can be practiced atrophy that results in muscles dipping down in the hand. In using tissue samples including, but not limited to, neuro Some clinical manifestations, patients have clinical Symp logical tissue or non-neurological tissue. Neurological tissue toms indistinguishable from amyotrophic lateral sclerosis can be associated with the central nervous system (CNS), (ALS). Other patients have Parkinsonism features combined including brain tissue or cerebral-spinal fluid (CSF), or may with dementia (Parkinsonism Dementia Complex, PDC). In be associated with the peripheral nervous system (PNS). still others, only dementia is observed. Some patients also Non-neurological tissue can be keratinous tissue including have both ALS and PDC. Neuropathologically, all clinical but not limited to, hair, skin, nail, including fingernail or forms of the disease result in a specific feature, neurofibril toenail, feather, claw, hoof, or horn. Non-neurological tissue lary tangles, found in the cortex and in the spinal cord. can be non-keratinous tissue including but not limited to, Because the disease has aspects that resemble amyotrophic bood, serum, Saliva, or urine. lateral sclerosis (ALS), Parkinson's disease (PD) and Alzhe imer's disease (AD), this disease is known as amyotrophic 0007. The present invention provides methods for screen lateral Sclerosis-Parkinsonism dementia complex of Guam ing an environmental sample to determine if the environ (ALS-PDC) and is also known as lytico-bodig. mental sample is associated with a neurological disorder, by analyzing the environmental sample to determine the pres SUMMARY OF THE INVENTION ence of a neurotoxic amino acid or neurotoxic derivative thereof associated with the neurological disorder. The neu 0004 The present invention provides methods of screen rotoxic amino acid or neurotoxic derivative thereof can be a ing a Subject having or at risk of having a neurological glutamate receptor agonist Such as a methylated alanine, in disorder by analyzing a tissue sample from the Subject to particular, BMAA. Suitable environmental samples include determine the presence of a neurotoxic amino acid, or water and/or food items or sources. neurotoxic derivative thereof, associated with the neurologi cal disorder. The neurotoxic amino acid or neurotoxic 0008. The present invention provides methods for screen derivative thereof can be a glutamate receptor agonist Such ing an environmental sample to determine if the sample is as B-N-methylamino-L-alanine (BMAA), or B-N-oxalyl associated with a neurological disorder, by detecting neu amino-L-alanine (BOAA). In a tissue sample, protein-bound rotoxic amino acid or neurotoxic derivative thereof produc neurotoxic amino acid or neurotoxic derivative thereof can ing cyanobacteria in the environmental sample. The neuro be analyzed, free (unbound) neurotoxic amino acid or neu toxic amino acid or neurotoxic derivative thereof can be a rotoxic derivative thereof can be analyzed, or both protein glutamate receptor agonist Such as a methylated alanine, in US 2007/0254315 A1 Nov. 1, 2007 particular, BMAA. Methods of the invention are suitable for 0015 Table 3 shows levels of free and protein-associated detecting cyanobacteria producing
Recommended publications
  • Hydroxylation of the Eukaryotic Ribosomal Decoding Center Affects Translational Accuracy
    Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy Christoph Loenarza,1, Rok Sekirnika,2, Armin Thalhammera,2, Wei Gea, Ekaterina Spivakovskya, Mukram M. Mackeena,b,3, Michael A. McDonougha, Matthew E. Cockmanc, Benedikt M. Kesslerb, Peter J. Ratcliffec, Alexander Wolfa,4, and Christopher J. Schofielda,1 aChemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom; bTarget Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom; and cCentre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom Edited by William G. Kaelin, Jr., Harvard Medical School, Boston, MA, and approved January 24, 2014 (received for review July 31, 2013) The mechanisms by which gene expression is regulated by oxygen Enzyme-catalyzed hydroxylation of intracellularly localized are of considerable interest from basic science and therapeutic proteins was once thought to be rare, but accumulating recent perspectives. Using mass spectrometric analyses of Saccharomyces evidence suggests it is widespread (11). Motivated by these cerevisiae ribosomes, we found that the amino acid residue in findings, we investigated whether the translation of mRNA to closest proximity to the decoding center, Pro-64 of the 40S subunit protein is affected by oxygen-dependent modifications. A rapidly ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes growing eukaryotic cell devotes most of its resources to the tran- posttranslational hydroxylation. We identify RPS23 hydroxylases scription, splicing, and transport of ribosomal proteins and rRNA as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglu- (12). We therefore reasoned that ribosomal modification is a tarate dependent oxygenases; their catalytic domain is closely re- candidate mechanism for the regulation of protein expression.
    [Show full text]
  • Significance of Urinary Hydroxyproline in Man
    SIGNIFICANCE OF URINARY HYDROXYPROLINE IN MAN Darwin J. Prockop, Albert Sjoerdsma J Clin Invest. 1961;40(5):843-849. https://doi.org/10.1172/JCI104318. Find the latest version: https://jci.me/104318/pdf SIGNIFICANCE OF URINARY HYDROXYPROLINE IN MAN By DARWIN J. PROCKOP AND ALBERT SJOERDSMA (From the Section of Experimental Therapeutics, National Heart Institute, Bethesda, Md.) (Submitted for publication September 27, 1960; accepted January 12, 1961) Since nearly all of the hydroxyproline of the of Marfan's syndrome (2) reflect a rapid rate of body is found in collagen, it has been suggested collagen degradation. (1, 2) that the urinary excretion of this imino An incidental discovery in the study was that acid may be an important index of collagen me- the increase in urinary hydroxyproline after in- tabolism. The origin of urinary hydroxyproline, gestion of gelatin represents an increased excre- however, is not definitely established. The iso- tion of hydroxyproline peptides. This appears to topic studies of Stetten (3) in rats indirectly sug- be the first demonstration that significant amounts gested that most of the free and peptide hydroxy- of peptides can be excreted following ingestion of proline in the body arises from the breakdown of a protein. collagen, since she found that hydroxyproline-N'5 was not significantly incorporated into collagen. MATERIALS AND METHODS Ziff, Kibrick, Dresner and Gribetz (1), on the The 8 subjects utilized in the study were hospitalized other hand, observed an increased excretion of for periods of 3 to 12 weeks; 3 were patients with Mar- hydroxyproline when it was added to the diet of fan's syndrome, 2 of whom were previously shown to have elevated excretions of hydroxyproline (2).
    [Show full text]
  • Peripheral Neuropathy in Complex Inherited Diseases: an Approach To
    PERIPHERAL NEUROPATHY IN COMPLEX INHERITED DISEASES: AN APPROACH TO DIAGNOSIS Rossor AM1*, Carr AS1*, Devine H1, Chandrashekar H2, Pelayo-Negro AL1, Pareyson D3, Shy ME4, Scherer SS5, Reilly MM1. 1. MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK. 2. Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK. 3. Unit of Neurological Rare Diseases of Adulthood, Carlo Besta Neurological Institute IRCCS Foundation, Milan, Italy. 4. Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA 5. Department of Neurology, University of Pennsylvania, Philadelphia, PA 19014, USA. * These authors contributed equally to this work Corresponding author: Mary M Reilly Address: MRC Centre for Neuromuscular Diseases, 8-11 Queen Square, London, WC1N 3BG, UK. Email: [email protected] Telephone: 0044 (0) 203 456 7890 Word count: 4825 ABSTRACT Peripheral neuropathy is a common finding in patients with complex inherited neurological diseases and may be subclinical or a major component of the phenotype. This review aims to provide a clinical approach to the diagnosis of this complex group of patients by addressing key questions including the predominant neurological syndrome associated with the neuropathy e.g. spasticity, the type of neuropathy, and the other neurological and non- neurological features of the syndrome. Priority is given to the diagnosis of treatable conditions. Using this approach, we associated neuropathy with one of three major syndromic categories - 1) ataxia, 2) spasticity, and 3) global neurodevelopmental impairment. Syndromes that do not fall easily into one of these three categories can be grouped according to the predominant system involved in addition to the neuropathy e.g.
    [Show full text]
  • Case Vignettes
    “Doc, DO I Have Neuropathy?” Case Vignettes Susan, 50 Gwenn, 32 John, 52 Sally, 42 DM – 12 yrs Hypothyroidism No PMH No PMH B/N/T – 2 yrs N/T at night B/N/T – 6 days B/N/T – few months 3 months Stanley Jones P. Iyadurai, MSc, PhD, MD Hands, Hands, Arms Hands, Feet Assistant Professor of Neurology Feet Right hand Feet, Legs Burning Pain Neuromuscular Division, Department of Neurology Arms, Difficulty Pain Pain The Ohio State University Wexner Medical Center Legs Opening jars Breathing Redness Imbalance Normal gait Imbalance Normal Strength “Neuropathy” - Definition Neuropathy - General Theme • Symmetric • “Neuron” and “Pathos” (Greek) • Insidious • More prominent distally and starts in • Disease of the Peripheral Nerve legs • Involves both motor and sensory • Dysfunction of the nerves outside of components the central nervous system • May cause pain • May cause loss of balance • Progressive, but not debilitating 1 Not all that tingles is Classification - Functional neuropathy ‘numbness and tingling’ • Motor – affects the motor nerves Weakness • not all numbness and tingling is • Sensory peripheral nerve ‒ Pain • RLS ‒ Small Fiber ‒ Large Fiber • edema ‒ Large and Small Fiber • deconditioning ‒ Neuronopathy (ganglionopathy) • central nervous system • Autonomic • Sweating Changes, Blood Pressure Changes • nerve root [‘sciatica’] Classification – Time-course Classification – Time-course • Acute Immune-mediated • Congenital/Hereditary • Infantile Weakness • Childhood-onset • Acquired • Relapsing ‒ Reversible? • Hereditary ‒ Demyelinating?
    [Show full text]
  • Ataxia with Loss of Purkinje Cells in a Mouse Model for Refsum Disease
    Ataxia with loss of Purkinje cells in a mouse model for Refsum disease Sacha Ferdinandussea,1,2, Anna W. M. Zomerb,1, Jasper C. Komena, Christina E. van den Brinkb, Melissa Thanosa, Frank P. T. Hamersc, Ronald J. A. Wandersa,d, Paul T. van der Saagb, Bwee Tien Poll-Thed, and Pedro Britesa Academic Medical Center, Departments of aClinical Chemistry (Laboratory of Genetic Metabolic Diseases) and dPediatrics, Emma’s Children Hospital, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; bHubrecht Institute, Royal Netherlands Academy of Arts and Sciences 3584 CT Utrecht, The Netherlands; and cRehabilitation Hospital ‘‘De Hoogstraat’’ Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands Edited by P. Borst, The Netherlands Cancer Institute, Amsterdam, The Netherlands, and approved October 3, 2008 (received for review June 23, 2008) Refsum disease is caused by a deficiency of phytanoyl-CoA hy- Clinically, Refsum disease is characterized by cerebellar droxylase (PHYH), the first enzyme of the peroxisomal ␣-oxidation ataxia, polyneuropathy, and progressive retinitis pigmentosa, system, resulting in the accumulation of the branched-chain fatty culminating in blindness, (1, 3). The age of onset of the symptoms acid phytanic acid. The main clinical symptoms are polyneuropathy, can vary from early childhood to the third or fourth decade of cerebellar ataxia, and retinitis pigmentosa. To study the patho- life. No treatment is available for patients with Refsum disease, genesis of Refsum disease, we generated and characterized a Phyh but they benefit from a low phytanic acid diet. Phytanic acid is knockout mouse. We studied the pathological effects of phytanic derived from dietary sources only, specifically from the chloro- acid accumulation in Phyh؊/؊ mice fed a diet supplemented with phyll component phytol.
    [Show full text]
  • ICD9 & ICD10 Neuromuscular Codes
    ICD-9-CM and ICD-10-CM NEUROMUSCULAR DIAGNOSIS CODES ICD-9-CM ICD-10-CM Focal Neuropathy Mononeuropathy G56.00 Carpal tunnel syndrome, unspecified Carpal tunnel syndrome 354.00 G56.00 upper limb Other lesions of median nerve, Other median nerve lesion 354.10 G56.10 unspecified upper limb Lesion of ulnar nerve, unspecified Lesion of ulnar nerve 354.20 G56.20 upper limb Lesion of radial nerve, unspecified Lesion of radial nerve 354.30 G56.30 upper limb Lesion of sciatic nerve, unspecified Sciatic nerve lesion (Piriformis syndrome) 355.00 G57.00 lower limb Meralgia paresthetica, unspecified Meralgia paresthetica 355.10 G57.10 lower limb Lesion of lateral popiteal nerve, Peroneal nerve (lesion of lateral popiteal nerve) 355.30 G57.30 unspecified lower limb Tarsal tunnel syndrome, unspecified Tarsal tunnel syndrome 355.50 G57.50 lower limb Plexus Brachial plexus lesion 353.00 Brachial plexus disorders G54.0 Brachial neuralgia (or radiculitis NOS) 723.40 Radiculopathy, cervical region M54.12 Radiculopathy, cervicothoracic region M54.13 Thoracic outlet syndrome (Thoracic root Thoracic root disorders, not elsewhere 353.00 G54.3 lesions, not elsewhere classified) classified Lumbosacral plexus lesion 353.10 Lumbosacral plexus disorders G54.1 Neuralgic amyotrophy 353.50 Neuralgic amyotrophy G54.5 Root Cervical radiculopathy (Intervertebral disc Cervical disc disorder with myelopathy, 722.71 M50.00 disorder with myelopathy, cervical region) unspecified cervical region Lumbosacral root lesions (Degeneration of Other intervertebral disc degeneration,
    [Show full text]
  • Interpretive Guide for Amino Acids
    Interpretive Guide for Amino Acids Intervention Options LOW HIGH Essential Amino Acids Arginine (Arg) Arg Mn Histidine (His) Folate, His Isoleucine (Ile) * B6, Check for insulin insensitivity Leucine (Leu) * B6, Check for insulin insensitivity Lysine (Lys) Carnitine Vitamin C, Niacin, B6, Iron, a-KG Methionine(Met) * B6, á-KG, Mg, SAM Phenylalanine (Phe) * Iron,VitaminC,Niacin,LowPhediet Threonine(Thr) * B6, Zn Tryptophan(Trp) Trpor5-HTP Niacin, B6 Valine (Val) * B6, Check for insulin insensitivity Essential Amino Acid Derivatives Neuroendocrine Metabolism y-Aminobutyric Acid (GABA) a-KG, B6 Glycine (Gly) Gly Folate, B6,B2,B5 Serine (Ser) B6, Mn, Folate * Taurine (Tau) Tau, B6 Vit. E, Vit. C, B-Carotene, CoQ10, Lipoate Tyrosine(Tyr) Iron,Tyr,VitaminC,Niacin Cu, Iron, Vitamin C, B6 Ammonia/Energy Metabolism a-Aminoadipic Acid B6, a-KG Asparagine (Asn) Mg Aspartic Acid (Asp) a-KG, B6 Mg, Zn Citrulline (Cit) Mg, Aspartic acid Glutamic Acid (Glu) B6, a-KG Niacin, B6 Glutamine (Gln) a-KG, B6 Ornithine (Orn) Arg Mg, a-KG, B6 Sulfur Metabolism Cystine (Cys) NAC B2 Cystathionine B6 Homocystine (HCys) B6, Folate, B12, Betaine Additional Metabolites a-Amino-N-Butyric Acid a-KG, B6 B6, a-KG Alanine (Ala) * B6 Anserine Zn n-Alanine Lactobacillus and Bifidobacteria, B6 n-Aminoisobutyric Acid B6 Carnosine Zn Ethanolamine Mg Hydroxylysine (HLys) Vitamin C, Iron, a-KG Hydroxyproline (HPro) Vitamin C, Iron, a-KG 1-Methylhistidine Vitamin E, B12, Folate 3-Methylhistidine BCAAs, Vit. E, Vit. C, n-Carotene, CoQ10, Lipoate Phosphoethanolamine (PE) SAM, B12, Folate, Betaine Phosphoserine Mg Proline (Pro) a-KG Vitamin C, Niacin Sarcosine B2 * Use balanced or custom mixtures of essential amino acids Nordic Laboratiroes∙ Nygade 6, 3.sal ∙ 1164 Copenhagen K ∙ DenmarkTel: +45 33 75 1000 ∙ e-mail: [email protected] In association with ©Metametrix, Inc.
    [Show full text]
  • Come to Your Senses: Atypical Polyneuropathy
    Come To Your Senses: Atypical Polyneuropathy Damian Campbell, DO; Joshua Lovell, DO; Krishna Pokala, MD; Yessar Hussain, MD The University of Texas at Austin, Department of Neurology, Dell Medical School Clinical History Workup Diagnosis and Discussion Pathophysiology 35 year old female was referred to the neurology clinic for evaluation of an Electrodiagnostics Our patients clinical history and genetic testing results were consistent and There is a great deal of variability in the presentation of symptoms; as there is abnormal gait. She reported slow but progressive changes in her gait over the she was diagnosed with PHARC: Polyneuropathy, Hearing Loss, Ataxia, variability amongst the gene mutations leading to inactive ABHD12. Despite the course of the last ten years. Her changes ranged from a sense of feeling off- Nerve Conductions Retinitis Pigmentosa, Cataracts. variability that exists within gene mutations, it is posited that all of the balanced to shooting pain down each leg She felt that her pain originated in her Distal Latency Peak Amplitude Conduction Velocity homozygous mutations result in complete loss-of-function of the ABHD12 low back and radiated posteriorly down each leg without any accompanying Latency (m/sec) PHARC was first described by Fiskerstrand et al in 2008.(1) At that time they enzyme. Reduction in ABHD12 results in increased levels of endocannabinoid Right Median CMAP 4.3 7.8 numbness, weakness, or bowel and bladder involvement. Of significance is her were attempting to genetically characterize a neurological disorder that arachidonoyl glycerol 2-AG, which has important functions in synaptic plasticity 11.6 5.8 26 resembled Refsum disease in a Norwegian family.
    [Show full text]
  • Ratio of Phosphate to Amino Acids
    National Institute for Health and Care Excellence Final Neonatal parenteral nutrition [D10] Ratio of phosphate to amino acids NICE guideline NG154 Evidence reviews February 2020 Final These evidence reviews were developed by the National Guideline Alliance which is part of the Royal College of Obstetricians and Gynaecologists FINAL Error! No text of specified style in document. Disclaimer The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian. Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties. NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the Welsh Government, Scottish Government, and Northern Ireland Executive.
    [Show full text]
  • Retinitis Pigmentosa, Ataxia, and Peripheral Neuropathy
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.46.3.206 on 1 March 1983. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1983;46:206-213 Retinitis pigmentosa, ataxia, and peripheral neuropathy RR TUCK, JG McLEOD From the Department ofMedicine, University ofSydney, Australia SUMMARY The clinical features of four patients with retinitis pigmentosa, ataxia and peripheral neuropathy but with no increase in serum phytanic acid are reported. Three patients also had sensorineural deafness and radiological evidence of cerebellar atrophy. Nerve conduction studies revealed abnormalities of sensory conduction and normal or only mild slowing of motor conduc- tion velocity. Sural nerve biopsy demonstrated a reduction in the density of myelinated fibres. There were no onion bulb formations. These cases clinically resemble Refsum's disease, but differ in having no detectable biochemical abnormality, and a peripheral neuropathy which is not hypertrophic in type. They may represent unusual cases of spinocerebellar degeneration. Retinitis pigmentosa occurs infrequently as an iso- (WAIS). He had a speech impediment but was not dysar- Protected by copyright. lated finding in otherwise healthy individuals and thric. He was of short stature, had a small head and pes families. Its association with deafness, with or with- cavus but no kyphoscoliosis. His visual acuity in the right eye was 6/60 while in the left he could count fingers only. out other neurological abnormalities is much less The right visual field was constricted but the left could not common but nevertheless well recognised.1 In be tested. The optic discs were pale, the retinal vessels heredopathia atactica polyneuritiformis (Refsum's small in diameter and throughout the retinae there was disease), abetalipoproteinaemia, and the Keams- scattered "bone corpuscle" pigmentation.
    [Show full text]
  • Article the Bee Hemolymph Metabolome: a Window Into the Impact of Viruses on Bumble Bees
    Article The Bee Hemolymph Metabolome: A Window into the Impact of Viruses on Bumble Bees Luoluo Wang 1,2, Lieven Van Meulebroek 3, Lynn Vanhaecke 3, Guy Smagghe 2 and Ivan Meeus 2,* 1 Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China; [email protected] 2 Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; [email protected], [email protected] 3 Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Vet- erinary Medicine, Ghent University, Merelbeke, Belgium; [email protected]; [email protected] * Correspondence: [email protected] Selection of the targeted biomarker set: In total we identified 76 metabolites, including 28 amino acids (37%), 11 carbohy- drates (14%), 11 carboxylic acids, 2 TCA intermediates, 4 polyamines, 4 nucleic acids, and 16 compounds from other chemical classes (Table S1). We selected biologically-relevant biomarker candidates based on a three step approach: (1) their expression profile in stand- ardized bees and its relation with viral presence, (2) pathways analysis on significant me- tabolites; and (3) a literature search to identify potential viral specific signatures. Step (1) and (2), pathways analysis on significant metabolites We performed two-way ANOVA with Tukey HSD tests for post-hoc comparisons and used significant metabolites for metabolic pathway analysis using the web-based Citation: Wang, L.L.; Van platform MetaboAnalyst (http://www.metaboanalyst.ca/) in order to get insights in the Meulebroek, L.; Vanhaecke.
    [Show full text]
  • Holoprosencephaly and Strabismus
    Holoprosencephaly and Strabismus Pavlina Kemp, MD, Grant Casey, Susannah Longmuir, MD June 11, 2012 Chief complaint Eye crossing History of Present Illness The patient is a 15 month-old female at presentation to the eye clinic, with history of severe hydrocephalus at birth. She was also diagnosed with alobar holoprosencephaly at birth with seizures. She was originally referred for eye crossing. We present her remarkable clinical course. Past Medical History: • Hydrocephalus s/p ventriculoperitoneal shunting • Holoprosencephaly (alobar type) • Seizure disorder Past Surgical History: • Ventriculoperitoneal shunt placement, 2004 • Ventriculoperitoneal shunt revision, 1/2005 • Ventriculoperitoneal shunt revision, 6/2005 Family History: No known family history of holoprosencephaly, amblyopia or strabismus. Social History: Patient lives at home with parents and two sisters. Medications: None Exam and Clinical Course: Age: 15 months Visual Acuity: Central, unsteady and maintained OD and central, unsteady and maintained OS Teller acuity testing: • Without correction OU: 20/800 Pupils: Equally round and briskly reactive, no relative afferent pupillary defect. Stereo Vision: Unable to test Motility and Strabismus: • Large variable esotropia • Bilateral elevation and abduction deficits • Intermittent horizontal nystagmus Cycloplegic Refraction: • OD: +4.00 • OS: +6.00 External Exam: Notable for large head circumference Slit Lamp Exam: Normal anterior segment exam OU without evidence of cataracts or other media opacities. Normal appearing optic nerves and normal dilated fundus examination. No sign of optic nerve hypoplasia in either eye. Figure 1: Axial and saggital MRI illustrating the enlargement of ventricles secondary to hydrocephalus. At this point, after discussion with her family, surgery for strabismus was deferred and correction of her hyperopia was attempted.
    [Show full text]