reactions Article Heterogeneously Catalyzed γ-Valerolactone Hydrogenation into 1,4-Pentanediol in Milder Reaction Conditions Irina Simakova 1,2,* , Yulia Demidova 1,2, Mikhail Simonov 1,2 , Sergey Prikhod’ko 1,2, Prashant Niphadkar 3, Vijay Bokade 3, Paresh Dhepe 3 and Dmitry Yu. Murzin 4,* 1 Boreskov Institute of Catalysis, pr. Lavrentieva, 5, 630090 Novosibirsk, Russia;
[email protected] (Y.D.);
[email protected] (M.S.);
[email protected] (S.P.) 2 Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia 3 CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India;
[email protected] (P.N.);
[email protected] (V.B.);
[email protected] (P.D.) 4 Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Turku/Åbo, Finland * Correspondence:
[email protected] (I.S.); dmurzin@abo.fi (D.Y.M.) Received: 20 September 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Hydrogenation of γ-valerolactone (GVL) in polar solvents (n-butanol, 1,4-dioxane) to 1,4-pentanediol (PDO) and 2-methyltetrahydrofuran (MTHF) was performed at 363–443 K in a fixed bed reactor under overall H2 pressure of 0.7–1.3 MPa. Preliminary screening in a batch reactior was performed with a series of Ru, Ir, Pt, Co, and Cu catalysts, earlier efficiently applied for levulinic acid hydrogenation to GVL. The fresh catalysts were analyzed by transmission electron microscopy (TEM), X-ray fluorescent analysis (XRF), temperature programmed reduction by H2 (H2-TPR), and N2 physisorption. Cu/SiO2 prepared by reduction of copper hydroxosilicate with chrysocolla mineral structure provided better selectivity of 67% towards PDO at 32% GVL conversion in a continuous flow reactor.