Charcot-Marie-Tooth Disease and Other Genetic Polyneuropathies

Total Page:16

File Type:pdf, Size:1020Kb

Charcot-Marie-Tooth Disease and Other Genetic Polyneuropathies Review Article 04/25/2018 on mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== by https://journals.lww.com/continuum from Downloaded Downloaded Address correspondence to Dr Sindhu Ramchandren, University of Michigan, from Charcot-Marie-Tooth Department of Neurology, https://journals.lww.com/continuum 2301 Commonwealth Blvd #1023, Ann Arbor, MI 48105, Disease and [email protected]. Relationship Disclosure: Dr Ramchandren has served Other Genetic on advisory boards for Biogen and Sarepta Therapeutics, by mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== Inc, and has received research/grant support from Polyneuropathies the Muscular Dystrophy Association (Foundation Sindhu Ramchandren, MD, MS Clinic Grant) and the National Institutes of Health (K23 NS072279). Unlabeled Use of ABSTRACT Products/Investigational Purpose of Review: Genetic polyneuropathies are rare and clinically heterogeneous. Use Disclosure: This article provides an overview of the clinical features, neurologic and electrodiagnostic Dr Ramchandren reports no disclosure. findings, and management strategies for Charcot-Marie-Tooth disease and other * 2017 American Academy genetic polyneuropathies as well as an algorithm for genetic testing. of Neurology. Recent Findings: In the past 10 years, many of the mutations causing genetic polyneuropathies have been identified. International collaborations have led to the development of consortiums that are undertaking careful genotype-phenotype correlations to facilitate the development of targeted therapies and validation of outcome measures for future clinical trials. Clinical trials are currently under way for some genetic polyneuropathies. Summary: Readers are provided a framework to recognize common presentations of various genetic polyneuropathies and a rationale for current diagnostic testing and management strategies in genetic polyneuropathies. Continuum (Minneap Minn) 2017;23(5):1360–1377. INTRODUCTION the primary hereditary motor sensory Chronic polyneuropathies have a broad neuropathies, known collectively as differential, ranging from the relatively Charcot-Marie-Tooth disease (CMT); common causes, such as diabetes melli- the hereditary sensory and autonomic tus, to rare genetic polyneuropathies. neuropathies; and the polyneuropathies While at times strong evidence exists for associated with genetic disorders that an underlying genetic polyneuropathy have systemic neurologic manifestations. (eg, clinical presentation in youth, pos- itive family history, slowly progressive PRIMARY HEREDITARY MOTOR course), genetic polyneuropathies can SENSORY NEUROPATHIES occur from de novo mutations, are The primary hereditary motor sensory clinically heterogeneous, and can mimic neuropathies are known collectively other disorders. Given the long list of as Charcot-Marie-Tooth disease (CMT) possible etiologies and the limited treat- after the three investigators who de- ment options, defining the specific scribed a familial slowly progressive diagnostic workup and extent of genetic peroneal muscular atrophy in 1886.3,4 testing can be challenging.1,2 This Around the same time, Dejerine and on article presents a perspective on clinical Sottas described a hypertrophic intersti- 04/25/2018 evaluation, testing, and management of tial neuritis associated with a severe genetic polyneuropathies, focusing on infantile form of CMT.5 1360 ContinuumJournal.com October 2017 Copyright © American Academy of Neurology. Unauthorized reproduction of this article is prohibited. Classification of Charcot-Marie- KEY POINTS the number of known mutations in h Charcot-Marie-Tooth Tooth Disease genes has grown, a new system that disease is not a single Early classification schemes divided emphasizes genetic classification is entity but rather a 11 CMT into three types: CMT1, a predom- now under consideration. spectrum of inantly demyelinating polyneuropathy neuropathic disorders based on uniformly slow conduction Genetics of Charcot-Marie-Tooth that result from velocities of 38 meters per second or Disease genetic mutations. less in the upper extremities; CMT2, a Over 90% of patients with CMT harbor a Charcot-Marie-Tooth predominantly axonal polyneuropathy mutation in the PMP22, MFN2,myelin disease can be classified with relatively normal velocities but proteinzero(MPZ), or gap junction into type 1 (CMT1, prominently reduced sensory nerve or protein beta 1 (GJB1)gene.12 For the demyelinating), type 2 (CMT2, axonal), compound muscle action potential remaining 10%, inheritance patterns and Dejerine-Sottas disease (CMAP) amplitudes, indicating axonal associated comorbidities can help de- 10 (severe infantile-onset loss; and CMT3, speculated to include fine the genetic etiology (Table 7-1). Charcot-Marie-Tooth recessive disorders with a severe Most cases of CMT are inherited in an disease), type 4 (CMT4, 6Y9 phenotype. autosomal dominant manner. An auto- autosomal recessive), The spectrum of neuropathic disor- somal dominant mutation can also and type 1X (CMT1X, ders in the CMT category has broad- occurdenovoinapatient.Childrenof X-linked inheritance). ened, but several aspects of the original a parent with an autosomal dominant h Over 90% of patients classification scheme have been re- neuropathy have a 50% chance of with Charcot-Marie-Tooth tained. CMT remains broadly classified inheriting the disease, although variable disease have a mutation into CMT1 (demyelinating) and CMT2 expression often results in a milder or in the PMP22, MFN2, (axonal). Dejerine-Sottas disease is now more severe disease than the parent. If MPZ,orGJB1 gene. preferred over CMT3 to describe the the autosomal dominant mutation oc- h An autosomal dominant group of severely affected infants curred de novo, children of the affected mutation can occur de with CMT regardless of inheritance parent will also have a 50% chance of novo in a patient. pattern or genetic mutation. CMT4 having the disorder. Some cases of CMT h Each child of a parent refers to autosomal recessive CMT. are X-linked dominant; only one mutant with an autosomal With the discovery of the causal genetic gene copy is needed for the disease to dominant neuropathy mutations, letters have been added to be present. An affected mother with has a 50% chance of indicate the gene. For example, dupli- CMT1X has a 50% chance of passing it inheriting the disease. cation of the peripheral myelin protein on to her sons or to her daughters. An h A father who has 22 gene (PMP22)causesCMT1A,and affected father with CMT1X will never Charcot-Marie-Tooth mutations in the mitofusin 2 gene transmit the mutation to his sons, but disease type 1X will (MFN2) cause CMT2A. has a 100% chance of transmitting it to always transmit the The current CMT classification his daughters. Finally, some CMT cases disease to his daughters system is shown in Table 7-1.10 This are inherited in an autosomal recessive but never to his sons. system does not fully accommodate manner; persons with one normal copy the full genotypic and phenotypic and one mutant copy are carriers and variability of CMT. For example, are unaffected. The children of two CMT1X does not fit into this scheme carriers have a 25% chance of inheriting as it has intermediately slowed con- both copies and having the disease. All duction velocities and X-linked in- children of an affected parent with auto- heritance, so it is grouped separately. somal recessive disease will have one Some dominantly inherited forms copy of the mutant gene; assuming the of CMT have intermediate-range other parent is not also a carrier, none slowing of conduction velocities in of the children will have the disease. the arms and are grouped separately Approximately 80% to 90% of cases as a dominant-intermediate form. As of autosomal dominant CMT1 are Continuum (Minneap Minn) 2017;23(5):1360–1377 ContinuumJournal.com 1361 Copyright © American Academy of Neurology. Unauthorized reproduction of this article is prohibited. Charcot-Marie-Tooth Disease CMT1A, which is due to a 1.4-Mb recurrent pressure palsies. Of the auto- duplication of the PMP22 gene on somal dominant CMT1 cases, 10% are chromosome 17p11.2, expressed in due to CMT1B, caused by mutations in Schwann cells that produce myelin the MPZ gene, which results in delete- sheaths for peripheral nerves. One rious overexpression of the major mye- percent to nine percent are due to a lin structural protein.12Y14 PMP22 deletion, which causes heredi- CMT1X is caused by a mutation on tary neuropathy with liability to pres- the X chromosome in the GJB1 gene, sure palsies (HNPP), presenting with also known as the connexin 32 gene. a TABLE 7-1 Classification Scheme of Charcot-Marie-Tooth Disease Percentage of Charcot-Marie- Gene/ Type Pathology/Phenotype Inheritance Tooth Cases Subtype Chromosome CMT1 Myelin abnormalities; Autosomal 50Y80 CMT1A PMP22 distal weakness, atrophy, dominant CMT1B MPZ and sensory loss; onset: CMT1C LITAF È5 to 20 years; motor nerve conduction velocity CMT1D EGR2 G38 meters per second CMT1E PMP22 CMT1F/2E NEFL CMT2 Axonal degeneration; Autosomal 10Y15 CMT2A MFN2 distal weakness and dominant CMT2B RAB7A atrophy, variable CMT2C TRPV4 sensory involvement; complicated and CMT2D GARS severe cases described; CMT2E/1F
Recommended publications
  • Pediatric Autonomic Disorders
    STATE-OF-THE-ART REVIEW ARTICLE Editor’s Note The Journal is interested in receiving for review short articles (1000 words) summarizing recent advances which have been made in the past 2 or 3 years in specialized areas of research and patient care. Pediatric Autonomic Disorders Felicia B. Axelrod, MDa, Gisela G. Chelimsky, MDb, Debra E. Weese-Mayer, MDc aDepartment of Pediatrics and Neurology, New York University School of Medicine, New York, New York; bDepartment of Pediatrics, Case Western Reserve School of Medicine, Cleveland, Ohio; cDepartment of Pediatrics, Rush University School of Medicine, Chicago, Illinois The authors have indicated they have no financial relationships relevant to this article to disclose. ABSTRACT The scope of pediatric autonomic disorders is not well recognized. The goal of this review is to increase awareness of the expanding spectrum of pediatric autonomic disorders by providing an overview of the autonomic nervous system, including www.pediatrics.org/cgi/doi/10.1542/ peds.2005-3032 the roles of its various components and its pervasive influence, as well as its doi:10.1542/peds.2005-3032 intimate relationship with sensory function. To illustrate further the breadth and Key Words complexities of autonomic dysfunction, some pediatric disorders are described, autonomic nervous system, cardiovascular, concentrating on those that present at birth or appear in early childhood. sympathetic nervous system, parasympathetic nervous system, viscerosensory Abbreviations FD—familial dysautonomia ANS—autonomic nervous system CAN—central autonomic network PHOX2B—paired-like homeobox 2B NGF—nerve growth factor CFS—chronic fatigue syndrome HSAN—hereditary sensory and autonomic neuropathy CIPA—congenital insensitivity to pain with anhidrosis CCHS—congenital central hypoventilation syndrome CVS—cyclic vomiting syndrome POTS—postural orthostatic tachycardia Accepted for publication Feb 13, 2006 Address correspondence to Felicia B.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox Et Al
    US 20070254315A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0254315 A1 Cox et al. (43) Pub. Date: Nov. 1, 2007 (54) SCREENING FOR NEUROTOXIC AMINO (60) Provisional application No. 60/494.686, filed on Aug. ACID ASSOCATED WITH NEUROLOGICAL 12, 2003. DSORDERS Publication Classification (75) Inventors: Paul A. Cox, Provo, UT (US); Sandra A. Banack, Fullerton, CA (US); Susan (51) Int. Cl. J. Murch, Cambridge (CA) GOIN 33/566 (2006.01) GOIN 33/567 (2006.01) Correspondence Address: (52) U.S. Cl. ............................................................ 435/721 PILLSBURY WINTHROP SHAW PITTMAN LLP (57) ABSTRACT ATTENTION: DOCKETING DEPARTMENT Methods for screening for neurological disorders are dis P.O BOX 105OO closed. Specifically, methods are disclosed for screening for McLean, VA 22102 (US) neurological disorders in a Subject by analyzing a tissue sample obtained from the subject for the presence of (73) Assignee: THE INSTITUTE FOR ETHNO elevated levels of neurotoxic amino acids or neurotoxic MEDICINE, Provo, UT derivatives thereof associated with neurological disorders. In particular, methods are disclosed for diagnosing a neu (21) Appl. No.: 11/760,668 rological disorder in a subject, or predicting the likelihood of developing a neurological disorder in a Subject, by deter (22) Filed: Jun. 8, 2007 mining the levels of B-N-methylamino-L-alanine (BMAA) Related U.S. Application Data in a tissue sample obtained from the subject. Methods for screening for environmental factors associated with neuro (63) Continuation of application No. 10/731,411, filed on logical disorders are disclosed. Methods for inhibiting, treat Dec. 8, 2003, now Pat. No. 7,256,002.
    [Show full text]
  • Peripheral Neuropathy in Complex Inherited Diseases: an Approach To
    PERIPHERAL NEUROPATHY IN COMPLEX INHERITED DISEASES: AN APPROACH TO DIAGNOSIS Rossor AM1*, Carr AS1*, Devine H1, Chandrashekar H2, Pelayo-Negro AL1, Pareyson D3, Shy ME4, Scherer SS5, Reilly MM1. 1. MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK. 2. Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK. 3. Unit of Neurological Rare Diseases of Adulthood, Carlo Besta Neurological Institute IRCCS Foundation, Milan, Italy. 4. Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA 5. Department of Neurology, University of Pennsylvania, Philadelphia, PA 19014, USA. * These authors contributed equally to this work Corresponding author: Mary M Reilly Address: MRC Centre for Neuromuscular Diseases, 8-11 Queen Square, London, WC1N 3BG, UK. Email: [email protected] Telephone: 0044 (0) 203 456 7890 Word count: 4825 ABSTRACT Peripheral neuropathy is a common finding in patients with complex inherited neurological diseases and may be subclinical or a major component of the phenotype. This review aims to provide a clinical approach to the diagnosis of this complex group of patients by addressing key questions including the predominant neurological syndrome associated with the neuropathy e.g. spasticity, the type of neuropathy, and the other neurological and non- neurological features of the syndrome. Priority is given to the diagnosis of treatable conditions. Using this approach, we associated neuropathy with one of three major syndromic categories - 1) ataxia, 2) spasticity, and 3) global neurodevelopmental impairment. Syndromes that do not fall easily into one of these three categories can be grouped according to the predominant system involved in addition to the neuropathy e.g.
    [Show full text]
  • Case Vignettes
    “Doc, DO I Have Neuropathy?” Case Vignettes Susan, 50 Gwenn, 32 John, 52 Sally, 42 DM – 12 yrs Hypothyroidism No PMH No PMH B/N/T – 2 yrs N/T at night B/N/T – 6 days B/N/T – few months 3 months Stanley Jones P. Iyadurai, MSc, PhD, MD Hands, Hands, Arms Hands, Feet Assistant Professor of Neurology Feet Right hand Feet, Legs Burning Pain Neuromuscular Division, Department of Neurology Arms, Difficulty Pain Pain The Ohio State University Wexner Medical Center Legs Opening jars Breathing Redness Imbalance Normal gait Imbalance Normal Strength “Neuropathy” - Definition Neuropathy - General Theme • Symmetric • “Neuron” and “Pathos” (Greek) • Insidious • More prominent distally and starts in • Disease of the Peripheral Nerve legs • Involves both motor and sensory • Dysfunction of the nerves outside of components the central nervous system • May cause pain • May cause loss of balance • Progressive, but not debilitating 1 Not all that tingles is Classification - Functional neuropathy ‘numbness and tingling’ • Motor – affects the motor nerves Weakness • not all numbness and tingling is • Sensory peripheral nerve ‒ Pain • RLS ‒ Small Fiber ‒ Large Fiber • edema ‒ Large and Small Fiber • deconditioning ‒ Neuronopathy (ganglionopathy) • central nervous system • Autonomic • Sweating Changes, Blood Pressure Changes • nerve root [‘sciatica’] Classification – Time-course Classification – Time-course • Acute Immune-mediated • Congenital/Hereditary • Infantile Weakness • Childhood-onset • Acquired • Relapsing ‒ Reversible? • Hereditary ‒ Demyelinating?
    [Show full text]
  • Ataxia with Loss of Purkinje Cells in a Mouse Model for Refsum Disease
    Ataxia with loss of Purkinje cells in a mouse model for Refsum disease Sacha Ferdinandussea,1,2, Anna W. M. Zomerb,1, Jasper C. Komena, Christina E. van den Brinkb, Melissa Thanosa, Frank P. T. Hamersc, Ronald J. A. Wandersa,d, Paul T. van der Saagb, Bwee Tien Poll-Thed, and Pedro Britesa Academic Medical Center, Departments of aClinical Chemistry (Laboratory of Genetic Metabolic Diseases) and dPediatrics, Emma’s Children Hospital, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; bHubrecht Institute, Royal Netherlands Academy of Arts and Sciences 3584 CT Utrecht, The Netherlands; and cRehabilitation Hospital ‘‘De Hoogstraat’’ Rudolf Magnus Institute of Neuroscience, 3584 CG Utrecht, The Netherlands Edited by P. Borst, The Netherlands Cancer Institute, Amsterdam, The Netherlands, and approved October 3, 2008 (received for review June 23, 2008) Refsum disease is caused by a deficiency of phytanoyl-CoA hy- Clinically, Refsum disease is characterized by cerebellar droxylase (PHYH), the first enzyme of the peroxisomal ␣-oxidation ataxia, polyneuropathy, and progressive retinitis pigmentosa, system, resulting in the accumulation of the branched-chain fatty culminating in blindness, (1, 3). The age of onset of the symptoms acid phytanic acid. The main clinical symptoms are polyneuropathy, can vary from early childhood to the third or fourth decade of cerebellar ataxia, and retinitis pigmentosa. To study the patho- life. No treatment is available for patients with Refsum disease, genesis of Refsum disease, we generated and characterized a Phyh but they benefit from a low phytanic acid diet. Phytanic acid is knockout mouse. We studied the pathological effects of phytanic derived from dietary sources only, specifically from the chloro- acid accumulation in Phyh؊/؊ mice fed a diet supplemented with phyll component phytol.
    [Show full text]
  • GBS/CIDP Foundation International
    Guillain-Barré Syndrome GBS: An Acute Care Guide For Medical Professionals A publication of the GBS/CIDP Foundation International Guillain-Barré Syndrome: An Acute Care Guide For Medical Professionals A publication of the GBS/CIDP Foundation International 2012 Edition GBS/CIDP Foundation International The Holly Building 104 1/2 Forrest Avenue Narberth, PA 19072 Phone: 610.667.0131 Toll Free: 866.224.3301 Fax: 610.667.7036 [email protected] www.gbs-cidp.org Guillain-Barré Syndrome: An Acute Care Guide For Medical Professionals Contents Page Acknowledgements . i Introduction . 1 Initial Patient Evaluation . 4 Natural History of GBS: Implications for Patient Care . 6 Respiratory Complications . 8 Dysautonomia and Cardiovascular Complications . 12 Bladder, Bowel Dysfunction . 14 Metabolism: Nutrition, Hydration, Electrolytes . 14 Pain . 17 ICU Delirium . 18 Skin . 18 Musculo-Skeletal Issues, Occupational and Physical Therapy . 19 Infection . 22 Disorder Specific Treatments . 22 Appendix A. Checklist of Patient Issues to Monitor . 24 B. Diagnostic Criteria for GBS . 25 C. Prognosis . 26 References . 27 This pamphlet is provided as a service of the GBS/CIDP Foundation International Serving the medical community and patients with Guillain-Barré syndrome and related acute and chronic paralyzing disorders of the peripheral nerves. Acknowledgements Guillain-Barré syndrome (GBS) is a rare disorder. Some health professionals may not be familiar with treating it. A beautiful video by Tanya Ooraikul chronicled the superb care provided to her husband Kit during his recovery from GBS. His care at Gray Nuns Community Hospital in Edmonton, Alberta, Canada included 86 days in the intensive care unit. The video handsomely demonstrates the high quality of care that can be provided for this rare and complicated disorder in a community hospital.
    [Show full text]
  • Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease
    International Journal of Molecular Sciences Review Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease Fukiko Kitani-Morii 1,2,* and Yu-ichi Noto 2 1 Department of Molecular Pathobiology of Brain Disease, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan 2 Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-75-251-5793 Received: 31 August 2020; Accepted: 6 October 2020; Published: 8 October 2020 Abstract: Charcot-Marie-Tooth disease (CMT) is one of the most common inherited peripheral neuropathies. CMT patients typically show slowly progressive muscle weakness and sensory loss in a distal dominant pattern in childhood. The diagnosis of CMT is based on clinical symptoms, electrophysiological examinations, and genetic testing. Advances in genetic testing technology have revealed the genetic heterogeneity of CMT; more than 100 genes containing the disease causative mutations have been identified. Because a single genetic alteration in CMT leads to progressive neurodegeneration, studies of CMT patients and their respective models revealed the genotype-phenotype relationships of targeted genes. Conventionally, rodents and cell lines have often been used to study the pathogenesis of CMT. Recently, Drosophila has also attracted attention as a CMT model. In this review, we outline the clinical characteristics of CMT, describe the advantages and disadvantages of using Drosophila in CMT studies, and introduce recent advances in CMT research that successfully applied the use of Drosophila, in areas such as molecules associated with mitochondria, endosomes/lysosomes, transfer RNA, axonal transport, and glucose metabolism.
    [Show full text]
  • Unilateral Foot Drop: an Unusual Presentation of a More Common
    DOI: 10.7860/JCDR/2017/26249.10738 Case Report Unilateral Foot Drop: An Unusual Section Presentation of a more Common Internal Medicine Disease RAMESHWAR NATH CHAURASIA1, ABHISHEK PathaK2, VIJAY nath MISHRA3, DEEPIKA JOSHI4 ABSTRACT An isolated and unilateral foot drop due to intracranial lesion is quite rare. Presenting herein a case of a 14-year-old female who complained of inability to wear and hold slipper in her left foot. Detailed neurological examination revealed left foot dorsiflexion which had 1/5 muscle power along with brisk left ankle reflex. Magnetic resonance imaging of the brain revealed multiple conglomerate inflammatory granulomas in cerebrum and cerebellum, larger one in right parasagittal region with perifocal oedema. Magnetic resonance spectrum was suggestive of tuberculoma. Her chest X-ray chest revealed milliary shadowing. She was put on anti- tubercular drugs, steroid and a prophylactic anti-epileptic drug. The dorsiflexion improved to grade 4/5 after three weeks of treatment. The motor homunculus for foot is located in parasagittal area. Therefore, in patients with foot drop, we must keep high index of suspicion for parasagittal lesions, so that prompt diagnosis and early management can be done to prevent complications and improve the quality of life of patient. Keywords: Lower motor neuron, Magnetic resonance imaging, Spastic foot drop, Tuberculoma, Upper motor neuron CASE REPORT A 14-year-old female presented with history of difficulty in walking for last three days after left foot drop. She noticed difficulty in her left foot when she was trying to wear shoes go to school. Weakness gradually progressed within next two days so much so that she was unable to hold slipper and clear the ground without tripping by her left foot.
    [Show full text]
  • Physical Therapy & FSHD
    Physical Therapy & FSHD Facioscapulohumeral Muscular Dystrophy A Guide for Patients & Physical Therapists Authors: Wendy M. King, P.T., Assistant Professor, Neurology & Shree Pandya, P.T., M.S., Assistant Professor, Neurology & Physical Medicine and Rehabilitation A publication of the FSH Society, Inc. www.fshsociety.org Table of Contents Introduction ...............................................................................4 Facioscapulohumeral Dystrophy (FSHD) .....................5 Manifestations of Impairments Related to FSHD ......5 Exercise and FSHD ...................................................................7 Hydrotherapy (Water Therapy) and FSHD ..................9 Pain and FSHD ...........................................................................9 Surgical Management of Scapular Problems ............11 Who Are Physical Therapists &What Can You Expect When You See Them? .................................12 To Physical Therapists .......................................................14 Treatment of Pain .................................................................15 Summary ...................................................................................16 References ................................................................................17 About the FSH Society .........................................................18 Contact Information .............................................................19 ‐3‐ Introduction he purpose of this guide is to assist physical T therapists and patients to develop
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • What Is the Autonomic Nervous System?
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_3.iii31 on 21 August 2003. Downloaded from AUTONOMIC DISEASES: CLINICAL FEATURES AND LABORATORY EVALUATION *iii31 Christopher J Mathias J Neurol Neurosurg Psychiatry 2003;74(Suppl III):iii31–iii41 he autonomic nervous system has a craniosacral parasympathetic and a thoracolumbar sym- pathetic pathway (fig 1) and supplies every organ in the body. It influences localised organ Tfunction and also integrated processes that control vital functions such as arterial blood pres- sure and body temperature. There are specific neurotransmitters in each system that influence ganglionic and post-ganglionic function (fig 2). The symptoms and signs of autonomic disease cover a wide spectrum (table 1) that vary depending upon the aetiology (tables 2 and 3). In some they are localised (table 4). Autonomic dis- ease can result in underactivity or overactivity. Sympathetic adrenergic failure causes orthostatic (postural) hypotension and in the male ejaculatory failure, while sympathetic cholinergic failure results in anhidrosis; parasympathetic failure causes dilated pupils, a fixed heart rate, a sluggish urinary bladder, an atonic large bowel and, in the male, erectile failure. With autonomic hyperac- tivity, the reverse occurs. In some disorders, particularly in neurally mediated syncope, there may be a combination of effects, with bradycardia caused by parasympathetic activity and hypotension resulting from withdrawal of sympathetic activity. The history is of particular importance in the consideration and recognition of autonomic disease, and in separating dysfunction that may result from non-autonomic disorders. CLINICAL FEATURES c copyright. General aspects Autonomic disease may present at any age group; at birth in familial dysautonomia (Riley-Day syndrome), in teenage years in vasovagal syncope, and between the ages of 30–50 years in familial amyloid polyneuropathy (FAP).
    [Show full text]
  • The Latest in Research in Familial Dysautonomia
    2018 – 2019 YEAR IN REVIEW THE LATEST IN RESEARCH IN FAMILIAL DYSAUTONOMIA _______ A MESSAGE FROM OUR DIRECTOR______ ver the last 12 months, the Center’s research efforts have continued us on the path of finding better treatments. There has never been a more O exciting time when it comes to developing new therapies for neurological diseases. In other rare diseases, it has been possible to edit genes, fix protein production, and even cure illnesses with a single infusion. These new treatments have been accomplished thanks to basic scientists and clinicians working together. Over the last 11-years, I have watched the Center grow into a powerhouse of clinical care as well as research built on training, learning, and collaboration. The team at the Center has built a research framework on an international scale, which means no patient will be left behind when it comes to developing treatments. We now follow patients in the United States, Israel, Canada, England, Belgium, Germany, Argentina, Brazil, Australia and Mexico. The natural history study where we collect all clinical and laboratory data is helping us design the trials to get new treatments in to the clinic as required by the US Food and Drug Administration (FDA). In December 2018, I visited Israel to attend the family caregiver conference and made certain that all Israeli patients participate in the natural history study, a critical step to enroll the necessary number of patients. Because FD is a rare disease, we need patients from all corners of the globe to participate. Geographical constraints should not limit be a limit to the progress we can make for FD.
    [Show full text]