The Reason for Beam Cooling: Some of the Physics That Cooling Allows

Total Page:16

File Type:pdf, Size:1020Kb

The Reason for Beam Cooling: Some of the Physics That Cooling Allows The Reason for Beam Cooling: Some of the Physics that Cooling Allows Eagle Ridge, Galena, Il. USA September 18 - 23, 2005 Walter Oelert IKP – Forschungszentrum Jülich Ruhr – Universität Bochum CERN obvious: cooling and control of cooling is the essential reason for our existence, gives us the opportunity to do and talk about physics that cooling allows • 1961 – 1970 • 1901 – 1910 1961 – Robert Hofstadter (USA) 1901 – Wilhelm Conrad R¨ontgen (Deutschland) 1902 – Hendrik Antoon Lorentz (Niederlande) und Rudolf M¨ossbauer (Deutschland) Pieter (Niederlande) 1962 – Lev Landau (UdSSR) 1903 – Antoine Henri Becquerel (Frankreich) 1963 – Eugene Wigner (USA) und Marie Curie (Frankreich) Pierre Curie (Frankreich) Maria Goeppert-Mayer (USA) und J. Hans D. Jensen (Deutschland) 1904 – John William Strutt (Großbritannien und Nordirland) 1964 – Charles H. Townes (USA) , 1905 – Philipp Lenard (Deutschland) Nikolai Gennadijewitsch Bassow (UdSSR) und 1906 – Joseph John Thomson (Großbritannien-und-Nordirland) Alexander Michailowitsch Prochorow (UdSSR) und 1907 – Albert Abraham Michelson (USA) 1965 – Richard Feynman (USA), Julian Schwinger (USA) Shinichiro Tomonaga (Japan) 1908 – Gabriel Lippmann (Frankreich) 1966 – Alfred Kastler (Frankreich) 1909 – Ferdinand Braun (Deutschland) und Guglielmo Marconi (Italien) 1967 – Hans Bethe (USA) 1910 – Johannes Diderik van der Waals (Niederlande) 1968 – Luis W. Alvarez (USA) 1969 – Murray Gell-Mann (USA) 1970 – Hannes AlfvAn¨ (Schweden) • 1911 – 1920 Louis N¨oel (Frankreich) 1911 – Wilhelm Wien (Deutschland) 1912 – Gustaf Dal¨an (Schweden) • 1971 – 1980 1913 – Heike Kamerlingh Onnes (Niederlande) 1914 – Max von Laue (Deutschland) 1971 – Dennis Gabor (Großbritannien-und-Nordirland) 1915 – William Henry Bragg (Großbritannien-und-Nordirland und 1972 – John Bardeen (USA), Leon Neil Cooper (USA) und William Lawrence Bragg (Großbritannien-und-Nordirland) Robert Schrieffer (USA) 1916 nicht verliehen 1973 – Leo Esaki (USA) und Ivar Giaever (USA) 1917 – Charles Glover Barkla (Großbritannien-und-Nordirland) (verliehen 1918) Brian Davon Josephson (Großbritannien-und-Nordirland) 1918 – Max Planck (Deutschland)(verliehen 1919) 1974 – Martin Ryle (Großbritannien-und-Nordirland) und 1919 – Johannes Stark (Deutschland) Antony Hewish (Großbritannien-und-Nordirland) 1920 – Charles Edouard Guillaume (Schweiz) 1975 – Aage N. Bohr (D¨anemark), Ben R. Mottelson (D¨anemark) und James Rainwater (USA) 1976 – Burton Richter (USA) und Samuel C. C. Ting (USA) 1921 – 1930 1977 – Philip W. Anderson (USA) , • Nevill F. Mott (Großbritannien-und-Nordirland) und John H. van Vleck (USA) 1921 – Albert Einstein (Deutschland) (verliehen 1922) 1978 – Pjotr Kapiza (UdSSR) 1922 – Niels Bohr (D¨anemark) 1923 – Robert Andrews Millikan (USA) Arno Penzias (USA) und Robert Woodrow Wilson (USA) 1924 – Karl Manne Siegbahn (Schweden) (verliehen 1925) 1979 – Sheldon Glashow (USA), Abdus Salam (Pakistan) und 1925 – James Franck (Deutschland) und Steven Weinberg (USA) Gustav Hertz (Deutschland)(verliehen 1926) 1980 – James Cronin (USA) und Val Fitch (USA) 1926 – Jean Baptiste Perrin (Frankreich) 1927 – Arthur Holly Compton (USA) und Charles Thomson Rees Wilson (Großbritannien-und-Nordirland) • 1981 – 1990 1928 – Owen Willans Richardson (Großbritannien-und-Nordirland) (verl. 1929) 1929 – Prince Louis Victor de Broglie (Frankreich) 1981 – Nicolaas Bloembergen (USA) und Arthur L. Schawlow (USA) 1930 – Chandrasekhara Venkata Raman (Indien) Kai Manne Siegbahn (Schweden) 1982 – Kenneth G. Wilson (USA) 1983 – Subrahmanyan Chandrasekhar (USA) • 1931 – 1940 William A. Fowler (USA) 1931 nicht verliehen 1984 – Carlo Rubbia (Italien) und Simon van der Meer (Niederlande) 1932 – Werner Heisenberg (Deutschland) (verliehen 1933) 1985 – Klaus von Klitzing (Deutschland) 1933 – Erwin Schr¨odinger (Osterreich)¨ und 1986 – Ernst Ruska (Deutschland) Paul A. M. Dirac (Großbritannien-und-Nordirland) 98 Æ 22 1934 nicht verliehen Gerd Binnig (Deutschland) und Heinrich Rohrer (Schweiz) 1987 – Johannes Georg Bednorz (Deutschland) und Karl Alex M¨uller (Schweiz) 1935 – James Chadwick (Großbritannien-und-Nordirland) 1988 – Leon Max Lederman (USA), Melvin Schwartz (USA) und ¨ 1936 – Victor F. Hess (Osterreich) Jack Steinberger (USA) 1989 – Wolfgang Paul (Deutschland) Carl David Anderson (USA) und 1937 – Clinton Davisson (USA) Hans Georg Dehmelt (USA) George Paget Thomson (Großbritannien-und-Nordirland) 1938 – Enrico Fermi (Italien) Norman Foster Ramsey (USA) 1939 – Ernest O. Lawrence (USA) 1990 – Jerome I. Friedman (USA), Henry W. Kendall (USA) und 1940 nicht verliehen Richard E. Taylor (Kanada) • 1941 – 1950 • 1991 – 2000 1941 nicht verliehen 1991 – Pierre-Gilles de Gennes (Frankreich) 1942 nicht verliehen 1992 – Georges Charpak (Frankreich) 1943 – Otto Stern (USA) (verliehen 1944) 1993 – Russell A. Hulse (USA) und Joseph Hooton Taylor Jr. (USA) 1944 – Isidor Isaac Rabi (USA) 1994 – Bertram N. Brockhouse (Kanada) und Clifford Glenwood Shull (USA) 1945 – Wolfgang Pauli (Osterreich)¨ 1995 – Martin L. Perl (USA) 1946 – Percy W. Bridgman (USA) Frederick Reines (USA) 1947 – Edward Victor Appleton (Großbritannien-und-Nordirland) 1996 – David M. Lee (USA), Douglas D. Osheroff (USA) und 1948 – Patrick Maynard Stuart Blackett (Großbritannien-und-Nordirland) Robert C. Richardson (USA) 1949 – Hideki Yukawa (Japan) 1997 – Steven Chu (USA), Claude Cohen-Tannoudji (Frankreich) und 1950 – Cecil Powell (Großbritannien-und-Nordirland) William D. Phillips (USA) 1998 – Robert B. Laughlin (USA), Horst Ludwig St¨ormer (Deutschland) und 1951 – 1960 Daniel Chee Tsui (USA) • 1999 – Gerardus t’ Hooft (Niederlande) und Martinus J.G. Veltman (Niederlande) 1951 – John Cockcroft (Großbritannien-und-Nordirland) und Ernest Thomas Sinton Walton (Republik-Irland) 2000 – Schores Alfjorow (Russland) und Herbert Kroemer (Deutschland) 1952 – Felix Bloch (USA) und Edward Mills Purcell (USA) Jack S. Kilby (USA) 1953 – Frits Zernike (Niederlande) 1954 – Max Born (Deutschland) Walther Bothe (Deutschland) • 2001 – 2004 1955 – Willis Eugene Lamb (USA) 2001 – Eric A. Cornell (USA), Wolfgang Ketterle (Deutschland) und Polykarp Kusch (USA) Carl E. Wieman (USA) 2002 – Raymond Davis Jr. (USA) und Masatoshi Koshiba (Japan) 1956 – William B. Shockley (USA), John Bardeen (USA) und Walter H. Brattain (USA) Riccardo Giacconi (USA) 1957 – Chen Ning (Volksrepublik-China) und 2003 – Alexei Abrikossow (Russland), Witali Ginsburg (Russland) und Tsung-Dao Lee (Volksrepublik-China) Anthony James Leggett (Großbritannien-und-Nordirland) 1958 – Pawel Tscherenkow (UdSSR), Ilja Frank (UdSSR) und 2004 – David Gross (USA), David Politzer (USA) und Frank Wilczek (USA) Igor Tamm (UdSSR) 1959 – Emilio Segre’ (USA) und Owen Chamberlain (USA) 1960 – Donald A. Glaser (USA) Dipole Breathing oscillations of a one-dimensional Bose-Einstein condensate Bose-Einstein condensate: momentum distribution of ultracold bosonic atoms D.M. Harber et al, Phys. Rev. A to be published generate laser light Vacuum chamber for atom cooling, surrounded by trapping and optical elements manipulation and magnetic coils P(o) Æ x, x`, y, y` Æ ε target neutral particle scintillator S1 detector COSY dipole ~1m scintillator S3 K+ Cerenkov drift chambers counter p - K pp ® ppK+K- dipole silicon pads + scintillator silicon pads + scintillator target beam ~1m hexagonal drift chamber drift chambers K+ p p scintillator S1 no cooling stochastic cooling 200 100 spilltime 60 min. eventrate /s 0 30 60 90 120 [minutes] 2 10 total cross section 10 IUCF elastic [mb] + d π first: σ 1 50 0 pp pp π -1 40 10 b) µ 30 2 ( -2 pp η η 10 tot / 20 σ + -3 pK Λ 10 10 pp η ´ 0 -4 + 0 0.2 0.410 0.6 pK Σ η (= pπ ,max /m π c) -5 10 + - ppK K -6 COSY 10 -7 10 0 0.5 1 1.5 2 2.5 3 3.5 4 P [GeV/c] beam 250 300 p p → p p X 2 2 250 200 200 150 150 100 100 events / 0.5 MeV/c events / 0.5 MeV/c 50 50 0 0 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.945 0.95 0.955 0.96 0.965 missing mass [ GeV/c2 ] missing mass [ GeV/c2 ] phase space (arb. norm.) + pp FSI + ph FSI aph = +0.7fm + i 0.4fm 4 10 rph = -1.5fm - i 0.24fm (A.M.Green, S.Wycech, PR C55 (1997) R2167) 3 10 pp → ppη [nb] σ 2 10 10 pp → ppη′ 2 11010 Q[MeV] 40 30 p p Λ Λ 20 1.771 GeV/c 10 0 6 p p Λ Σ 0 + c c 4 1000 14 MeV b/sr] 25 MeV µ 39 MeV [ 1.771 GeV/c 73 MeV p p Λ Λ Ω 2 ] 92 MeV /d σ 2 118 MeV d 141 MeV 170 MeV 0 100 196 MeV b / (GeV/c) µ 1 p p Σ + Σ+ /dt’ [ σ d 1.922 GeV/c 10 0,5 cos θ cm > -.8 0 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 -1 -0,50 0,5 1 t’ [(Gev/c) 2] cos θ [CM] Λ 12 10 p+p Λ+Λ 8 b] µ 6 [ σ 4 2 1000 0 01234567 Excess energy [MeV] pp ΛΛ 100 10 pp Σ + Σ+ b σ [µ ] 1 0 pp ΛΣ + cc pp Σ - Σ- 0.1 0.01 1.4 1.5 1.6 1.7 1.8 1.9 2.0 Momentum [GeV/c] p 1,5 pp Σ0 Λ y pp Λ Λ Λ S = 0 θ 1 x p z 0,5 p θ* p y Λ Singlet Fraction 0 S = 1 θ* Λ -0,5 0 50 100 150 200 Excess energy [MeV] z x Λ Polarisation t’ [(GeV/c) ] 2 Excess energy [MeV] Kent D. Paschke CMU MEX QG: SF= const. = 0 SF : p + p Λ Λ SF = 0 SF = 1 Kent D. Paschke CMU QG QG MEX MEX Dnn ( = 1) Knn ( = 1) p + p Λ Λ p + p Λ Λ MEX --> tensor interaction --> spin flip --> Dnn and Knn negativ QG --> minor tensor interaction --> smaller and positive Dnn and Knn p p Λ Λ θp C π− π+ P CP π− π+ Λ Λ p p direct CP violation test: I(θ ) = I (1 + α P cos θ ) θ α θ y 0 y I( y0) = I (1 + P cos y ) P = P α + α Α = = 0.006 ± 0.014 A = (α + α) / (α α− − α α) = 0.006 +- 0.014 first H - production and - detection at LEAR99 p 99 "trace" p 23,300 ∆E Xe Target Te+ 94 normalized deflection [mm] H° e+ e- γγ 19.7 +/- 0.6 11 exit window for time of flight [ns] neutral particles + e p H.
Recommended publications
  • Unrestricted Immigration and the Foreign Dominance Of
    Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of
    [Show full text]
  • Fotonica Ed Elettronica Quantistica
    Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A.
    [Show full text]
  • People and Things
    People and things On 15 April, Haim Harari of the Weizmann Institute, Israel, was guest speaker at a symposium to mark 20 years of accelerator operation at the Paul Scherrer Institute, Maurice Jacob's roving camera caught Murray Villigen, Switzerland. Gell Mann in a London pub with the manu­ (Photo Armin Muller) script of his book 'The Quark and the Jaguar'. 20 years of PSI In April the Swiss Paul Scherrer Institute celebrated 20 years of accelerator operations. Originally built for particle research, these facilities now extend over a wide spectrum of applications, from molecular structure to cancer therapy. Each year over 400 visiting researchers make use of PSI particle beams. Meetings An international symposium on strangeness and quark matter will be held from 1-5 September in Crete, covering 1. strangeness and quark- gluon plasma, 2. strangeness con­ LAPP, Annecy, well known authority French Academy of Sciences densation, 3. strange astrophysics, 4. on non-Abelian gauge theories, and strangelets, 5. dedicated instrumen­ Michel Davier, long-time specialist in tation for strangeness and quark Among the new corresponding electron-positron collision physics matter. Information from the Secre­ members of the French Academy of and former Director of the Orsay tariat, University of Athens, Physics Sciences (Academie des Sciences Linear Accelerator Laboratory. Other Dept., Nuclear & Particle Physics de Paris) are Raymond Stora of new members are Alain Aspect, Division, Panepistimioupolis, Greece- 15771 Athens, tel. (30-1)7247502, 7243362, 7243143, fax (30- 1)7235089, email gvassils ©atlas, uoa.ariadne-t.gr At a special colloquium held at CERN on 20 April to mark Carlo Rubbia's 60th birthday and the tenth anniversary of his Nobel Prize award with Simon van der Meer, left to right - Canadian TRIUMF Laboratory Director and former UA1 co-spokesman Alan Astbury, LHC Project Director Lyn Evans, Carlo Rubbia, Director General Chris Llewellyn Smith, and former UA 1 co-spokesman John Dowel I.
    [Show full text]
  • Laboratoire Kastler Brossel, LKB, ENS PARIS, Sorbonne Université, COLL DE FRANCE, CNRS, Mr Antoine HEIDMANN
    Research evaluation REPORT ON THE RESEARCH UNIT: Kastler Brossel Laboratory LKB UNDER THE SUPERVISION OF THE FOLLOWING INSTITUTIONS AND RESEARCH BODIES: École Normale Supérieure Sorbonne Université Collège de France Centre National de la Recherche Scientifique - CNRS EVALUATION CAMPAIGN 2017-2018 GROUP D In the name of Hcéres1 : In the name of the expert committee2 : Michel Cosnard, President Vahid Sandoghdar, Chairman of the committee Under the decree No.2014-1365 dated 14 November 2014, 1 The president of HCERES "countersigns the evaluation reports set up by the expert committees and signed by their chairman." (Article 8, paragraph 5); 2 The evaluation reports "are signed by the chairman of the expert committee". (Article 11, paragraph 2). Laboratoire Kastler Brossel, LKB, ENS PARIS, Sorbonne Université, COLL DE FRANCE, CNRS, Mr Antoine HEIDMANN This report is the sole result of the unit’s evaluation by the expert committee, the composition of which is specified below. The assessments contained herein are the expression of an independent and collegial reviewing by the committee. UNIT PRESENTATION Unit name: Laboratoire Kastler-Brossel Unit acronym: LKB Requested label: UMR Application type: Renewal Current number: UMR 8552 Head of the unit Mr Antoine HEIDMANN (2017-2018): Project leader Mr Antoine HEIDMANN (2019-2023): Number of teams: 12 COMMITTEE MEMBERS Chair: Mr Vahid SANDOGHDAR, Max Planck Institute, Germany Experts: Mr Jean-Claude BERNARD, CNRS (supporting personnel) Mr Benoît BOULANGER, Université Grenoble Alpes (representative
    [Show full text]
  • Wave Nature of Matter: Made Easy (Lesson 3) Matter Behaving As a Wave? Ridiculous!
    Wave Nature of Matter: Made Easy (Lesson 3) Matter behaving as a wave? Ridiculous! Compiled by Dr. SuchandraChatterjee Associate Professor Department of Chemistry Surendranath College Remember? I showed you earlier how Einstein (in 1905) showed that the photoelectric effect could be understood if light were thought of as a stream of particles (photons) with energy equal to hν. I got my Nobel prize for that. Louis de Broglie (in 1923) If light can behave both as a wave and a particle, I wonder if a particle can also behave as a wave? Louis de Broglie I’ll try messing around with some of Einstein’s formulae and see what I can come up with. I can imagine a photon of light. If it had a “mass” of mp, then its momentum would be given by p = mpc where c is the speed of light. Now Einstein has a lovely formula that he discovered linking mass with energy (E = mc2) and he also used Planck’s formula E = hf. What if I put them equal to each other? mc2 = hf mc2 = hf So for my photon 2 mp = hfhf/c/c So if p = mpc = hfhf/c/c p = mpc = hf/chf/c Now using the wave equation, c = fλ (f = c/λ) So mpc = hc /λc /λc= h/λ λ = hp So you’re saying that a particle of momentum p has a wavelength equal to Planck’s constant divided by p?! Yes! λ = h/p It will be known as the de Broglie wavelength of the particle Confirmation of de Broglie’s ideas De Broglie didn’t have to wait long for his idea to be shown to be correct.
    [Show full text]
  • Confinement of Antihydrogen for 1000 Seconds
    Confinement of antihydrogen for 1000 seconds G.B. Andresen1, M.D. Ashkezari2, M. Baquero-Ruiz3, W. Bertsche4, E. Butler5, C.L. Cesar6, A. Deller4, S. Eriksson4, J. Fajans3#, T. Friesen7, M.C. Fujiwara8,7, D.R. Gill8, A. Gutierrez9, J.S. Hangst1, W.N. Hardy9, R.S. Hayano10, M.E. Hayden2, A.J. Humphries4, R. Hydomako7, S. Jonsell11, S. Kemp5§, L. Kurchaninov8, N. Madsen4, S. Menary12, P. Nolan13, K. Olchanski8, A. Olin8&, P. Pusa13, C.Ø. Rasmussen1, F. Robicheaux14, E. Sarid15, D.M. Silveira16, C. So3, J.W. Storey8$, R.I. Thompson7, D.P. van der Werf4, J.S. Wurtele3#, Y. Yamazaki16¶. 1Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark. 2Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6, Canada 3Department of Physics, University of California, Berkeley, CA 94720-7300, USA 4Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom 5Physics Department, CERN, CH-1211, Geneva 23, Switzerland 6Instituto de Fısica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil 7Department of Physics and Astronomy, University of Calgary, Calgary AB, T2N 1N4, Canada 8TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3, Canada 9Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1, Canada 10Department of Physics, University of Tokyo, Tokyo 113-0033, Japan 11 Department of Physics, Stockholm University, SE-10691, Stockholm, Sweden 12Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3, Canada 13Department of Physics,
    [Show full text]
  • Famous Physicists Himansu Sekhar Fatesingh
    Fun Quiz FAMOUS PHYSICISTS HIMANSU SEKHAR FATESINGH 1. The first woman to 6. He first succeeded in receive the Nobel Prize in producing the nuclear physics was chain reaction. a. Maria G. Mayer a. Otto Hahn b. Irene Curie b. Fritz Strassmann c. Marie Curie c. Robert Oppenheimer d. Lise Meitner d. Enrico Fermi 2. Who first suggested electron 7. The credit for discovering shells around the nucleus? electron microscope is often a. Ernest Rutherford attributed to b. Neils Bohr a. H. Germer c. Erwin Schrödinger b. Ernst Ruska d. Wolfgang Pauli c. George P. Thomson d. Clinton J. Davisson 8. The wave theory of light was 3. He first measured negative first proposed by charge on an electron. a. Christiaan Huygens a. J. J. Thomson b. Isaac Newton b. Clinton Davisson c. Hermann Helmholtz c. Louis de Broglie d. Augustin Fresnel d. Robert A. Millikan 9. He was the first scientist 4. The existence of quarks was to find proof of Einstein’s first suggested by theory of relativity a. Max Planck a. Edwin Hubble b. Sheldon Glasgow b. George Gamow c. Murray Gell-Mann c. S. Chandrasekhar d. Albert Einstein d. Arthur Eddington 10. The credit for development of the cyclotron 5. The phenomenon of goes to: superconductivity was a. Carl Anderson b. Donald Glaser discovered by c. Ernest O. Lawrence d. Charles Wilson a. Heike Kamerlingh Onnes b. Alex Muller c. Brian D. Josephson 11. Who first proposed the use of absolute scale d. John Bardeen of Temperature? a. Anders Celsius b. Lord Kelvin c. Rudolf Clausius d.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • Antony Hewish
    PULSARS AND HIGH DENSITY PHYSICS Nobel Lecture, December 12, 1974 by A NTONY H E W I S H University of Cambridge, Cavendish Laboratory, Cambridge, England D ISCOVERY OF P U L S A R S The trail which ultimately led to the first pulsar began in 1948 when I joined Ryle’s small research team and became interested in the general problem of the propagation of radiation through irregular transparent media. We are all familiar with the twinkling of visible stars and my task was to understand why radio stars also twinkled. I was fortunate to have been taught by Ratcliffe, who first showed me the power of Fourier techniques in dealing with such diffraction phenomena. By a modest extension of existing theory I was able to show that our radio stars twinkled because of plasma clouds in the ionosphere at heights around 300 km, and I was also able to measure the speed of ionospheric winds in this region (1) . My fascination in using extra-terrestrial radio sources for studying the intervening plasma next brought me to the solar corona. From observations of the angular scattering of radiation passing through the corona, using simple radio interferometers, I was eventually able to trace the solar atmo- sphere out to one half the radius of the Earth’s orbit (2). In my notebook for 1954 there is a comment that, if radio sources were of small enough angular size, they would illuminate the solar atmosphere with sufficient coherence to produce interference patterns at the Earth which would be detectable as a very rapid fluctuation of intensity.
    [Show full text]
  • Von Richthofen, Einstein and the AGA Estimating Achievement from Fame
    Von Richthofen, Einstein and the AGA Estimating achievement from fame Every schoolboy has heard of Einstein; fewer have heard of Antoine Becquerel; almost nobody has heard of Nils Dalén. Yet they all won Nobel Prizes for Physics. Can we gauge a scientist’s achievements by his or her fame? If so, how? And how do fighter pilots help? Mikhail Simkin and Vwani Roychowdhury look for the linkages. “It was a famous victory.” We instinctively rank the had published. However, in 2001–2002 popular French achievements of great men and women by how famous TV presenters Igor and Grichka Bogdanoff published they are. But is instinct enough? And how exactly does a great man’s fame relate to the greatness of his achieve- ment? Some achievements are easy to quantify. Such is the case with fighter pilots of the First World War. Their achievements can be easily measured and ranked, in terms of their victories – the number of enemy planes they shot down. These aces achieved varying degrees of fame, which have lasted down to the internet age. A few years ago we compared1 the fame of First World War fighter pilot aces (measured in Google hits) with their achievement (measured in victories); and we found that We can estimate fame grows exponentially with achievement. fame from Google; Is the same true in other areas of excellence? Bagrow et al. have studied the relationship between can this tell us 2 achievement and fame for physicists . The relationship Manfred von Richthofen (in cockpit) with members of his so- about actual they found was linear.
    [Show full text]
  • A Brief History of Nuclear Astrophysics
    A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS PART I THE ENERGY OF THE SUN AND STARS Nikos Prantzos Institut d’Astrophysique de Paris Stellar Origin of Energy the Elements Nuclear Astrophysics Astronomy Nuclear Physics Thermodynamics: the energy of the Sun and the age of the Earth 1847 : Robert Julius von Mayer Sun heated by fall of meteors 1854 : Hermann von Helmholtz Gravitational energy of Kant’s contracting protosolar nebula of gas and dust turns into kinetic energy Timescale ~ EGrav/LSun ~ 30 My 1850s : William Thompson (Lord Kelvin) Sun heated at formation from meteorite fall, now « an incadescent liquid mass » cooling Age 10 – 100 My 1859: Charles Darwin Origin of species : Rate of erosion of the Weald valley is 1 inch/century or 22 miles wild (X 1100 feet high) in 300 My Such large Earth ages also required by geologists, like Charles Lyell A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J.
    [Show full text]
  • Antimatter Weapons (1946-1986): from Fermi and Teller's
    Antimatter weapons (1946-1986): From Fermi and Teller’s speculations to the first open scientific publications ∗ Andre Gsponer and Jean-Pierre Hurni Independent Scientific Research Institute Box 30, CH-1211 Geneva-12, Switzerland e-mail: [email protected] Version ISRI-86-10.3 June 4, 2018 Abstract We recall the early theoretical speculations on the possible explosive uses of antimatter, from 1946 to the first production of antiprotons, at Berkeley in 1955, and until the first capture of cold antiprotons, at CERN on July 17–18, 1986, as well as the circumstances of the first presentation at a scientific conference of the correct physical processes leading to the ignition of a large scale thermonuclear explosion using less than a few micrograms of antimatter as trigger, at Madrid on June 30th – July 4th, 1986. Preliminary remark This paper will be followed by by Antimatter weapons (1986-2006): From the capture of the first antiprotons to the production of cold antimatter, to appear in 2006. 1 Introduction At CERN (the European Laboratory for Particle Physics), on the evening of the 17 to the 18 of July 1986, antimatter was captured in an electromagnetic trap for arXiv:physics/0507132v2 [physics.hist-ph] 28 Oct 2005 the first time in history. Due to the relatively precarious conditions of this first ∗Expanded version of a paper published in French in La Recherche 17 (Paris, 1986) 1440– 1443; in English in The World Scientist (New Delhi, India, 1987) 74–77, and in Bulletin of Peace Proposals 19 (Oslo,1988) 444–450; and in Finnish in Antimateria-aseet (Kanssainvalinen¨ rauhantutkimuslaitos, Helsinki, 1990, ISBN 951-9193-22-7) 7–18.
    [Show full text]