Development and Operation of Miniaturised Ion Traps for Scalable Quantum Computation

Total Page:16

File Type:pdf, Size:1020Kb

Development and Operation of Miniaturised Ion Traps for Scalable Quantum Computation Development and Operation of Miniaturised Ion Traps for Scalable Quantum Computation Dissertation zur Erlangung des Doktorgrades an der Fakultät für Mathematik, Informatik und Physik der Leopold-Franzens-Universität Innsbruck vorgelegt von Felicity Erin Splatt durchgeführt am Institut für Experimentalphysik unter der Leitung von Univ. Prof. Dr. R. Blatt Innsbruck August 2009 Abstract The advent of quantum information processing promises the merging of two of the deepest and most successful scientific and technological developments of the last century: quantum physics and computer science. Ions stored as strings in linear Paul traps are among the most promising systems for the experimental realisation of a quantum device harnessing the computing power inherent in the laws of quantum physics. Scaling ion trap quantum computers to large numbers of qubits requires a new approach. One proposal is the “quantum charge coupled device”, which describes an architecture for a large num- ber of interconnected traps, with the possibility of sorting ions and transporting ions between traps. Implementation of a large number of interconnected traps can be achieved by a segmented(- electrode) ion trap, where the segmentation of the dc electrodes of a linear Paul trap enables a sophisticated control of the axial trapping potential. The promise held by this approach has led to vigourous research in this direction by a number of groups worldwide. The goal of this thesis is the design and construction of a microtrap, and subsequently to gather first experiences in shuttling and sorting mechanisms as required in future quantum compu- tation devices. Work towards this goal has been completed on two fronts: using a rapid-prototype macroscopic printed circuit board trap, and in the design and development of a miniaturised mi- crofabricated segmented ion trap. First experiments were carried out with a segmented surface PCB ion trap. This easy-to- fabricate, rapidly prototyped trap was used to gain a deep understanding of the tailored potentials possible with segmented control electrodes. This knowledge is used in two different ways; in the realisation of long strings of ions, and in the deterministic reordering of ions in a crystal. The macroscopic surface trap has eleven dc electrodes, and the understanding of the effects of these individual electrodes allowed us to realise long (up to 43 ion) strings with almost equal ion spacing. This very long string may be applied to a recent theoretical proposal for quantum computation with ions in an anharmonic trap. In the same trap, ions in a crystal were deterministically reordered – this operation being one of the crucial primitives required of quantum computation in a segmented ion trap. The reordering of ions can be achieved through the use of time-dependent voltages which rotate the principal axes of the trap. These rotations have been implemented in two different ways. In one configuration, a two ion crystal is moved through a path similar to that traversed in a “three-point turn”, the ions finally returning to their origin with positions reversed. This process is deterministic and has a success rate of 93 %. A different path was also realised, a rotation of the weak principal axis around a point, in analogy to a “pirouette”. Here two-, three- and four-ion crystals had their positions reversed, with a success rate of 97 %. This path requires less deviation of the ions from the radiofrequency null and therefore is expected to entail less motional heating. Work was also carried out in the design of a microfabricated segmented electrode ion trap. This two-layer, gold-on-alumina trap has the desirable features of a large number of control electrodes, small dimensions allowing tight confinement and therefore fast gate operations, suppression of axial pseudopotential components, and a design minimising exposed dielectrics. The optimisation of trap dimensions is thoroughly explained, the trap parameters simulated and the fabrication and assembly process is described. iii iv Zusammenfassung Quanteninformationsverarbeitung verspricht die Zusammenführung von zwei der erfolgreichsten Disziplinen von Wissenschaft und Technik, nämlich Quantenphysik und Computerwissenschaften. In linearen Paul-Fallen gespeicherte Ionenketten stellen eine vielversprechende experimentelle Re- alisierung dar, um die Rechengesetze der Quantenmechanik nutzbar zu machen. Bei der Entwicklung eines nützlichen Quantencomputers spielt die Frage der Skalierbarkeit von auf Ionenfallen basierenden Quantencomputern eine zentrale Rolle. Eine mögliche Umsetzung dieses Problems ist eine Fallenarchitektur mit segmentierten Elektroden, welche zahlreiche einzelne Ionenfallen zu einer Gesamtstruktur verbindet und die Möglichkeit zu hochkomplexer Kontrolle des Fallenpotentials bietet. Das Ziel dieser Arbeit ist das Design und die Konstruktion einer Mikrofalle, mit deren Hilfe in Hinblick auf die Entwicklung eines zukünftigen Quantenrechners erste Erfahrungen zu Ionen- transport und -sortierung gesammelt werden können. Die Arbeit behandelt vor allem zwei Aspekte: makroskopische Fallen basierend auf konventioneller Leiterbahn-Technologie zur raschen Erstellung von Prototypen und die Entwicklung von miniaturisierten Mikrofallen. Erste Experimente wurden mit Hilfe einer Oberflächenfalle ausgeführt, welche leicht und vor allem schnell zu realisieren ist. Sie wurde benutzt, um tieferes Verständnis der durch die segmen- tierten Elektroden erzeugten, massgeschneiderten Potentiale zu erlangen. Damit konnten lange Ionenketten realisiert, sowie gezielte Umstellung der Anordnung von Ionen im Ionenkristall gezeigt werden. Diese makroskopische Falle besitzt elf Gleichspannungs-Elektroden, mit deren Hilfe eine Ionen- kette bestehend aus bis zu 43 Ionen mit gleichförmigen Abstand zu den Nachbar-Ionen erzeugt werden konnte. Das könnte eine Anwendung bei der kürzlich (theoretisch) vorgeschlagenen Re- alisierung von Quanteninformationsverarbeitung in einer anharmonischen Falle finden. In der gleichen Falle konnte die Anordnung eines Ionenkristalls gezielt verändert werden - ein Grund- baustein zur Quanteninformationsverarbeitung in einer segmentierten Ionenfalle. Die reproduzier- bare Anordnung kann durch eine zeitabhängige Variation der Fallenpotentiale erreicht werden. Zuerst wurde ein Kristall aus zwei Ionen über einen Pfad mit drei Eckpunkten in die Ausgangspo- sition verschoben, wobei die Positionen der Ionen vertauscht wurden. Ein ähnliches Resultat wurde erzeugt indem das Fallenpotential so verändert wurde, dass sich die Ionen um den gemeinsamen Schwerpunkt drehen. Hier erwartet man weniger Aufheizen der Ionen, da sich die Ionen näher am Radiofrequenz-Minimum befinden. Die Erfolgsrate für den ersten Prozess beträgt 93 %, für den zweiten 97 %. Ein weiterer Teil der Arbeit beschäftigt sich mit der Entwicklung einer mikrostrukturierten segmentierten Ionenfalle. Die Zweischicht-Falle besteht aus einer grossen Zahl von Kontrollelek- troden mit kleiner Ausdehnung und erlaubt starken Einschluss der Teilchen und deswegen schnelle Gatteroperationen. Die Optimierung und Simulation der Fallenparameter, sowie die Fertigung und Zusammenbau der Falle werden beschrieben. v vi Contents 1 Introduction 1 2 Theory 7 2.1 Radiofrequency Ion Traps . 7 2.1.1 Radial Confinement . 8 2.1.2 Axial Confinement: the Linear Paul Trap . 10 2.1.3 The Quantum Charge-Coupled Device: Segmented-Electrode Ion Traps . 11 2.1.4 Linear Paul Trap Geometries with Microfabricated Structures . 12 2.1.5 Ion Strings in a Linear Paul Trap . 12 2.2 Electronic energy Levels of 40Ca+ and 40Ca . 13 2.3 Laser-Ion Interaction . 15 2.3.1 Detection and Measurement . 15 2.3.2 Doppler Cooling . 16 2.3.3 Coherent Manipulations . 17 3 Trap Design and Simulation 19 3.1 Trap Design . 19 3.1.1 Trap Geometry . 20 3.1.1.1 Radial Confinement . 20 3.1.1.2 Axial Confinement . 23 3.1.2 Materials and Fabrication . 28 3.1.2.1 Electrode Material . 29 3.1.2.2 Substrate Material . 30 3.1.2.3 Electrical Breakdown . 31 3.1.3 Practical Considerations . 32 3.1.3.1 Excess Micromotion Compensation . 32 3.1.3.2 Orientation of Trap Axes . 32 3.1.3.3 Ion Loading . 35 3.1.3.4 Trap Packaging and Electrical Connections . 35 3.2 Trap Simulation . 36 3.2.1 Electric Potential Basis Functions ........................ 36 3.2.2 Numerical Simulation Methods . 37 3.2.2.1 The Finite Element Method . 37 3.2.2.2 The Boundary Element Method . 37 3.2.2.3 Comparison between the Boundary Element Method and the Finite Element Method. 38 3.2.2.4 Other Notable Solving Methods . 39 3.2.3 Numerical Field Simulation and Analysis . 42 3.2.3.1 Numerical Field Simulation . 42 3.2.3.2 Electric Potential Analysis . 43 vii Contents 4 Trap Layout and Fabrication 47 4.1 Trap Layout and Simulation of Trap Parameters . 47 4.1.1 Surface trap Bastille ................................ 47 4.1.1.1 Surface Trap Bastille Layout . 48 4.1.1.2 Surface Trap Bastille Numerical Field Simulation and Analysis . 49 4.1.2 Two-Layer Gold-on-Alumina Trap . 61 4.1.2.1 Two-Layer Gold-on-Alumina Trap Geometry . 61 4.1.2.2 Two-Layer Gold-on-Alumina Trap Numerical Field Simulation and Analysis . 63 4.2 Trap Fabrication . 69 4.2.1 Surface Trap Bastille ................................ 69 4.2.2 Two-Layer Gold-on-Alumina Trap . 69 4.2.2.1 Laser Machining of Alumina Wafers . 70 4.2.2.2 Gold Evaporation . 70 4.2.2.3 Electroplating . 71 4.2.2.4 Electrical Insulation . 72 4.2.2.5 Chip Dicing . 72 4.2.2.6 Etching . 73 4.2.2.7 Assembly . 73 5 Experimental Setup 75 5.1 Trap Mounting Hardware and Accessories . 75 5.2 Vacuum
Recommended publications
  • Physics Teaching and Research at Göttingen University 2 GREETING from the PRESIDENT 3
    Physics Teaching and Research at Göttingen University 2 GREETING FROM THE PRESIDENT 3 Greeting from the President Physics has always been of particular importance for the Current research focuses on solid state and materials phy- Georg-August-Universität Göttingen. As early as 1770, Georg sics, astrophysics and particle physics, biophysics and com- Christoph Lichtenberg became the first professor of Physics, plex systems, as well as multi-faceted theoretical physics. Mathematics and Astronomy. Since then, Göttingen has hos- Since 2003, the Physics institutes have been housed in a new ted numerous well-known scientists working and teaching physics building on the north campus in close proximity to in the fields of physics and astronomy. Some of them have chemistry, geosciences and biology as well as to the nearby greatly influenced the world view of physics. As an example, Max Planck Institute (MPI) for Biophysical Chemistry, the MPI I would like to mention the foundation of quantum mecha- for Dynamics and Self Organization and the MPI for Solar nics by Max Born and Werner Heisenberg in the 1920s. And System Research. The Faculty of Physics with its successful Georg Christoph Lichtenberg and in particular Robert Pohl research activities and intense interdisciplinary scientific have set the course in teaching as well. cooperations plays a central role within the Göttingen Cam- pus. With this booklet, the Faculty of Physics presents itself It is also worth mentioning that Göttingen physicists have as a highly productive and modern faculty embedded in an accepted social and political responsibility, for example Wil- attractive and powerful scientific environment and thus per- helm Weber, who was one of the Göttingen Seven who pro- fectly prepared for future scientific challenges.
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Early History of Charged-Particle Traps
    Appendix A Early History of Charged-Particle Traps Abstract Today, we see a broad variety of particle traps and related devices for confinement and study of charged particles in various fields of science and indus- try (Werth, Charged Particle Traps, Springer, Heidelberg; Werth, Charged Particle Traps II, Springer, Heidelberg; Ghosh, Ion Traps, Oxford University Press, Oxford; Stafford, Am Soc Mass Spectrom. 13(6):589). The multitude of realisations and applications of electromagnetic confinement cannot be easily overlooked as the vari- ability of particle confinement and the vast number of experimental techniques avail- able has allowed traps and related instrumentation to enter many different fields in physics and chemistry as well as in industrial processes and applied analysis, mainly in the form of mass spectrometry (Stafford, Am Soc Mass Spectrom. 13(6):589; March and Todd, Practical Aspects of Ion Trap Mass Spectometry, CRC Press, Boca Raton). Here, we would like to give a brief account of the main historical aspects of charged-particle confinement, of the principles, technical foundations and beginnings that led to the realisation of traps and to the 1989 Nobel Prize in Physics awarded to Hans Georg Dehmelt and Wolfgang Paul ‘for the invention of the ion trap technique’, at which point we choose to end our discussion. Mainly, we will look at the work of the people who pioneered the field and paved the way to the first working traps. These can be seen as belonging to two different families of traps, Penning traps and Paul traps, each of these families nowadays with numerous variations of the respective confinement concepts.
    [Show full text]
  • Orbitrap Fusion Tribrid Mass Spectrometer
    MASS SPECTROMETRY Product Specifications Thermo Scientific Orbitrap Fusion Tribrid Mass Spectrometer Unmatched analytical performance, revolutionary MS architecture The Thermo Scientific™ Orbitrap Fusion™ mass spectrometer combines the best of quadrupole, Orbitrap, and linear ion trap mass analysis in a revolutionary Thermo Scientific™ Tribrid™ architecture that delivers unprecedented depth of analysis. It enables life scientists working with even the most challenging samples—samples of low abundance, high complexity, or difficult-to-analyze chemical structure—to identify more compounds faster, quantify them more accurately, and elucidate molecular composition more thoroughly. • Tribrid architecture combines quadrupole, followed by ETD or EThCD for glycopeptide linear ion trap, and Orbitrap mass analyzers characterization or HCD followed by CID • Multiple fragmentation techniques—CID, for small-molecule structural analysis. HCD, and optional ETD and EThCD—are available at any stage of MSn, with The ultrahigh resolution of the Orbitrap mass subsequent mass analysis in either the ion analyzer increases certainty of analytical trap or Orbitrap mass analyzer results, enabling molecular-weight • Parallelization of MS and MSn acquisition determination for intact proteins and confident to maximize the amount of high-quality resolution of isobaric species. The unsurpassed data acquired scan rate and resolution of the system are • Next-generation ion sources and ion especially useful when dealing with complex optics increase system ease of operation and robustness and low-abundance samples in proteomics, • Innovative instrument control software metabolomics, glycomics, lipidomics, and makes setup easier, methods more similar applications. powerful, and operation more intuitive The intuitive user interface of the tune editor The Orbitrap Fusion Tribrid MS can perform and method editor makes instrument calibration a wide variety of analyses, from in-depth and method development easier.
    [Show full text]
  • ECPR General Conference
    13th General Conference University of Wrocław, 4 – 7 September 2019 Contents Welcome from the local organisers ........................................................................................ 2 Mayor’s welcome ..................................................................................................................... 3 Welcome from the Academic Convenors ............................................................................ 4 The European Consortium for Political Research ................................................................... 5 ECPR governance ..................................................................................................................... 6 Executive Committee ................................................................................................................ 7 ECPR Council .............................................................................................................................. 7 University of Wrocław ............................................................................................................... 8 Out and about in the city ......................................................................................................... 9 European Political Science Prize ............................................................................................ 10 Hedley Bull Prize in International Relations ............................................................................ 10 Plenary Lecture .......................................................................................................................
    [Show full text]
  • The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus
    ISSN (Online) 2393-8021 IARJSET ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 5, Issue 10, October 2018 The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus Dr.(Prof.) V.C.A NAIR* Educational Physicist, Research Guide for Physics at Shri J.J.T. University, Rajasthan-333001, India. *[email protected] Abstract: The Research Paper consists mainly of the birth dates of scientists and philosophers Before Christ (BC) and After Death (AD) starting from Thales of Miletus with a brief description of their work and contribution to the development of Physics. The author has taken up some 400 odd scientists and put them in a chronological order. Nobel laureates are considered separately in the same paper. Along with the names of researchers are included few of the scientific events of importance. The entire chain forms a cascade and a ready reference for the reader. The graph at the end shows the recession in the earlier centuries and its transition to renaissance after the 12th century to the present. Keywords: As the contents of the paper mainly consists of names of scientists, the key words are many and hence the same is not given I. INTRODUCTION As the material for the topic is not readily available, it is taken from various sources and the collection and compiling is a Herculean task running into some 20 pages. It is given in 3 parts, Part I, Part II and Part III. In Part I the years are given in Chronological order as per the year of birth of the scientist and accordingly the serial number.
    [Show full text]
  • A Researcher's Guide to Mass Spectrometry‐Based Proteomics
    Proteomics 2016, 16, 2435–2443 DOI 10.1002/pmic.201600113 2435 TUTORIAL A researcher’s guide to mass spectrometry-based proteomics John P. Savaryn1,2∗, Timothy K. Toby3∗ and Neil L. Kelleher1,3,4 1 Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA 2 Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA 3 Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA 4 Department of Chemistry, Northwestern University, Evanston, Illinois, USA Mass spectrometry (MS) is widely recognized as a powerful analytical tool for molecular re- Received: February 24, 2016 search. MS is used by researchers around the globe to identify, quantify, and characterize Revised: May 18, 2016 biomolecules like proteins from any number of biological conditions or sample types. As Accepted: July 8, 2016 instrumentation has advanced, and with the coupling of liquid chromatography (LC) for high- throughput LC-MS/MS, a proteomics experiment measuring hundreds to thousands of pro- teins/protein groups is now commonplace. While expert practitioners who best understand the operation of LC-MS systems tend to have strong backgrounds in physics and engineering, consumers of proteomics data and technology are not exposed to the physio-chemical principles underlying the information they seek. Since articles and reviews tend not to focus on bridging this divide, our goal here is to span this gap and translate MS ion physics into language intuitive to the general reader active in basic or applied biomedical research. Here, we visually describe what happens to ions as they enter and move around inside a mass spectrometer. We describe basic MS principles, including electric current, ion optics, ion traps, quadrupole mass filters, and Orbitrap FT-analyzers.
    [Show full text]
  • Arxiv:1512.05503V4 [Physics.Plasm-Ph] 14 Mar 2016
    Multipole Electrodynamic Ion Trap Geometries for Microparticle Confinement Multipole Electrodynamic Ion Trap Geometries for Microparticle Confinement under Standard Ambient Temperature and Pressure Conditions Bogdan M. Mihalcea,1, a) Liviu C. Giurgiu,2 Cristina Stan,3 Gina T. Vi¸san,1 Mihai Ganciu,1 Vladimir E. Filinov,4 Dmitry Lapitsky,4, b) Lidiya Deputatova,4 and Roman Syrovatka4 1)National Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomi¸stilorStr. Nr. 409, 077125 M˘agurele, Ilfov, Romania 2)University of Bucharest, Faculty of Physics, Atomistilor Str. Nr. 405, 077125 M˘agurele, Romania 3)Department of Physics, Politehnica University, 313 Splaiul Independent¸ei, RO-060042, Bucharest, Romania 4)Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Str. 13, Bd. 2, 125412 Moscow, Russia Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under Standard Ambient Temperature and Pressure (SATP) conditions. An 8-electrode and a 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trap- ping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trap- ping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.
    [Show full text]
  • EYLSA Laser for Atom Cooling
    Application Note by QUANTELQUANTEL 1/7 Distribution: external EYLSA laser for atom cooling For decades, cold atom system and Bose-Einstein condensates (obtained from ultra-cold atoms) have been two of the most studied topics in fundamental physics. Several Nobel prizes have been awarded and hundreds of millions of dollars have been invested in this research. In 1975, cold atom research was enhanced through discoveries of laser cooling techniques by two groups: the first being David J. Wineland and Hans Georg Dehmelt and the second Theodor W. Hänsch and Arthur Leonard Schawlow. These techniques were first demonstrated by Wineland, Drullinger, and Walls in 1978 and shortly afterwards by Neuhauser, Hohenstatt, Toschek and Dehmelt. One conceptually simple form of Doppler cooling is referred to as optical molasses, since the dissipative optical force resembles the viscous drag on a body moving through molasses. Steven Chu, Claude Cohen-Tannoudji and William D. Phillips were awarded the 1997 Nobel Prize in Physics for their work in “laser cooling and trapping of neutral atoms”. In 2001, Wolfgang Ketterle, Eric Allin Cornell and Carl Wieman also received the Nobel Prize in Physics for realization of the first Bose-Einstein condensation. Also in 2012, Serge Haroche and David J. Wineland were awarded a Nobel prize for “ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems”. Even though this award is more directed toward photons studies, it makes use of cold atoms (Rydberg atoms). Laser cooling Principle Sources: https://en.wikipedia.org/wiki/Laser_cooling and https://en.wikipedia.org/wiki/Doppler_cooling Laser cooling refers to a number of techniques in which atomic To a stationary atom the laser is neither red- and molecular samples are cooled to near absolute zero through nor blue-shifted and the atom does not absorb interaction with one or more laser fields.
    [Show full text]
  • Engineering of Microfabricated Ion Traps and Integration Of
    Engineering of Microfabricated Ion Traps and Integration of Advanced On-Chip Features Zak David Romaszko*, Seokjun Hong, Martin Siegele, Reuben Kahan Puddy, Foni Raphaël Lebrun- Gallagher, Sebastian Weidt, Winfried Karl Hensinger Sussex Centre for Quantum Technologies, Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, United Kingdom Abstract Atomic ions trapped in electromagnetic potentials have long been used for fundamental studies in quantum physics. Over the past two decades trapped ions have been successfully used to implement technologies such as quantum computing, quantum simulation, atomic clocks, mass spectrometers and quantum sensors. Advanced fabrication techniques, taken from other established or emerging disciplines, are used to create new, reliable ion trap devices aimed at large-scale integration and compatibility with commercial fabrication. This Technical Review covers the fundamentals of ion trapping before discussing the design of ion traps for the aforementioned applications. We overview the current microfabrication techniques and the various considerations behind the choice of materials and processes. Finally, we discuss current efforts to include advanced, on-chip features into next generation ion traps. 1. Introduction The trapping of atomic ions in confining electric fields in vacuum was first conceived and demonstrated by Wolfgang Paul and Hans Georg Dehmelt, earning them a share of the 1989 Nobel prize in physics [1], [2]. An ion isolated in this way can be extremely well decoupled from its environment and thus cooled to very low temperatures using laser techniques (such as those in Ref. [3]). The extreme isolation and low thermal energy mean that the energy levels of the laser-cooled ion are highly stable and well resolved, with quantum states having been observed to remain coherent over several minutes [4], [5].
    [Show full text]
  • Specification Sheet: LTQ XL Linear Ion Trap Mass Spectrometer
    PRODUCT SPECIFICATIONS The Thermo Scientific™ LTQ XL™ linear ion trap mass spectrometer Everyday affordability with MSn The LTQ XL linear ion trap mass spectrometer delivers high sensitivity full Keywords scan MS along with in-depth MSn (CRM) capabilities. LTQ XL linear ion trap mass If you are in the market for an extremely affordable general-purpose mass n spectrometer, MS (CRM) spectrometer, look no further than the LTQ XL. capabilities, proteomics, metabolite identification, forensic analysis, Applications include proteomics, metabolite identification, forensic analysis, clinical research, teaching clinical research and teaching. General purpose utility extends to users in academia, industry and government alike. Now includes updated software with Windows 10 compatibility enabling full support today and into the future A single quadrupole offers no more than Selected Ion Monitoring (SIM). A triple quadrupole adds Selected Reaction Monitoring (SRM) where a selected ion can be fragmented into a product ion. A linear ion trap goes further by enabling Consecutive Reaction Monitoring (CRM) where a selected ion is fragmented into a product ion and the resulting product ion further fragmented in additional consecutive steps (MSn). Each additional fragmentation step makes compound identification more certain and facilitates structural characterization. Selected Ion First Product Ion Second Product Ion (MS1) Fragmentation (MS2) Fragmentation (MS3) Powerful tools for structural characterization Collision Induced Dissociation (CID) • Resonance
    [Show full text]
  • Vacuum Science & Technology Timeline
    1972 – 1975 First oil-free piston Johan K. Fremerey vacuum pump Spinning rotor John L. Farrant vacuum gauge 1974 1972 Low-Pressure Chemical Vapor Deposition of Silicon Dioxide from Tetraethoxysilane Dan L. Burt, Richard F. Taraci and John E. Zavion U.S. Patent 3934060 (1976), filed 1973 Altair 8800 Computer 1975 Structure Zone Model for sputter-deposited films John A. Thornton 1974 R. C. Merrill G.J. Egan, B.W. Paszek and A.J. Aronson Roll coater for deposition on Ferrofluidic™ rotary shaft seal plastic film Reactive ion etching Ferrofluidics Corp. 1972 Horuhiko Abe, Japan Steven Yoneo Muto 1974 Plasma etching of semiconductors U.S. Patent 3971684 (1976) U.S. Patent 3880684 (1975) filed 1973 filed 1973 Kalrez ® perfluorocarbon elastomers E. I. du Pont de Nemours & Co. c. 1975 Last Apollo Mission Cryo-pumps for The Earth in the vacuum Space Simulation and of space – from Apollo-17 semiconductor fabrication (NASA - 1972) John S. Chapin 1975 Planar magnetron sputter Low-Pressure Chemical Deposition deposition source Special Report: Vacuum of Polysilicon U.S. Patent 4166018 (1979 ) Zenith shuts down Physics Today Jerry L. Kruma and Paul G. Hilton filed 1974 Lansdale, PA unit August 1972 U.S. Patent 3900597 (1975) 1975 filed 1973 1972 1975 Vacuum Science & Technology Timeline Kai Manne Börje Siegbahn Nicolaas Bloembergen Ernst August Friedrich Ruska 1976 – 1989 (1919–1981) and Arthur L. Schawlow (1906-1988) Nobel Prize in Physics Nobel Prize in Physics Nobel Prize for transmission for high resolution for laser spectroscopy electron microscope electron spectroscopy 1981 1981 1986 Wolfgang Paul Gerd Binnig and Heinrich Rohrer Nobel Prize in Physics Nobel Prize in Physics for for Paul Trap for scanning tunneling microscopy Intel 8086 charged particles 1986 Viking I and II 16-bit microprocessor.
    [Show full text]