Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected]. -
Inherited Neuropathies
407 Inherited Neuropathies Vera Fridman, MD1 M. M. Reilly, MD, FRCP, FRCPI2 1 Department of Neurology, Neuromuscular Diagnostic Center, Address for correspondence Vera Fridman, MD, Neuromuscular Massachusetts General Hospital, Boston, Massachusetts Diagnostic Center, Massachusetts General Hospital, Boston, 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology Massachusetts, 165 Cambridge St. Boston, MA 02114 and The National Hospital for Neurology and Neurosurgery, Queen (e-mail: [email protected]). Square, London, United Kingdom Semin Neurol 2015;35:407–423. Abstract Hereditary neuropathies (HNs) are among the most common inherited neurologic Keywords disorders and are diverse both clinically and genetically. Recent genetic advances have ► hereditary contributed to a rapid expansion of identifiable causes of HN and have broadened the neuropathy phenotypic spectrum associated with many of the causative mutations. The underlying ► Charcot-Marie-Tooth molecular pathways of disease have also been better delineated, leading to the promise disease for potential treatments. This chapter reviews the clinical and biological aspects of the ► hereditary sensory common causes of HN and addresses the challenges of approaching the diagnostic and motor workup of these conditions in a rapidly evolving genetic landscape. neuropathy ► hereditary sensory and autonomic neuropathy Hereditary neuropathies (HN) are among the most common Select forms of HN also involve cranial nerves and respiratory inherited neurologic diseases, with a prevalence of 1 in 2,500 function. Nevertheless, in the majority of patients with HN individuals.1,2 They encompass a clinically heterogeneous set there is no shortening of life expectancy. of disorders and vary greatly in severity, spanning a spectrum Historically, hereditary neuropathies have been classified from mildly symptomatic forms to those resulting in severe based on the primary site of nerve pathology (myelin vs. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Human DNA Glycosylase NEIL1's Interactions with Downstream
Biomolecules 2012, 2, 564-578; doi:10.3390/biom2040564 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Article Human DNA Glycosylase NEIL1’s Interactions with Downstream Repair Proteins Is Critical for Efficient Repair of Oxidized DNA Base Damage and Enhanced Cell Survival Muralidhar L. Hegde 1,2, Pavana M. Hegde 1, Dutta Arijit 1, Istvan Boldogh 3 and Sankar Mitra 1,* 1 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB) at Galveston, Texas 77555-1079, USA; E-Mails: [email protected] (M.L.H.); [email protected] (P.M.H.); [email protected] (D.A.) 2 Department of Neurology, University of Texas Medical Branch (UTMB) at Galveston, Texas 77555, USA 3 Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB) at Galveston, Texas 77555, USA; E-Mail: [email protected] (I.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected] (S.M.); Tel.: +1-409-772-1780; Fax: +1-409-747-8608. Received: 15 October 2012; in revised form: 7 November 2012 / Accepted: 9 November 2012 / Published: 15 November 2012 Abstract: NEIL1 is unique among the oxidatively damaged base repair-initiating DNA glycosylases in the human genome due to its S phase-specific activation and ability to excise substrate base lesions from single-stranded DNA. We recently characterized NEIL1’s specific binding to downstream canonical repair and non-canonical accessory proteins, all of which involve NEIL1’s disordered C-terminal segment as the common interaction domain (CID). This domain is dispensable for NEIL1’s base excision and abasic (AP) lyase activities, but is required for its interactions with other repair proteins. -
HARS2 Gene Histidyl-Trna Synthetase 2, Mitochondrial
HARS2 gene histidyl-tRNA synthetase 2, mitochondrial Normal Function The HARS2 gene provides instructions for making an enzyme called mitochondrial histidyl-tRNA synthetase. This enzyme is important in the production (synthesis) of proteins in cellular structures called mitochondria, the energy-producing centers in cells. While most protein synthesis occurs in the fluid surrounding the nucleus (cytoplasm), some proteins are synthesized in the mitochondria. During protein synthesis, in either the mitochondria or the cytoplasm, a type of RNA called transfer RNA (tRNA) helps assemble protein building blocks (amino acids) into a chain that forms the protein. Each tRNA carries a specific amino acid to the growing chain. Enzymes called aminoacyl-tRNA synthetases, including mitochondrial histidyl- tRNA synthetase, attach a particular amino acid to a specific tRNA. Mitochondrial histidyl-tRNA synthetase attaches the amino acid histidine to the correct tRNA, which helps ensure that histidine is added at the proper place in the mitochondrial protein. Health Conditions Related to Genetic Changes Perrault syndrome At least two mutations in the HARS2 gene have been found to cause Perrault syndrome. This rare condition is characterized by hearing loss in males and females with the disorder and abnormalities of the ovaries in affected females. The HARS2 gene mutations involved in Perrault syndrome reduce the activity of mitochondrial histidyl- tRNA synthetase. A shortage of functional mitochondrial histidyl-tRNA synthetase prevents the normal assembly of new proteins within mitochondria. Researchers speculate that impaired protein assembly disrupts mitochondrial energy production. However, it is unclear exactly how HARS2 gene mutations lead to hearing problems and ovarian abnormalities in affected individuals. -
Rabbit Anti-Human MARS Polyclonal Antibody (CABT-L2255) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
Rabbit Anti-Human MARS Polyclonal Antibody (CABT-L2255) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Polyclonal Antibody to Methionyl tRNA Synthetase (Knockout Validated) Specificity The antibody is a rabbit polyclonal antibody raised against MARS. It has been selected for its ability to recognize MARS in immunohistochemical staining and western blotting. Target MARS Immunogen Recombinant fragment corresponding to human MARS (Gly74~Pro212) Isotype IgG Source/Host Rabbit Species Reactivity Human, Mouse Purification Antigen-specific affinity chromatography followed by Protein A affinity chromatography Conjugate Unconjugated Applications WB Format Liquid Concentration Lot specific Size 200 μg Buffer Supplied as solution form in 0.01M PBS with 50% glycerol, pH7.4. Preservative 0.05% Proclin-300 Storage Avoid repeated freeze/thaw cycles. Store at 4°C for frequent use. Aliquot and store at -20°C for 12 months. Ship 4°C with ice bags Warnings For research use only. BACKGROUND 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Introduction This gene encodes a member of the class I family of aminoacyl-tRNA synthetases. These enzymes play a critical role in protein biosynthesis by charging tRNAs with their cognate amino acids. The encoded protein is a component of the multi-tRNA synthetase complex and catalyzes the ligation of methionine to tRNA molecules. [provided -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Kif1b Rab7a Lmna
Title: Charcot-Marie-Tooth Neuropathy Type 2 GeneReview Molecular Genetics: Less Commonly Involved Genes Author: Bird TD Updated: March 2016 KIF1B Gene structure. KIF1B comprises 47 exons and 167.13 kb of DNA. Pathogenic allelic variants. See Table A, Locus Specific and HGMD Normal gene product. Kinesin-like protein KIF1B is involved in axonal transport of synaptic vesicle precursors [Zhao et al 2001]. The kinesin superfamily of proteins is essential for intracellular transport along microtubules. Abnormal gene product. There may be a defect in the transport of synaptic vesicles. RAB7A Gene structure. RAB7A has six exons and 87.9 kb of DNA. Pathogenic allelic variants. See Table A. Normal gene product. Ras-related protein Rab-7a belongs to the RAB family of Ras- related GTPases essential for the regulation of intracellular membrane trafficking. Rab- 7a is involved in transport between late endosomes and lysosomes. RAB-interacting lysosomal protein (RILP) induces the recruitment of dynein-dynactin motors and regulates transport toward the minus-end of microtubules [Verhoeven et al 2003]. Abnormal gene product. Abnormal Rab-7a may cause malfunction of lysosomes and inhibit neurite outgrowth [Spinosa et al 2008, Bucci & Deluca 2012]. LMNA Gene structure. LMNA has 12 exons spread over 24 kb of genomic DNA. Pathogenic allelic variants. The most common pathogenic variant found in individuals with CMT2B1 is p.Arg298Cys, a founder mutation in North Africa [Bouhouche et al 2007, De Sandre-Giovannoli et al 2002]. See also Table A. Table 5. Selected LMNA Variants DNA Nucleotide Protein Amino Acid Class of Variant Allele Reference Sequences Change Change Benign c.1908C>T p.= 1 c.398G>T p.Arg133Leu NM_170707.2 c.892C>T p.Arg298Cys Pathogenic NP_733821.1 c.1411C>T p.Arg471Cys c.1579C>T p.Arg527Cys Note on variant classification: Variants listed in the table have been provided by the author. -
Mediated Repair of Transcribed Genes Is Linked to SCA3 Pathogenesis
Deficiency in classical nonhomologous end-joining– mediated repair of transcribed genes is linked to SCA3 pathogenesis Anirban Chakrabortya, Nisha Tapryala, Tatiana Venkovaa,1, Joy Mitrab, Velmarini Vasquezb, Altaf H. Sarkerc, Sara Duarte-Silvad,e, Weihan Huaif, Tetsuo Ashizawag, Gourisankar Ghoshf, Patricia Macield,e, Partha S. Sarkarh, Muralidhar L. Hegdeb, Xu Cheni, and Tapas K. Hazraa,2 aDepartment of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Medical Branch, Galveston, TX 77555; bDepartment of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX 77030; cDepartment of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; dSchool of Medicine, Life and Health Sciences Research Institute, University of Minho, 4710-057 Braga, Portugal; eICVS (Life and Health Sciences Research Institute)/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; fDepartment of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093; gDepartment of Neurology, The Houston Methodist Research Institute, Houston, TX 77030; hDepartment of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555; and iDepartment of Neurosciences, University of California San Diego, La Jolla, CA 92093 Edited by James E. Cleaver, University of California San Francisco Medical Center, San Francisco, CA, and approved March 2, 2020 (received for review October 6, 2019) Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited ATXN3 knockout mice showed an increase in total ubiquitinated neurodegenerative disease caused by CAG (encoding glutamine) protein levels (19). Consistently, knockdown of ATXN3 resulted in repeat expansion in the Ataxin-3 (ATXN3) gene. -
The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement
International Journal of Molecular Sciences Review The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement 1, , 2, 3,4 Sara Bachiller * y , Isabel M. Alonso-Bellido y , Luis Miguel Real , Eva María Pérez-Villegas 5 , José Luis Venero 2 , Tomas Deierborg 1 , José Ángel Armengol 5 and Rocío Ruiz 2 1 Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Sölvegatan 19, 221 84 Lund, Sweden; [email protected] 2 Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla/Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain; [email protected] (I.M.A.-B.); [email protected] (J.L.V.); [email protected] (R.R.) 3 Unidad Clínica de Enfermedades Infecciosas, Hospital Universitario de Valme, 41014 Sevilla, Spain; [email protected] 4 Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, 29071 Universidad de Málaga, Spain 5 Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain; [email protected] (E.M.P.-V.); [email protected] (J.Á.A.) * Correspondence: [email protected] These authors contributed equally to the work. y Received: 14 July 2020; Accepted: 31 August 2020; Published: 3 September 2020 Abstract: Neuromuscular disorders (NMDs) affect 1 in 3000 people worldwide. There are more than 150 different types of NMDs, where the common feature is the loss of muscle strength. These disorders are classified according to their neuroanatomical location, as motor neuron diseases, peripheral nerve diseases, neuromuscular junction diseases, and muscle diseases. Over the years, numerous studies have pointed to protein homeostasis as a crucial factor in the development of these fatal diseases. -
Aminoacyl-Trna Synthetase Deficiencies in Search of Common Themes
© American College of Medical Genetics and Genomics ARTICLE Aminoacyl-tRNA synthetase deficiencies in search of common themes Sabine A. Fuchs, MD, PhD1, Imre F. Schene, MD1, Gautam Kok, BSc1, Jurriaan M. Jansen, MSc1, Peter G. J. Nikkels, MD, PhD2, Koen L. I. van Gassen, PhD3, Suzanne W. J. Terheggen-Lagro, MD, PhD4, Saskia N. van der Crabben, MD, PhD5, Sanne E. Hoeks, MD6, Laetitia E. M. Niers, MD, PhD7, Nicole I. Wolf, MD, PhD8, Maaike C. de Vries, MD9, David A. Koolen, MD, PhD10, Roderick H. J. Houwen, MD, PhD11, Margot F. Mulder, MD, PhD12 and Peter M. van Hasselt, MD, PhD1 Purpose: Pathogenic variations in genes encoding aminoacyl- with unreported compound heterozygous pathogenic variations in tRNA synthetases (ARSs) are increasingly associated with human IARS, LARS, KARS, and QARS extended the common phenotype disease. Clinical features of autosomal recessive ARS deficiencies with lung disease, hypoalbuminemia, anemia, and renal tubulo- appear very diverse and without apparent logic. We searched for pathy. common clinical patterns to improve disease recognition, insight Conclusion: We propose a common clinical phenotype for recessive into pathophysiology, and clinical care. ARS deficiencies, resulting from insufficient aminoacylation activity Methods: Symptoms were analyzed in all patients with recessive to meet translational demand in specific organs or periods of life. ARS deficiencies reported in literature, supplemented with Assuming residual ARS activity, adequate protein/amino acid supply unreported patients evaluated in our hospital. seems essential instead of the traditional replacement of protein by Results: In literature, we identified 107 patients with AARS, glucose in patients with metabolic diseases. DARS, GARS, HARS, IARS, KARS, LARS, MARS, RARS, SARS, VARS, YARS, and QARS deficiencies. -
Gene Section Review
Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Gene Section Review EEF1G (Eukaryotic translation elongation factor 1 gamma) Luigi Cristiano Aesthetic and medical biotechnologies research unit, Prestige, Terranuova Bracciolini, Italy; [email protected] Published in Atlas Database: March 2019 Online updated version : http://AtlasGeneticsOncology.org/Genes/EEF1GID54272ch11q12.html Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/70656/03-2019-EEF1GID54272ch11q12.pdf DOI: 10.4267/2042/70656 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2020 Atlas of Genetics and Cytogenetics in Oncology and Haematology Abstract Keywords EEF1G; Eukaryotic translation elongation factor 1 Eukaryotic translation elongation factor 1 gamma, gamma; Translation; Translation elongation factor; alias eEF1G, is a protein that plays a main function protein synthesis; cancer; oncogene; cancer marker in the elongation step of translation process but also covers numerous moonlighting roles. Considering its Identity importance in the cell it is found frequently Other names: EF1G, GIG35, PRO1608, EEF1γ, overexpressed in human cancer cells and thus this EEF1Bγ review wants to collect the state of the art about EEF1G, with insights on DNA, RNA, protein HGNC (Hugo): EEF1G encoded and the diseases where it is implicated. Location: 11q12.3 Figure. 1. Splice variants of EEF1G. The figure shows the locus on chromosome 11 of the EEF1G gene and its splicing variants (grey/blue box). The primary transcript is EEF1G-001 mRNA (green/red box), but also EEF1G-201 variant is able to codify for a protein (reworked from https://www.ncbi.nlm.nih.gov/gene/1937; http://grch37.ensembl.org; www.genecards.org) Atlas Genet Cytogenet Oncol Haematol.