Isolation, Identification, and Studies on the Metabolism of Rumen Micro-Organism Growth Factors Present in Natural Materials

Total Page:16

File Type:pdf, Size:1020Kb

Isolation, Identification, and Studies on the Metabolism of Rumen Micro-Organism Growth Factors Present in Natural Materials ISOLATION, IDENTIFICATION, AND STUDIES ON THE METABOLISM OF RUMEN MICRO-ORGANISM GROWTH FACTORS PRESENT IN NATURAL MATERIALS DISSERTATION Presented In Partial Fuirillraent of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By BURK ALLYN DEHOR ITT, A.B., M.S. The Ohio State University 1957 Approved by: Adviser Department of Agricultural Biochemistry ACKNOWLEDGMENTS I would like to express ray deepest appreciation to Dr. Alvin L. Moxon and Dr. Orville G. Bentley for their guidance and many helpful suggestions during the per­ formance of ray research work. Their interest and leader­ ship is gratefully acknowledged. The timely suggestions and interest of Dr. Ronald R. Johnson are greatly appreciated, in addition to his aid in the preparation of Figures 10, 11, and 12. Appreciation is also extended to the Ohio Agricultural Experiment Station for providing facilities and financial assistance during the course of this work. I am indebted to ray wife for her unceasing encour­ agement and cheerfulness throughout the performance of this work, and her aid in the preparation of this manu­ script. ii TABLE OP CONTENTS General Introduction Part I: Isolation and .identification of Compounds Prom Autolyzed Yeast, Alfalfa Ileal, and Casoin iiydrolysa.te wit h. Cellulolytic Factor Activity for Rumen Micro-organisms In Vitro Literature Review Experimental Procedures In Vitro Rumen ^Fermentation Technique Fractionation Procedures Dowex - 50 I o n Exchange Resin Charcoal Treatment Preparative Scale Paper Chromatography Elution of the Chromatograms Chromatographic Identification of Amino Acids Results Autolyzed Yeast Casein Rydrolysate Alfalfa Extract Known Amino Acids Substrate Level Studies Additive Effects Discussion Summary Part II: Studies on the Metabolism of the isolated Growth Factors (Valine, Proline, Leucine, and Isoleucine) Literature Review Experimental Procedures Amino Acid Analysis In Vitro Rumen Fermentation Technique Using Valine-l-Clh Determination of «<-KetoisovalerIc Acid Results Investigation of Added Amino Acids Rumen Fermentation (In Vitro) with Valine-l-dU Isolation of Radioactive -Ketoisovaleric Acid Cellulolytic Factor Activity of Possible Intermediates in Valine, Proline, and Leucine Metabolism Discussion Summary Literature Cited LIST OP TABLES Table No. Page No 1 * Composition of the Basal Medium Used for the ill Vitro Rumen Fermentation 13 2. Cellulolytic Factor Activity of the C.F. of D - 50 Eluate of Autolyzed Yeast After Separation by Paper Chromato­ graphy with Q0% Phenol 21 3. Cellulolytic/ Factor Activity of the Separated Components From T.P.P.C. of Autolyzed Yeast 2l± If.. Cellulolytic Factor Activity of Casein Hydrolysate and the T.P.P.C. Prepared From Casein Hydrolysate 27 5. Cellulolytic Factor Activity of the Fractions Obtained from Alfalfa Extract #1 by Treatment with Dowex - 50 30 6. Cellulolytic Factor Activity of the Amino Acids Valine, Proline, the Leucines and y-aminobutyric Acid at Varying Levels; Studies on the Additive Effects of These Amino Acids 35 7. The Additive Effect of the Cellulolytic Factor Activity of Valeric Acid, the Amino Acids and Yeast Extract I4.0 8. Study on the Additive Effect of Valeric Acid with Valine and Proline if.2 9. Amino Acid Composition of Fermentation Mixtures 62 10. Cellulolytic Factor Activity of D-Valine, DL-Valine and L-Valine Alone and In Combination with L-Proline 65 11. Amino Acid Composition of Fermentation Mixtures 66 12. Decarboxylation of DL-Valine-l-ClU by Rumen Micro-organisms In Vitro 69 v vi Table TTo. Page No. 13. Relationship of L-Valine andcw-betoiso­ valeric Acid in the in Vitro Rumen Fomentation 80 lij. Cellulolytic Factor Activity of Proposed Intermediates in the Metabolism of Valine and Proline 82 15. Cellulolytic Factor Activity of Proposed Intermediates in the Metabolism of Leucine and Proline 81j. 16. Time Study of Valine and Leucine Plus Proline Versus Isobutyric Acid and Isovaleric Acid Plus 5 -Aminovaleric Acid 86 17. The Cellulolytic Factor Activity of Ornithine 88 LIST OF FIGURES Figure No. Page No. 1. Diagrammatic representation of the chromato­ grams obtained by preparative scale paper chromatography 17 2. The cellulolytic factor activity in vitro of yeast extract and the fractions pre­ pared from this extract 20 3. Diagrammatic sketch of the chromatographic separation of the amino acids from yeast extract In the top portion of the phenol chromatogram (T.P.P.C.) 22 ll. The cellulolytic factor activity in vitro of hydrolyzed casein and the fractions of hydrolyzed casein prepared by large scale paper chromatography 28 p. The cellulolytic factor activity in vitro of alfalfa extract # 2 , and the prepared fractions from this extract 3 1 6 . The cellulolytic factor activity in vitro of the charcoal filtrate of Dowex - £6 eluate of alfalfa extract # 2 and the fractions of this filtrate prepared by large scale paper chromatography 32 7. The cellulolytic factor activity in vitro of the amino acids valine and proline 3k 8 . Additive effects of the amino acids valine, proline, the leucines and Y-aminobutyric acid as cellulolytic factors in vitro 37 9. The effects of varying cellulose substrate levels upon cellulose digestion in vitro 3 9 10. Diagrammatic separation of the amino acids from flasks with added valine and proline determined at 1 3 , 2l± and 30 hours, and of proline, determined at 13 hours 67 vii v i . i l Figure Wo. Page No. 1 1 . Tracings of the chromatographic separation of the 2 , l^-dini trophenylhydrazine deriva­ tives obtained from a fermentation with DL-valine-l-ClU, and the corresponding graph of its radioactivity as measured with a gas-flow chromatographic scanner 77 12. Proposed pathways in the metabolic breakdown of valine and proline 90 H’i General Introduction The significance of rumen micro-organisms, in the utilization of cellulose and other carbohydrates as energy sources by cattle and sheep, was first recognized at about the turn of the twentieth century. As the role of these micro-organisms became better understood, the relationship between their nutritional status and their ability to digest cellulose, synthesize vitamins, and convert non­ protein nitrogen to protein nitrogen became of both prac­ tical and academic interest. Of primary interest, was the determination of the nutritional requirements of this mix­ ed microbial population. Studies at the Ohio agricultural Experiment Station on crude fiber and cellulose digestion in vivo, suggested that certain natural feedstuffs supplied unknown nutri­ ents or growth factors which are essential for cellulose digestion by rumen micro-organisms. This led to the development of an artificial rumen technique, whereby the rumen micro-organisms were cultured in vitro under simulat­ ed rumen conditions. The experimental results obtained by this technique correlated well with previous in vivo results, hence a major contribution had been made toward the determination of the nutritional requirements of these microorganisms. A number of excellent preliminary studies were performed on the quality of roughages, urea utiliza- 1 2 tion, mineral requirements, and the ability of certain natural feedstuffs to enhance the digestion of purified cellulose. As the major nutritional requirements of the rumen bacteria became known, these nutrients were added to the basal medium used for culturing the micro-organisms. The problem soon narrowed itself to the point where the major­ ity of the nutritional requirements of these micro-organisms had been established, except that the rumen micro-organisms required an unknown nutritional factor or factors before any marked degree of cellulose digestion was obtained. These unknown cellulolytic factors , present in the supernatant of rumen juice, were investigated over a period of several years in this laboratory before their identity was estab­ lished. However, subsequent experiments revealed that these cellulolytic factors were not identical to those responsible for the activity of yeast extract and other natural materials. Hence, the occurrence of other unknown compounds capable of stimulating cellulose digestion by rumen micro-organisms was established, and the experimental studies reported herein are concerned with the identifica­ tion of these cellulolytic factors. 1. Throughout this dissertation, the term cellulolytic factor will be used to designate any material or compound which possesses the ability to enhance the digestion of cellulose by rumen micro-organisms in vitro. Part I Isolation and Identification of Compounds From Autolyzed Yeast. AlfalfaT'Meal, and Casein' Hydrolysate with Cellulolytic factor Activity For Rumen Micro-"" orff&ni'ams In Vitro Literature Review The existence of specific nutritional factors supplied by natural feedstuffs, which are required by rumen bacteria for the efficient digestion of cellulose, I'ras first postulat­ ed by Burroughs £t al^ (li|) in 191+9. The results of his in vivo roughage digestion trials (1 1 ; 1 2 ,* 1 3 ;111) indicated that these factors are associated in nature with roughages and protein-rich feeds. In one study (11), rumen bacterial counts were made, and bacterial numbers were observed to increase in direct proportion to roughage digestion, in an effort to gain more detailed information on the factors in­ volved in roughage digestion by rumen micro-organisms,, an in vitro artificial rumen technique was developed by Burroughs (1 0 ), somewhat similar to that described by Marston (ipO). The objective of this study was to culture the rumen
Recommended publications
  • Chapter 21 the Chemistry of Carboxylic Acid Derivatives
    Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 21 The Chemistry of Carboxylic Acid Derivatives Solutions to In-Text Problems 21.1 (b) (d) (e) (h) 21.2 (a) butanenitrile (common: butyronitrile) (c) isopentyl 3-methylbutanoate (common: isoamyl isovalerate) The isoamyl group is the same as an isopentyl or 3-methylbutyl group: (d) N,N-dimethylbenzamide 21.3 The E and Z conformations of N-acetylproline: 21.5 As shown by the data above the problem, a carboxylic acid has a higher boiling point than an ester because it can both donate and accept hydrogen bonds within its liquid state; hydrogen bonding does not occur in the ester. Consequently, pentanoic acid (valeric acid) has a higher boiling point than methyl butanoate. Here are the actual data: INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 21 2 21.7 (a) The carbonyl absorption of the ester occurs at higher frequency, and only the carboxylic acid has the characteristic strong, broad O—H stretching absorption in 2400–3600 cm–1 region. (d) In N-methylpropanamide, the N-methyl group is a doublet at about d 3. N-Ethylacetamide has no doublet resonances. In N-methylpropanamide, the a-protons are a quartet near d 2.5. In N-ethylacetamide, the a- protons are a singlet at d 2. The NMR spectrum of N-methylpropanamide has no singlets. 21.9 (a) The first ester is more basic because its conjugate acid is stabilized not only by resonance interaction with the ester oxygen, but also by resonance interaction with the double bond; that is, the conjugate acid of the first ester has one more important resonance structure than the conjugate acid of the second.
    [Show full text]
  • Workshop 1 – Biochemistry (Chem 160)
    Workshop 1 – Biochemistry (Chem 160) 1. Draw the following peptide at pH = 7 and make sure to include the overall charge, label the N- and C-terminus, the peptide bond and the -carbon. AVDKY Give the overall charge of the peptide at pH = 3 and 12. 2. Draw a titration curve for Arg, make sure to label the different points. Determine the pI for Arg. 3. Nonpolar solute + water = solution a. What is the S of the universe, system and surroundings? The S of the universe would decrease this is why it is not spontaneous, the S of the system would increase but to a lesser extent to which the S of the surrounding would decrease S universe = S system + S surroundings 4. What is the hydrophobic effect and explain why it is thermodynamically favorable. The hydrophobic effect is when hydrophobic molecules tend to clump together burying them and placing hydrophilic molecules on the outside. The reason this is thermodynamically favorable is because it frees caged water molecules when burying clumping the hydrophobic molecules together. 5. Urea dissolves very readily in water, but the solution becomes very cold as the urea dissolves. How is this possible? Urea dissolves in water because when dissolving there is a net increase in entropy of the universe. The heat exchange, getting colder only reflects the enthalpy (H) component of the total energy change. The entropy change is high enough to offset the enthalpy component and to add up to an overall -G 6. A mutation that changes an alanine residue in the interior of a protein to valine is found to lead to a loss of activity.
    [Show full text]
  • Amino Acid Recognition by Aminoacyl-Trna Synthetases
    www.nature.com/scientificreports OPEN The structural basis of the genetic code: amino acid recognition by aminoacyl‑tRNA synthetases Florian Kaiser1,2,4*, Sarah Krautwurst3,4, Sebastian Salentin1, V. Joachim Haupt1,2, Christoph Leberecht3, Sebastian Bittrich3, Dirk Labudde3 & Michael Schroeder1 Storage and directed transfer of information is the key requirement for the development of life. Yet any information stored on our genes is useless without its correct interpretation. The genetic code defnes the rule set to decode this information. Aminoacyl-tRNA synthetases are at the heart of this process. We extensively characterize how these enzymes distinguish all natural amino acids based on the computational analysis of crystallographic structure data. The results of this meta-analysis show that the correct read-out of genetic information is a delicate interplay between the composition of the binding site, non-covalent interactions, error correction mechanisms, and steric efects. One of the most profound open questions in biology is how the genetic code was established. While proteins are encoded by nucleic acid blueprints, decoding this information in turn requires proteins. Te emergence of this self-referencing system poses a chicken-or-egg dilemma and its origin is still heavily debated 1,2. Aminoacyl-tRNA synthetases (aaRSs) implement the correct assignment of amino acids to their codons and are thus inherently connected to the emergence of genetic coding. Tese enzymes link tRNA molecules with their amino acid cargo and are consequently vital for protein biosynthesis. Beside the correct recognition of tRNA features3, highly specifc non-covalent interactions in the binding sites of aaRSs are required to correctly detect the designated amino acid4–7 and to prevent errors in biosynthesis5,8.
    [Show full text]
  • Valproic Acid and Its Amidic Derivatives As New Antivirals Against Alphaherpesviruses
    viruses Review Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses Sabina Andreu 1,2,* , Inés Ripa 1,2, Raquel Bello-Morales 1,2 and José Antonio López-Guerrero 1,2 1 Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; [email protected] (I.R.); [email protected] (R.B.-M.); [email protected] (J.A.L.-G.) 2 Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] Academic Editor: Maria Kalamvoki Received: 14 November 2020; Accepted: 25 November 2020; Published: 26 November 2020 Abstract: Herpes simplex viruses (HSVs) are neurotropic viruses with broad host range whose infections cause considerable health problems in both animals and humans. In fact, 67% of the global population under the age of 50 are infected with HSV-1 and 13% have clinically recurrent HSV-2 infections. The most prescribed antiherpetics are nucleoside analogues such as acyclovir, but the emergence of mutants resistant to these drugs and the lack of available vaccines against human HSVs has led to an imminent need for new antivirals. Valproic acid (VPA) is a branched short-chain fatty acid clinically used as a broad-spectrum antiepileptic drug in the treatment of neurological disorders, which has shown promising antiviral activity against some herpesviruses. Moreover, its amidic derivatives valpromide and valnoctamide also share this antiherpetic activity. This review summarizes the current research on the use of VPA and its amidic derivatives as alternatives to traditional antiherpetics in the fight against HSV infections.
    [Show full text]
  • The Lysis of Bacterium Coli by Amino-Acids
    [510 ] THE LYSIS OF BACTERIUM COLI BY AMINO-ACIDS BY J. GORDON, R. A. HALL AND L. H. STICKLAND The School of Medicine, Leeds (With 2 Figures in the Text) Gordon, Hall & Stickland (1951, 1953) described the kinetics of the lysis by glycine of Bacterium coli suspensions, and the inhibition by various agents of this process. The present paper attempts to correlate this lytic effect with the chemical structure of various amino-acids. MATERIALS AND METHODS Preparation of bacteria Four freshly isolated strains of Bact. coli were grown on the surface of nutrient agar for 16-18 hr. at 37°, and were then washed off with distilled water. These suspensions were filtered through glass wool. The bacteria were washed twice and finally suspended in about ten times their volume of distilled water which was equivalent to a concentration of between 10 and 20 mg. dry weight of cells per ml. Measurement of lysis After the suspensions had been incubated with the amino-acid solutions under test the bacteria were removed by centrifuging at 2500 g. for 20 min. The super- natant fluid was treated with \ volume of 25 % ' w/v' trichloracetic acid solution, the protein precipitate was washed with 5% trichloracetic acid and then the protein was estimated by the biuret method (Robinson & Hogden, 1940). The degree of lysis was expressed as the ratio of the protein liberated into the super- natant fluid to the total soluble protein of the bacterial suspension (Stickland, 1951). Amino-acids used Glycine, DL-alanine, /?-alanine, DL-a-amino-w-butyric acid, DL-a-amino-iso- butyric acid, DL-a-amino-?i-valeric acid, DL-valine, DL-serine, glycine ethyl ester hydrochloride, aceturic acid, glycylglycine and L-glutamic acid were obtained commercially.
    [Show full text]
  • A Facile Profiling Method of Short Chain Fatty Acids Using Liquid
    H OH metabolites OH Article A Facile Profiling Method of Short Chain Fatty Acids Using Liquid Chromatography-Mass Spectrometry Ha Eun Song 1, Hyo Yeong Lee 1, Su Jung Kim 1, Sung Hoon Back 2 and Hyun Ju Yoo 1,* 1 Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea 2 School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea * Correspondence: [email protected]; Tel.: +82-02-3010-4029 Received: 27 June 2019; Accepted: 23 August 2019; Published: 28 August 2019 Abstract: Short chain fatty acids (SCFAs) are the main products of dietary fibers that are not digested by the human body, and they have been shown to affect human metabolism and inflammation. The amount of SCFAs in the body is related to many human diseases, and studies have focused on elucidating their roles and target molecules in both metabolic and immune responses. Thus, the quantitation of SCFAs in biological samples becomes crucial in understanding their important roles in the human body. Herein, a facile profiling method of SCFAs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and then applied to biological samples. C2-C6 SCFAs were derivatized while using 4-acetamido-7-mercapto-2,1,3-benzoxadiazole for 5 min. at room temperature prior to LC-MS/MS analysis, and characteristic fragmentation patterns and increased hydrophobicity after chemical derivatization enabled specific discrimination among 12 SCFAs. Derivatization was fast and reliable, and the reaction products were stable for a week at 4 ◦C.
    [Show full text]
  • Amino Acid Chemistry
    Handout 4 Amino Acid and Protein Chemistry ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Amino Acid Chemistry I. Chemistry of amino acids A. General amino acid structure + HN3- 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon. 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group). 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH. II. Essential and nonessential amino acids A. Nonessential amino acids: can make the carbon skeleton 1. From glycolysis. 2. From the TCA cycle. B. Nonessential if it can be made from an essential amino acid. 1. Amino acid "sparing". 2. May still be essential under some conditions. C. Essential amino acids 1. Branched chain amino acids (isoleucine, leucine and valine) 2. Lysine 3. Methionine 4. Phenyalanine 5. Threonine 6. Tryptophan 1 Handout 4 Amino Acid and Protein Chemistry D. Essential during rapid growth or for optimal health 1. Arginine 2. Histidine E. Nonessential amino acids 1. Alanine (from pyruvate) 2. Aspartate, asparagine (from oxaloacetate) 3. Cysteine (from serine and methionine) 4. Glutamate, glutamine (from α-ketoglutarate) 5. Glycine (from serine) 6. Proline (from glutamate) 7. Serine (from 3-phosphoglycerate) 8. Tyrosine (from phenylalanine) E. Nonessential and not required for protein synthesis 1. Hydroxyproline (made postranslationally from proline) 2. Hydroxylysine (made postranslationally from lysine) III. Acidic, basic, polar, and hydrophobic amino acids A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution 1.
    [Show full text]
  • Solutions to 7.012 Problem Set 1
    MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 1 Question 1 Bob, a student taking 7.012, looks at a long-standing puddle outside his dorm window. Curious as to what was growing in the cloudy water, he takes a sample to his TA, Brad Student. He wanted to know whether the organisms in the sample were prokaryotic or eukaryotic. a) Give an example of a prokaryotic and a eukaryotic organism. Prokaryotic: Eukaryotic: All bacteria Yeast, fungi, any animial or plant b) Using a light microscope, how could he tell the difference between a prokaryotic organism and a eukaryotic one? The resolution of the light microscope would allow you to see if the cell had a true nucleus or organelles. A cell with a true nucleus and organelles would be eukaryotic. You could also determine size, but that may not be sufficient to establish whether a cell is prokaryotic or eukaryotic. c) What additional differences exist between prokaryotic and eukaryotic organisms? Any answer from above also fine here. In addition, prokaryotic and eukaryotic organisms differ at the DNA level. Eukaryotes have more complex genomes than prokaryotes do. Question 2 A new startup company hires you to help with their product development. Your task is to find a protein that interacts with a polysaccharide. a) You find a large protein that has a single binding site for the polysaccharide cellulose. Which amino acids might you expect to find in the binding pocket of the protein? What is the strongest type of interaction possible between these amino acids and the cellulose? Cellulose is a polymer of glucose and as such has many free hydroxyl groups.
    [Show full text]
  • Molecular Genetic Approaches to Decrease Mis-Incorporation of Non
    Molecular genetic approaches to decrease mis-incorporation of non-canonical branched chain amino acids into a recombinant protein in Escherichia coli Ángel Córcoles García Molecular genetic approaches to decrease mis- incorporation of non-canonical branched chain amino acids into a recombinant protein in Escherichia coli Ángel Córcoles García - Dissertation Abstract II Molecular genetic approaches to decrease mis-incorporation of non-canonical branched chain amino acids into a recombinant protein in Escherichia coli vorgelegt von M. Sc. Ángel Córcoles García ORCID: 0000-0001-9300-5780 von der Fakultät III-Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Juri Rappsilber, Institut für Biotechnologie, TU Berlin, Berlin Gutachter: Prof. Dr. Peter Neubauer, Institut für Biotechnologie, TU Berlin, Berlin Gutachter: Prof. Dr. Pau Ferrer, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain Gutachter: Dr. Heinrich Decker, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main Tag der wissenschaftlichen Aussprache: 11. Dezember 2019 Berlin 2020 Molecular genetic approaches to decrease mis-incorporation of non-canonical branched chain amino acids into a recombinant protein in Escherichia coli Ángel Córcoles García Abstract The incorporation of non-canonical branched chain amino acids (ncBCAA) such as norleucine, norvaline and β-methylnorleucine into recombinant proteins during E.coli production processes has become a crucial matter of contention in the pharmaceutical industry, since such mis-incorporation can lead to production of altered proteins, having non optimal characteristics. Hence, a need exists for novel strategies valuable for preventing the mis-incorporation of ncBCAA into recombinant proteins. This work presents the development of novel E.
    [Show full text]
  • 5 Water, the Spring of Life
    5 Water, the Spring of Life André Brack Primitive life probably appeared with the first chemical systems able to transfer their molecular information via self-reproduction and also to evolve. By analogy with con- temporary life, it is generally believed that life on Earth emerged in liquid water from the processing of organic molecules. Schematically, the premises of primitive life can be compared to parts of "chemical robots". By chance, some parts self-assembled to generate robots capable of assembling other parts to form identical robots. Sometimes, a minor error in the building generated more efficient robots, which became the domi- nant species. The number of parts required for the first robots as well as the nature of these chemical robots are still unknown. The traces of the primitive chemical robots have been probably erased for ever on Earth by the combined action of plate tectonics, the permanent presence of liquid water, the unshielded solar ultraviolet radiation and atmospheric oxygen. Despite its harmful ability to erase fossils, liquid water exhibits interesting peculiarities, which contributed to the birth of life on Earth. It is therefore generally considered as a prerequisite for terrestrial-type life to appear on a planet. Some possible contributions of water to the origin of life are presented here. 5.1 Water as a Diffusion Milieu Assembling parts of the primitive molecular robots must have occurred at a reasonable rate. Solid state life is generally discarded, the parts being unable to migrate and to be easily exchanged. A gaseous phase would allow fast diffusion of the parts, but the limited inventory of stable volatile organic molecules would constitute a severe re- striction.
    [Show full text]
  • Valerolactone Hydrogenation Into 1,4-Pentanediol in Milder Reaction Conditions
    reactions Article Heterogeneously Catalyzed γ-Valerolactone Hydrogenation into 1,4-Pentanediol in Milder Reaction Conditions Irina Simakova 1,2,* , Yulia Demidova 1,2, Mikhail Simonov 1,2 , Sergey Prikhod’ko 1,2, Prashant Niphadkar 3, Vijay Bokade 3, Paresh Dhepe 3 and Dmitry Yu. Murzin 4,* 1 Boreskov Institute of Catalysis, pr. Lavrentieva, 5, 630090 Novosibirsk, Russia; [email protected] (Y.D.); [email protected] (M.S.); [email protected] (S.P.) 2 Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia 3 CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; [email protected] (P.N.); [email protected] (V.B.); [email protected] (P.D.) 4 Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku/Åbo, Finland * Correspondence: [email protected] (I.S.); dmurzin@abo.fi (D.Y.M.) Received: 20 September 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Hydrogenation of γ-valerolactone (GVL) in polar solvents (n-butanol, 1,4-dioxane) to 1,4-pentanediol (PDO) and 2-methyltetrahydrofuran (MTHF) was performed at 363–443 K in a fixed bed reactor under overall H2 pressure of 0.7–1.3 MPa. Preliminary screening in a batch reactior was performed with a series of Ru, Ir, Pt, Co, and Cu catalysts, earlier efficiently applied for levulinic acid hydrogenation to GVL. The fresh catalysts were analyzed by transmission electron microscopy (TEM), X-ray fluorescent analysis (XRF), temperature programmed reduction by H2 (H2-TPR), and N2 physisorption. Cu/SiO2 prepared by reduction of copper hydroxosilicate with chrysocolla mineral structure provided better selectivity of 67% towards PDO at 32% GVL conversion in a continuous flow reactor.
    [Show full text]
  • Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L
    VOL. 48, 1962 BIOCHEMISTRY: E. L. SAIITH 677 18 Britten, R. J., and R. B. Roberts, Science, 131, 32 (1960). '9 Crestfield, A. M., K. C. Smith, and F. WV. Allen, J. Biol. Chem., 216, 185 (1955). 20 Gamow, G., Nature, 173, 318 (1954). 21 Brenner, S., these PROCEEDINGS, 43, 687 (1957). 22 Nirenberg, M. WV., J. H. Matthaei, and 0. WV. Jones, unpublished data. 23 Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature, 192, 1227 (1961). 24 Levene, P. A., and R. S. Tipson, J. Biol. Ch-nn., 111, 313 (1935). 25 Gierer, A., and K. W. Mundry, Nature, 182, 1437 (1958). 2' Tsugita, A., and H. Fraenkel-Conrat, J. Mllot. Biol., in press. 27 Tsugita, A., and H. Fraenkel-Conrat, personal communication. 28 Wittmann, H. G., Naturwissenschaften, 48, 729 (1961). 29 Freese, E., in Structure and Function of Genetic Elements, Brookhaven Symposia in Biology, no. 12 (1959), p. 63. NUCLEOTIDE BASE CODING AND AM1INO ACID REPLACEMIENTS IN PROTEINS* BY EMIL L. SMITHt LABORATORY FOR STUDY OF HEREDITARY AND METABOLIC DISORDERS AND THE DEPARTMENTS OF BIOLOGICAL CHEMISTRY AND MEDICINE, UNIVERSITY OF UTAH COLLEGE OF MEDICINE Communicated by Severo Ochoa, February 14, 1962 The problem of which bases of messenger or template RNA' specify the coding of amino acids in proteins has been largely elucidated by the use of synthetic polyri- bonucleotides.2-7 For these triplet nucleotide compositions (Table 1), it is of in- terest to examine some of the presently known cases of amino acid substitutions in polypeptides or proteins of known structure.
    [Show full text]