Ataxia with Loss of Purkinje Cells in a Mouse Model for Refsum Disease

Total Page:16

File Type:pdf, Size:1020Kb

Ataxia with Loss of Purkinje Cells in a Mouse Model for Refsum Disease Ataxia with loss of Purkinje cells in a mouse model for Refsum disease Sacha Ferdinandussea,1,2, Anna W. M. Zomerb,1, Jasper C. Komena, Christina E. van den Brinkb, Melissa Thanosa, Frank P. T. Hamersc, Ronald J. A. Wandersa,d, Paul T. van der Saagb, Bwee Tien Poll-Thed, and Pedro Britesa Academic Medical Center, Departments of aClinical Chemistry (Laboratory of Genetic Metabolic Diseases) and dPediatrics, Emma’s Children Hospital, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; bHubrecht Institute, Royal Netherlands Academy of Arts and Sciences 3584 CT Utrecht, The Netherlands; and cRehabilitation Hospital ‘‘De Hoogstraat’’ Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands Edited by P. Borst, The Netherlands Cancer Institute, Amsterdam, The Netherlands, and approved October 3, 2008 (received for review June 23, 2008) Refsum disease is caused by a deficiency of phytanoyl-CoA hy- Clinically, Refsum disease is characterized by cerebellar droxylase (PHYH), the first enzyme of the peroxisomal ␣-oxidation ataxia, polyneuropathy, and progressive retinitis pigmentosa, system, resulting in the accumulation of the branched-chain fatty culminating in blindness, (1, 3). The age of onset of the symptoms acid phytanic acid. The main clinical symptoms are polyneuropathy, can vary from early childhood to the third or fourth decade of cerebellar ataxia, and retinitis pigmentosa. To study the patho- life. No treatment is available for patients with Refsum disease, genesis of Refsum disease, we generated and characterized a Phyh but they benefit from a low phytanic acid diet. Phytanic acid is knockout mouse. We studied the pathological effects of phytanic derived from dietary sources only, specifically from the chloro- acid accumulation in Phyh؊/؊ mice fed a diet supplemented with phyll component phytol. When phytanic acid levels are kept low phytol, the precursor of phytanic acid. Phytanic acid accumulation via dietary reduction, a halt in the progression of the symptoms caused a reduction in body weight, hepatic steatosis, and testicular has been reported (4–7). atrophy with loss of spermatogonia. Phenotype assessment using Although the clinical symptoms of Refsum disease are well the SHIRPA protocol and subsequent automated gait analysis using known, only limited postmortem data are available on Refsum the CatWalk system revealed unsteady gait with strongly reduced patients and the pathogenesis of the disorder is poorly under- paw print area for both fore- and hindpaws and reduced base of stood. Insight herein is of crucial importance for the develop- support for the hindpaws. Histochemical analyses in the CNS ment of potential therapeutic options. Phytanic acid has been showed astrocytosis and up-regulation of calcium-binding pro- claimed to be toxic, and it has been shown to be an activating teins. In addition, a loss of Purkinje cells in the cerebellum was ligand of the nuclear receptor peroxisome proliferator receptor observed. No demyelination was present in the CNS. Motor nerve ␣ (PPAR␣). To study the pathological consequences of phytanic conduction velocity measurements revealed a peripheral neurop- acid accumulation, we generated of a mouse model for Refsum athy. Our results show that, in the mouse, high phytanic acid levels disease by targeted disruption of the Phyh gene. cause a peripheral neuropathy and ataxia with loss of Purkinje Results cells. These findings provide important insights in the pathophys- iology of Refsum disease. Disruption of the Phyh Gene. To disrupt the mouse Phyh gene, part of the gene containing exons 4–7 was replaced with the hygro- fatty acid oxidation ͉ metabolic disorder ͉ peroxisomes mycin B-resistance gene by homologous recombination in ES cells as depicted in Fig. 1A. Correct targeting of Phyh was confirmed by Southern blot analysis and PCR on genomic DNA efsum disease is an autosomal recessive lipid-storage disor- (Fig. 1 B and C). The disruption of the Phyh gene resulted in the der (MIM266500) characterized by the accumulation of the R absence of detectable mRNA (Fig. 1D), PHYH protein, and a branched-chain fatty acid phytanic acid (3,7,11,15-tetramethyl- complete loss of PHYH enzyme activity (data not shown). The hexadecanoic acid) in tissues and body fluids of patients (1). absence of the Phyh gene did not result in embryonic lethality Phytanic acid levels are elevated because of a deficiency of the nor did it affect postnatal viability. When kept under standard enzyme phytanoyl-CoA hydroxylase (PHYH). PHYH catalyzes Ϫ/Ϫ ␣ laboratory conditions, Phyh mice developed normally and the first step of the peroxisomal -oxidation pathway, i.e., the had no obvious developmental abnormalities. They were fertile, conversion of phytanoyl-CoA to 2-hydroxy-phytanoyl-CoA. This and interbreeding of PhyhϪ/Ϫ males and females led to viable ␣ -oxidation is required for the degradation of phytanic acid, progeny. which contains a methyl group at the third carbon atom of its ␤ -backbone and therefore cannot be degraded via -oxidation. As Biochemical Abnormalities in Phyh؊/؊ Mice Fed a Phytol-Supple ␣ a result of -oxidation, the terminal carboxyl-group of phytanic mented Diet. In contrast to the human diet, standard rodent chow acid is released as CO2, producing pristanic acid, a 2-methyl contains only low amounts of branched-chain fatty acids and the branched-chain fatty acid (2,6,10,14-tetramethylpentadecanoic acid), which can be degraded via ␤-oxidation in the peroxisome. The molecular basis of Refsum disease is heterogeneous, but Author contributions: S.F., A.W.M.Z., R.J.A.W., P.T.v.d.S., B.T.P.-T., and P.B. designed re- the majority of patients have mutations in the gene encoding search; S.F., A.W.M.Z., J.C.K., C.E.v.d.B., M.T., and P.B. performed research; F.P.T.H. con- Ϸ tributed new reagents/analytic tools; S.F., A.W.M.Z., J.C.K., and P.B. analyzed data; and S.F., PHYH (2). In humans, the PHYH gene is 21 kb and consists R.J.A.W., P.T.v.d.S., B.T.P.-T., and P.B. wrote the paper. of 9 exons and 8 introns. It encodes a protein with a calculated The authors declare no conflict of interest. mass of 38.6 kDa, including a cleavable peroxisomal targeting This article is a PNAS Direct Submission. signal type 2 (PTS2). This PTS2-signal is recognized by peroxin 1S.F. and A.W.M.Z. contributed equally to this work. 7, which is a receptor required for the import of newly synthe- 2To whom correspondence should be addressed at: Laboratory Genetic Metabolic Diseases, sized PTS2-containing proteins into peroxisomes. Peroxin 7 is F0–226, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. encoded by PEX7, which is the second gene that can be mutated E-mail: [email protected]. in patients with Refsum disease (2). The impaired import of This article contains supporting information online at www.pnas.org/cgi/content/full/ PHYH into the peroxisome leads to a deficient PHYH activity 0806066105/DCSupplemental. in patients with mutations in the PEX7 gene. © 2008 by The National Academy of Sciences of the USA 17712–17717 ͉ PNAS ͉ November 18, 2008 ͉ vol. 105 ͉ no. 46 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0806066105 Downloaded by guest on September 29, 2021 A Control 0.1% phytol 0.25% phytol EcoRV HindIII EcoRI BamHIClaI HindIII ABC wild type allele 1 23456 789 1 kb XX Phyh+/+ targeting vector HYG DEF EcoRV HindIIIEcoRI HindIII targeted allele HYG 1 2 3 89 5’ probe Phyh-/- BC D +/+ +/- +/+ +/- -/- kb Ϫ/Ϫ +/+ +/- -/- Phyh Fig. 3. Phyh mice on a phytol diet develop hepatic lipidosis. H&E staining 12.3 bp of livers from WT (A–C) and PhyhϪ/Ϫ mice (D–F) on a control diet (A and D), on 260 a 0.1% phytol diet (B and E), and on 0.25% phytol diet (C and F). In PhyhϪ/Ϫ 201 mice on a 0.25% phytol diet (F), steatosis is clearly detected by the large lipid 10.0 β-actin vacuoles present throughout the liver parenchyma. On a 0.1% phytol diet (E), PhyhϪ/Ϫ mice showed signs of microsteatosis (small lipid vacuoles within hepatocytes). (Scale bar: 100 ␮m.) Fig. 1. Generation of targeting vector and PhyhϪ/Ϫ mice. (A) Strategy of gene targeting. The WT allele, targeting vector and the targeted allele are depicted. After homologous recombination, exons 4–7 and parts of introns 3 probably caused by lipoatrophy, because upon dissection, almost and 7 are deleted. The location of the 5Ј probe used for Southern blot analysis no white fat could be observed in the PhyhϪ/Ϫ mice after the is shown. (B) Southern blot analysis of genomic DNA isolated from ES cells, 0.25% phytol diet. Ј digested with EcoRV and BamHI, and probed with the 5 probe yielded a Because of the phytol diets, phytanic acid accumulated in 12.3-kb fragment for the WT allele (ϩ/ϩ) and a 10-kb fragment for the targeted allele (ϩ/Ϫ). (C) Genotyping by PCR on genomic DNA. Amplification plasma and tissues (Fig. 2). After 3 weeks on the 0.25% phytol from the WT allele (ϩ/ϩ) resulted in a 201-bp fragment and amplification from diet, plasma phytanic acid levels Ͼ1 mmol/L were reached. Such the targeted allele (Ϫ/Ϫ) a fragment of 260 bp. (D)(Upper) PCR analysis of liver levels have also been reported in Refsum disease patients (8). Of cDNA from WT and PhyhϪ/Ϫ mice. No amplification of exons 1–8 could be the different tissues analyzed, liver showed the highest accumu- Ϫ Ϫ detected in Phyh / mice. (Lower) A control for cDNA amplification was lation of phytanic acid, followed by kidney, testis, and cerebel- ␤ carried out with primers for -actin.
Recommended publications
  • Abstract DRAYTON, JOSEPHINE BENTLEY
    Abstract DRAYTON, JOSEPHINE BENTLEY. Methylated Medium- and Long-Chain Fatty Acids as Novel Sources of Anaplerotic Carbon for Exercising Mice. (Under the direction of Dr. Jack Odle and Dr. Lin Xi.) We hypothesized that methylated fatty acids (e.g. 2-methylpentanoic acid (2MeP), phytanic acid or pristanic acid) would provide a novel source of anaplerotic carbon and thereby enhance fatty acid oxidation, especially under stressed conditions when tricarboxylic acid (TCA) cycle intermediates are depleted. The optimal dose of 2MeP, hexanoic acid (C6) and pristanic acid for increasing in vitro [1-14C]-oleic acid oxidation in liver or skeletal muscle homogenates from fasted mice was determined using incremental doses of 0, 0.25, 0.5, 0.75, or 1.0 mM. The 0.25 mM amount maximally stimulated liver tissue oxidation of 14 14 14 [1- C]-oleate to CO2 and [ C]-acid soluble products (ASP; P < 0.05). Similar incubations of 0.25 mM 2MeP, C6, palmitate, phytanic acid, or pristanic acid or 0.1 mM malate or propionyl-CoA were conducted with liver or skeletal muscle homogenates from exercised or sedentary mice. In vitro oxidation of [1-14C]-oleic acid in liver homogenates with 2MeP 14 14 increased mitochondrial CO2 accumulation (P <0.05), but no change in [ C]-ASP accumulation as compared to C6 (P > 0.05). Phytanic acid treatment increased [14C]-ASP accumulation in liver tissue as compared to palmitate (P < 0.05). Exercise increased [14C] accumulations (P < 0.05). Results were consistent with our hypothesis that methyl-branched fatty acids (2-MeP, phytanic and pristanic acids) provide a novel source of anaplerotic carbon and thereby stimulate in vitro fatty acid oxidation in liver and skeletal muscle tissues.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox Et Al
    US 20070254315A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox et al. (43) Pub. Date: Nov. 1, 2007 (54) SCREENING FOR NEUROTOXIC AMINO (60) Provisional application No. 60/494.686, filed on Aug. ACID ASSOCATED WITH NEUROLOGICAL 12, 2003. DSORDERS Publication Classification (75) Inventors: Paul A. Cox, Provo, UT (US); Sandra A. Banack, Fullerton, CA (US); Susan (51) Int. Cl. J. Murch, Cambridge (CA) GOIN 33/566 (2006.01) GOIN 33/567 (2006.01) Correspondence Address: (52) U.S. Cl. ............................................................ 435/721 PILLSBURY WINTHROP SHAW PITTMAN LLP (57) ABSTRACT ATTENTION: DOCKETING DEPARTMENT Methods for screening for neurological disorders are dis P.O BOX 105OO closed. Specifically, methods are disclosed for screening for McLean, VA 22102 (US) neurological disorders in a Subject by analyzing a tissue sample obtained from the subject for the presence of (73) Assignee: THE INSTITUTE FOR ETHNO elevated levels of neurotoxic amino acids or neurotoxic MEDICINE, Provo, UT derivatives thereof associated with neurological disorders. In particular, methods are disclosed for diagnosing a neu (21) Appl. No.: 11/760,668 rological disorder in a subject, or predicting the likelihood of developing a neurological disorder in a Subject, by deter (22) Filed: Jun. 8, 2007 mining the levels of B-N-methylamino-L-alanine (BMAA) Related U.S. Application Data in a tissue sample obtained from the subject. Methods for screening for environmental factors associated with neuro (63) Continuation of application No. 10/731,411, filed on logical disorders are disclosed. Methods for inhibiting, treat Dec. 8, 2003, now Pat. No. 7,256,002.
    [Show full text]
  • Substrate Specificity of Rat Liver Mitochondrial Carnitine Palmitoyl Transferase I: Evidence Against S-Oxidation of Phytanic Acid in Rat Liver Mitochondria
    FEBS 15107 FEBS Letters 359 (1995) 179 183 Substrate specificity of rat liver mitochondrial carnitine palmitoyl transferase I: evidence against s-oxidation of phytanic acid in rat liver mitochondria Harmeet Singh*, Alfred Poulos Department of Chemical Pathology, Women's and Children's Hospital 72 King William Road, North Adelaide, SA 5006, Australia Received 23 December 1994 demonstrated that CPTI activity is reversibly inhibited by Abstract The two branched chain fatty acids pristanic acid malonyl-CoA. Recently, it has been shown that malonyl-CoA (2,6,10,14-tetramethylpentadecanoic acid) and phytanic acid inhibits peroxisomal, microsomal and plasma membrane car- (3,7,11,15-tetramethylhexadecanoic acid) were converted to co- nitine acyl transferases [8,10,13]. Therefore, in order to under- enzyme A thioesters by rat liver mitochondrial outer membranes. However, these branched chain fatty acids could not be converted stand the role of CPTI in fatty acid oxidation, CPTI must be to pristanoyl and phytanoyl carnitines, respectively, by mitochon- separated from other carnitine acyl transferases. In view of the drial outer membranes. As expected, the unbranched long chain difficulties in isolating CPTI in the active state, we decided to fatty acids, stearic acid and palmitic acid, were rapidly converted investigate CPTI activity in highly purified mitochondrial outer to stearoyl and palmitoyl carnitines, respectively, by mitochon- membranes from rat liver. We present evidence that branched drial outer membranes. These observations indicate that the chain fatty acids with ~- or fl-methyl groups are poor substrates branched chain fatty acids could not be transported into mito- for CPTI, suggesting that these branched chain fatty acids chondria.
    [Show full text]
  • Peripheral Neuropathy in Complex Inherited Diseases: an Approach To
    PERIPHERAL NEUROPATHY IN COMPLEX INHERITED DISEASES: AN APPROACH TO DIAGNOSIS Rossor AM1*, Carr AS1*, Devine H1, Chandrashekar H2, Pelayo-Negro AL1, Pareyson D3, Shy ME4, Scherer SS5, Reilly MM1. 1. MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK. 2. Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK. 3. Unit of Neurological Rare Diseases of Adulthood, Carlo Besta Neurological Institute IRCCS Foundation, Milan, Italy. 4. Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA 5. Department of Neurology, University of Pennsylvania, Philadelphia, PA 19014, USA. * These authors contributed equally to this work Corresponding author: Mary M Reilly Address: MRC Centre for Neuromuscular Diseases, 8-11 Queen Square, London, WC1N 3BG, UK. Email: [email protected] Telephone: 0044 (0) 203 456 7890 Word count: 4825 ABSTRACT Peripheral neuropathy is a common finding in patients with complex inherited neurological diseases and may be subclinical or a major component of the phenotype. This review aims to provide a clinical approach to the diagnosis of this complex group of patients by addressing key questions including the predominant neurological syndrome associated with the neuropathy e.g. spasticity, the type of neuropathy, and the other neurological and non- neurological features of the syndrome. Priority is given to the diagnosis of treatable conditions. Using this approach, we associated neuropathy with one of three major syndromic categories - 1) ataxia, 2) spasticity, and 3) global neurodevelopmental impairment. Syndromes that do not fall easily into one of these three categories can be grouped according to the predominant system involved in addition to the neuropathy e.g.
    [Show full text]
  • Case Vignettes
    “Doc, DO I Have Neuropathy?” Case Vignettes Susan, 50 Gwenn, 32 John, 52 Sally, 42 DM – 12 yrs Hypothyroidism No PMH No PMH B/N/T – 2 yrs N/T at night B/N/T – 6 days B/N/T – few months 3 months Stanley Jones P. Iyadurai, MSc, PhD, MD Hands, Hands, Arms Hands, Feet Assistant Professor of Neurology Feet Right hand Feet, Legs Burning Pain Neuromuscular Division, Department of Neurology Arms, Difficulty Pain Pain The Ohio State University Wexner Medical Center Legs Opening jars Breathing Redness Imbalance Normal gait Imbalance Normal Strength “Neuropathy” - Definition Neuropathy - General Theme • Symmetric • “Neuron” and “Pathos” (Greek) • Insidious • More prominent distally and starts in • Disease of the Peripheral Nerve legs • Involves both motor and sensory • Dysfunction of the nerves outside of components the central nervous system • May cause pain • May cause loss of balance • Progressive, but not debilitating 1 Not all that tingles is Classification - Functional neuropathy ‘numbness and tingling’ • Motor – affects the motor nerves Weakness • not all numbness and tingling is • Sensory peripheral nerve ‒ Pain • RLS ‒ Small Fiber ‒ Large Fiber • edema ‒ Large and Small Fiber • deconditioning ‒ Neuronopathy (ganglionopathy) • central nervous system • Autonomic • Sweating Changes, Blood Pressure Changes • nerve root [‘sciatica’] Classification – Time-course Classification – Time-course • Acute Immune-mediated • Congenital/Hereditary • Infantile Weakness • Childhood-onset • Acquired • Relapsing ‒ Reversible? • Hereditary ‒ Demyelinating?
    [Show full text]
  • ICD9 & ICD10 Neuromuscular Codes
    ICD-9-CM and ICD-10-CM NEUROMUSCULAR DIAGNOSIS CODES ICD-9-CM ICD-10-CM Focal Neuropathy Mononeuropathy G56.00 Carpal tunnel syndrome, unspecified Carpal tunnel syndrome 354.00 G56.00 upper limb Other lesions of median nerve, Other median nerve lesion 354.10 G56.10 unspecified upper limb Lesion of ulnar nerve, unspecified Lesion of ulnar nerve 354.20 G56.20 upper limb Lesion of radial nerve, unspecified Lesion of radial nerve 354.30 G56.30 upper limb Lesion of sciatic nerve, unspecified Sciatic nerve lesion (Piriformis syndrome) 355.00 G57.00 lower limb Meralgia paresthetica, unspecified Meralgia paresthetica 355.10 G57.10 lower limb Lesion of lateral popiteal nerve, Peroneal nerve (lesion of lateral popiteal nerve) 355.30 G57.30 unspecified lower limb Tarsal tunnel syndrome, unspecified Tarsal tunnel syndrome 355.50 G57.50 lower limb Plexus Brachial plexus lesion 353.00 Brachial plexus disorders G54.0 Brachial neuralgia (or radiculitis NOS) 723.40 Radiculopathy, cervical region M54.12 Radiculopathy, cervicothoracic region M54.13 Thoracic outlet syndrome (Thoracic root Thoracic root disorders, not elsewhere 353.00 G54.3 lesions, not elsewhere classified) classified Lumbosacral plexus lesion 353.10 Lumbosacral plexus disorders G54.1 Neuralgic amyotrophy 353.50 Neuralgic amyotrophy G54.5 Root Cervical radiculopathy (Intervertebral disc Cervical disc disorder with myelopathy, 722.71 M50.00 disorder with myelopathy, cervical region) unspecified cervical region Lumbosacral root lesions (Degeneration of Other intervertebral disc degeneration,
    [Show full text]
  • Come to Your Senses: Atypical Polyneuropathy
    Come To Your Senses: Atypical Polyneuropathy Damian Campbell, DO; Joshua Lovell, DO; Krishna Pokala, MD; Yessar Hussain, MD The University of Texas at Austin, Department of Neurology, Dell Medical School Clinical History Workup Diagnosis and Discussion Pathophysiology 35 year old female was referred to the neurology clinic for evaluation of an Electrodiagnostics Our patients clinical history and genetic testing results were consistent and There is a great deal of variability in the presentation of symptoms; as there is abnormal gait. She reported slow but progressive changes in her gait over the she was diagnosed with PHARC: Polyneuropathy, Hearing Loss, Ataxia, variability amongst the gene mutations leading to inactive ABHD12. Despite the course of the last ten years. Her changes ranged from a sense of feeling off- Nerve Conductions Retinitis Pigmentosa, Cataracts. variability that exists within gene mutations, it is posited that all of the balanced to shooting pain down each leg She felt that her pain originated in her Distal Latency Peak Amplitude Conduction Velocity homozygous mutations result in complete loss-of-function of the ABHD12 low back and radiated posteriorly down each leg without any accompanying Latency (m/sec) PHARC was first described by Fiskerstrand et al in 2008.(1) At that time they enzyme. Reduction in ABHD12 results in increased levels of endocannabinoid Right Median CMAP 4.3 7.8 numbness, weakness, or bowel and bladder involvement. Of significance is her were attempting to genetically characterize a neurological disorder that arachidonoyl glycerol 2-AG, which has important functions in synaptic plasticity 11.6 5.8 26 resembled Refsum disease in a Norwegian family.
    [Show full text]
  • Retinitis Pigmentosa, Ataxia, and Peripheral Neuropathy
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.46.3.206 on 1 March 1983. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1983;46:206-213 Retinitis pigmentosa, ataxia, and peripheral neuropathy RR TUCK, JG McLEOD From the Department ofMedicine, University ofSydney, Australia SUMMARY The clinical features of four patients with retinitis pigmentosa, ataxia and peripheral neuropathy but with no increase in serum phytanic acid are reported. Three patients also had sensorineural deafness and radiological evidence of cerebellar atrophy. Nerve conduction studies revealed abnormalities of sensory conduction and normal or only mild slowing of motor conduc- tion velocity. Sural nerve biopsy demonstrated a reduction in the density of myelinated fibres. There were no onion bulb formations. These cases clinically resemble Refsum's disease, but differ in having no detectable biochemical abnormality, and a peripheral neuropathy which is not hypertrophic in type. They may represent unusual cases of spinocerebellar degeneration. Retinitis pigmentosa occurs infrequently as an iso- (WAIS). He had a speech impediment but was not dysar- Protected by copyright. lated finding in otherwise healthy individuals and thric. He was of short stature, had a small head and pes families. Its association with deafness, with or with- cavus but no kyphoscoliosis. His visual acuity in the right eye was 6/60 while in the left he could count fingers only. out other neurological abnormalities is much less The right visual field was constricted but the left could not common but nevertheless well recognised.1 In be tested. The optic discs were pale, the retinal vessels heredopathia atactica polyneuritiformis (Refsum's small in diameter and throughout the retinae there was disease), abetalipoproteinaemia, and the Keams- scattered "bone corpuscle" pigmentation.
    [Show full text]
  • Oxidation of Pristanic Acid in Fibroblasts and Its Application to the Diagnosis of Peroxisomal ␤-Oxidation Defects
    Oxidation of Pristanic Acid in Fibroblasts and Its Application to the Diagnosis of Peroxisomal ␤-Oxidation Defects Barbara C. Paton,* Peter C. Sharp,* Denis I. Crane,‡ and Alf Poulos* *Department of Chemical Pathology, Women’s and Children’s Hospital, North Adelaide, South Australia 5006; and ‡Faculty of Science and Technology, Griffith University, Nathan, Queensland 4111, Australia Abstract phology of peroxisomes in their tissues is accompanied by a series of biochemical abnormalities. Subsequent complemen- Pristanic acid oxidation measurements proved a reliable tation analyses have indicated that the three clinical pheno- tool for assessing complementation in fused heterokaryons types can arise from defects in a single gene (1, 2). In addition, from patients with peroxisomal biogenesis defects. We, in spite of all of these patients sharing the same series of bio- therefore, used this method to determine the complementa- chemical abnormalities, it is now clear that the peroxisomal tion groups of patients with isolated defects in peroxisomal biogenesis disorders, as a group, can result from defects in any ␤-oxidation. The rate of oxidation of pristanic acid was re- of at least 10 genes (2, 3). Recent evidence suggests that three duced in affected cell lines from all of the families with in- of these complementation groups have defects in the import of herited defects in peroxisomal ␤-oxidation, thus excluding peroxisomal matrix proteins via both of the known targeting the possibility of a defective acyl CoA oxidase. Complemen- mechanisms (peroxisomal targeting signals [PTS]1 1 and 2), tation analyses indicated that all of the patients belonged to but that for one of the complementation groups the defect is the same complementation group, which corresponded to restricted to proteins targeted via PTS1 (4).
    [Show full text]
  • LIPID METABOLISM-3 Regulation of Fatty Acid Oxidation
    LIPID METABOLISM-3 Regulation of Fatty Acid Oxidation 1. Carnitine shuttle by which fatty acyl groups are carried from cytosolic fatty acyl–CoA into the mitochondrial matrix is rate limiting for fatty acid oxidation and is an important point of regulation. 2. Malonyl-CoA, the first intermediate in the cytosolic biosynthesis of long-chain fatty acids from acetyl-CoA increases in concentration whenever the body is well supplied with carbohydrate; excess glucose that cannot be oxidized or stored as glycogen is converted in the cytosol into fatty acids for storage as triacylglycerol. The inhibition of CAT I by malonyl-CoA ensures that the oxidation of fatty acids is inhibited whenever the liver is actively making triacylglycerols from excess glucose. Two of the enzymes of β-oxidation are also regulated by metabolites that signal energy sufficiency. 3. When the [NADH]/[NAD+] ratio is high, β- hydroxyacyl-CoA dehydrogenase is inhibited; 4. When acetyl-CoA concentration is high, thiolase is inhibited. 5. During periods of vigorous muscle contraction or during fasting, the fall in [ATP] and the rise in [AMP] activate the AMP-activated protein kinase (AMPK). AMPK phosphorylates several target enzymes, including acetyl-CoA carboxylase (ACC), which catalyzes malonyl-CoA synthesis. Phosphorylation and inhibition of ACC lowers the concentration of malonyl-CoA, relieving the inhibition of acyl–carnitine transport into mitochondria and allowing oxidation to replenish the supply of ATP. MITOCHONDRIA PEROXISOME Respiratory chain Respiratory chain Out of organel To citric acid cycle Out of organel Comparison of mitochondrial and peroxisomal beta-oxidation • Another important difference between mitochondrial and peroxisomal oxidation in mammals is in the specificity for fatty acyl– CoAs; the peroxisomal system is much more active on very-long-chain fatty acids such as hexacosanoic acid (26:0) and on branched chain fatty acids such as phytanic acid and pristanic acid.
    [Show full text]
  • Ncomms5993.Pdf
    ARTICLE Received 16 Jul 2014 | Accepted 14 Aug 2014 | Published 26 Sep 2014 | Updated 9 Jan 2015 DOI: 10.1038/ncomms5993 The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism Shabnam Pooya1, Xiaona Liu2, V.B. Sameer Kumar1, Jane Anderson1, Fumiyasu Imai3, Wujuan Zhang4, Georgianne Ciraolo5, Nancy Ratner2, Kenneth D.R. Setchell4, Yutaka Yoshida3, Michael P. Jankowski6 & Biplab Dasgupta1 A prerequisite to myelination of peripheral axons by Schwann cells (SCs) is SC differentiation, and recent evidence indicates that reprogramming from a glycolytic to oxidative metabolism occurs during cellular differentiation. Whether this reprogramming is essential for SC differentiation, and the genes that regulate this critical metabolic transition are unknown. Here we show that the tumour suppressor Lkb1 is essential for this metabolic transition and myelination of peripheral axons. Hypomyelination in the Lkb1-mutant nerves and muscle atrophy lead to hindlimb dysfunction and peripheral neuropathy. Lkb1-null SCs failed to optimally activate mitochondrial oxidative metabolism during differentiation. This deficit was caused by Lkb1-regulated diminished production of the mitochondrial Krebs cycle substrate citrate, a precursor to cellular lipids. Consequently, myelin lipids were reduced in Lkb1-mutant mice. Restoring citrate partially rescued Lkb1-mutant SC defects. Thus, Lkb1-mediated metabolic shift during SC differentiation increases mitochondrial metabolism and lipogenesis, necessary for normal myelination. 1 Department of Oncology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA. 2 Department of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA. 3 Department of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA.
    [Show full text]
  • PHYH Gene Phytanoyl-Coa 2-Hydroxylase
    PHYH gene phytanoyl-CoA 2-hydroxylase Normal Function The PHYH gene provides instructions for making an enzyme called phytanoyl-CoA hydroxylase. This enzyme is critical for the normal function of cell structures called peroxisomes. These sac-like compartments contain enzymes needed to break down many different substances, including fatty acids and certain toxic compounds. One substance that is broken down in peroxisomes is phytanic acid, a type of fatty acid obtained from the diet (particularly from beef and dairy products). Phytanoyl-CoA hydroxylase is responsible for one of the first steps in breaking down phytanic acid as part of a process known as alpha-oxidation. In subsequent steps, additional enzymes in peroxisomes and other parts of the cell further process this compound into smaller molecules that the body can use for energy. Researchers suspect that phytanoyl-CoA hydroxylase may have other functions in addition to its role in breaking down phytanic acid. For example, this enzyme appears to help determine the number of peroxisomes within cells and is involved in regulating their activity. Health Conditions Related to Genetic Changes Refsum disease Mutations in the PHYH gene have been found to cause more than 90 percent of all cases of Refsum disease. About 30 mutations in this gene have been identified. These mutations alter the structure or production of phytanoyl-CoA hydroxylase, which reduces the enzyme's activity. A shortage of this enzyme disrupts the breakdown of phytanic acid in peroxisomes. As a result, phytanic acid and related compounds build up in the body's tissues. The accumulation of phytanic acid is toxic to cells, although it is unclear how an excess of this substance affects vision and smell and causes the other specific features of Refsum disease.
    [Show full text]