People and Things
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hadronic R Decays and QCD
FR0005562 LAL 99-78 December 1999 Hadronic r decays and QCD M. Davier Laboratoire de l'Accelerateur Lineaire IN2P3-CNRS et Universite de Paris-Sud, BP 34, F-91898 Orsay Cedex Invited talk given at the &h International Symposium on Heavy Flavour Physics University of Southampton, England, 25-29 July 1999 U.E.R Institut National de de Physique Nucleaire PUniversite Paris-Sud et de Physique des Particules 32/ 05 B.P. 34 ~ Bailment 200 - 91898 ORSAY CEDEX Gestion IH\S Doc. Enreg. I© .iU4/. N* TRN &&.O.O.OSS LAL 99-78 December 1999 Hadronic r decays and QCD Michel Davier Laboratoire de VAccel6rateur Lineaire IN2P3/CNRS et University de Paris-Sud 91898 Orsay, France E-mail: davierQlal.in2p3.fr ABSTRACT: Hadronic decays of the r lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. 1. Introduction Radiative corrections violate CVC, as contained in the SEW factor which is dominated by short- Hadrons produced in T decays are borne out of distance effects and thus expected to be essen- the charged weak current, i.e. out of the QCD tially final-state independent. vacuum. This property garantees that hadronic Hadronic r decays are then a clean probe of physics factorizes in these processes which are hadron dynamics in an interesting energy region then completely characterized for each decay chan- dominated by resonances. -
Particle Detectors Lecture Notes
Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2! -
Prix Andr Lagarrigue 2010
2010 André Lagarrigue Prize Under the sponsorship of the French Physical Society (SFP) and on the occasion of the 50th birthday of the Orsay Linear Accelerator Laboratory (LAL) in 2006, a prestigious Prize, awarded every second year, was created in honor of Professor André Lagarrigue. Director of LAL from 1969 until his untimely death in 1975. André Lagarrigue discovered, together with an European team, the weak interaction neutral currents in 1973, a crucial step in establishing the present theory of particle physics. The André Lagarrigue Prize rewards a senior physicist who has lead a large experimental project including conceptual design and realisation of a complex apparatus and has extracted the best of it with a strong team spirit and has carried out his work in a French laboratory or in close collaboration with French teams. This prize is co-financed by CEA, CERN, Ecole Polytechnique, IN2P3, LAL and the University Paris Sud 11. The international jury of the Andre Lagarrigue Prize1 met under the chairmanship of IN2P3 director Jacques Martino, and reviewed the nominees proposed by the French community of particles physics following a call for proposal sent to all French lab directors. The winner of the 2010 Andre Lagarrigue Prize is Michel Davier, Professor of Physics at the University Paris Sud 11 and a member of the French Academy of Science. Michel Davier's worldwide authority in the field of particle physics is undisputed and his prominent role is in every way worthy of that of André Lagarrigue. They share the same qualities of deep understanding of physics and of experimental devices of great complexity, of tenacity and pedagogy with the same passion for training young people. -
The 1984 Nobel Prize in Physics Goes to Carlo Rubbia and Simon Vm Der Meer: R
arrent Comments” EUGENE GARFIELD INSTITUTE FOR SCIENTIFIC INFORMATION* 3501 MARKET ST,, PHILADELPHIA, PA !9104 The 1984 Nobel Prize in Physics Goes to Carlo Rubbia and Simon vm der Meer: R. Bruce Merrifield Is Awarded the Chemistry Prize I Number 46 November 18, 1985 Last week we reviewed the 1984 Nobel Rubbia, van der Meer, and the hun- laureates in medicine: immunologists dreds of scientists and technicians at Niels K. Jerne, Georges J.F. Kohler, and CERN were seeking the ultimate confir- C6sar Milstein. 1 In this week’s essay the mation of what is known as the electro- prizewinners in physics and chemistry weak theory. Thk theory states that two are discussed. of the fundamental forces—electromag- The 1984 physics prize was shared by netism and the weak force-are actually Carlo Rubbia, Harvard University and facets of the same phenomenon. The the European Center for Nuclear Re- 1979 Nobel Prize in physics was shared search (CERN), Geneva, Switzerland, by Sheldon Glashow and Steven Wein- and Simon van der Meer, also of CERN. berg, Harvard, and Abdus Salam, Impe- The Nobel committee honored “their rial College of London, for their contri- decisive contributions.. which led to the butions to the eiectroweak theory. I dk- discovery of the field particles W and Z, cussed their work in my examination of communicators of the weak interac- the 1979 Nobel Iaureates.s tion. ”z The 1984 Nobel Prize in chemis- The daunting task facing the scientists try was awarded to R. Bruce Mertileld, at CERN was to find evidence of the sub- Rockefeller University, New York, for atomic exchange particles that commu- his development of a “simple and in- nicate the weak force. -
1 Nothing Is New Under the Sun ! Prof. Dr. Dr. Carlo Rubbia Scientific
Nothing is new under the Sun ! Prof. Dr. Dr. Carlo Rubbia Scientific Director, Institute for Advanced Sustainability Studies e.V. Potsdam, Germany -Accompanying document to Prof. Rubbia’s keynote address during the 3rd Dii Desert Energy Conference (Berlin, November 7-9 2012). The beginning of the practical use of solar power goes back some 23 centuries ago with Archimedes of Syracuse, (287 BC to 212 BC) in sunny Sicily. Mathematician, physicist, engineer, inventor and astronomer, he has been one of the leading scientists of the classical antiquity. The written work of Archimedes has not survived as well as that of Euclid, and seven of his treatises are known to have existed only through references made to them by other authors. Only few details are known. However, the relatively few copies of Archimedes' written work that survived through the Middle Ages were an influential source of ideas for scientists during the Renaissance. His contributions in mathematics have been immense: the initiator of the infinitesimals, anticipating the modern calculus of the ratio between the square of the radius and the area of a circle, the quadrature of a parabola as the solution of an infinite series, the centre of gravity of geometric figures and so on. The Fields Medal, the equivalent of the Nobel in mathematics carries his portrait along with a carving illustrating his proof on the sphere and the cylinder. The inscription is a quote attributed to him, which reads in Latin: "Transire suum pectus mundoque potiri" (Rise above oneself and grasp the world). Among his advances in physics are the foundations of hydrostatics, refraction and parabolic concentration of light, statics and an explanation of the principle of the lever, where he said “Give me a place to stand on, and I will move the Earth”. -
PDF Version for Printing
Friday, Jan. 30, 2009 Calendar Feature From ISGTW Friday, Jan. 30 ANL, Fermilab and UChicago Beauty to unlock the mystery of 3:30 p.m. come together for fifth meeting asymmetry DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over In an ongoing effort to keep Illinois a science 4:00 p.m. powerhouse, Fermilab, Argonne and Joint Experimental-Theoretical University of Chicago scientists continue to Physics Seminar - One West look for future collaborative opportunities. Speaker: Michel Davier, LAL, More than 70 scientists from the three Orsay institutions will meet Monday at Argonne for + - → Title: BaBar Results on e e the fifth joint meeting organized to to share π+ π- and the Muon g-2 ideas about future projects and institutions' Prediction strategic plans. Monday, Feb. 2 The meetings, started in 2006 by Fermilab and 2:30 p.m. Argonne, initially focused on accelerator R&D. Particle Astrophysics Seminar While this is still a large focus of the - Curia II collaboration, particularly in regards to Project Speaker: Leanne Duffy, Los X, a series of research grants provided by the Alamos National Laboratory University of Chicago has led to joint projects Title: Phase-Space Structure in other research areas as well. of the Milky Way's Dark Halo The LHCb electomagnetic calorimeter, a device to 3:30 p.m. Proposals for joint projects include the detect electrons, their antiparticles (called DIRECTOR'S COFFEE production of better superconducting cavities, positrons) and photons, particles of light. This BREAK - 2nd Flr X-Over detector R&D, work on the LHC experiments immense array will collect immense amounts of 4 p.m. -
Advanced Information on the Nobel Prize in Physics, 5 October 2004
Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force. -
Standard Model Rohini M. Godbole Centre for High
Standard Model. Rohini M. Godbole Standard Model Rohini M. Godbole Centre for High Energy Physics, IISc, Bangalore, India & Currently at: Spinoza Institute, Univ. of Utrecht, Utrecht, The Netherlands July 11 - July 15, 2011. CERN Summer Student Program. Standard Model. What will the lectures cover? Issues concerning the Standard Model of particle physics: Even though we call it a model it is actually the candidate for the ’theory’ of the fundamental particles and interactions among them! Built, brick by brick, over the last 50-60 years, combining information from a lot of different types of experiments and many many innovative theoretical ideas. The basic mathematical framework is that of quantum field theories (QFT) which possess some special properties (symmetries). Some aspects of these will be covered in lectures by Prof. Deredinger. July 11 - July 15, 2011. CERN Summer Student Program. Standard Model. What will the lectures cover? Using this information I intend then to cover the following : • How did we find out about the fundamental constituents and inter- actions among them. • How did we arrive at an understanding of the symmetries and hence a gauge theory description of the same: how was the SM built? • What is the significance of the different families of quarks and leptons: flavour physics. • What is the piece of the SM still left to be checked and how does the theory guide us about how and where to look for the missing piece. July 11 - July 15, 2011. CERN Summer Student Program. Standard Model. Nobels for Standard Model Among the Nobels awarded for physics till to date, 15 are for Standard Model: 1. -
Tau Leptons New Measurements of the Tau Mass
Tau lineup. At this year's workshop on tau lepton physics, the second in the series, and hosted by Ohio State University, tau pioneer Martin Perl is seen with workshop chairman K.K. Gan (left) and Michel Davier, one of the chairmen of the first workshop, held in Orsay, France, in 1990. At the workshop it also emerged that a large amount of information on the scintillation properties of several materials and ions already has been compiled. In particular, cerium compounds can offer advantages when fast scintillation (some 20 ns) is needed. For ultrafast (nanosecond) scintillation, only crystals exhibiting special 'crossover' transitions can be considered, with the drawback of emitting in the vacuum UV. Similar expertise was gathered from exten sive work in solid state chemistry and crystalline defects. The Chamonix meeting was organ ized jointly by CERN, the French CNRS and the Italian INFN. The workshop opened with a talk on ment in the precision of the measure Tau leptons new measurements of the tau mass. ments, there is still a nagging dis At the Beijing electron-positron crepancy. Once an oddity, tau leptons are now collider, seven events were observed Tau decays with one or three being mass produced at electron- in a scan of the tau production charged hadrons in the final states positron colliders, and tau physics is threshold yielding a new measure were the subject of two full sessions. becoming daily life. This was re ment of the tau mass (July, page 13) New measurements from ARGUS flected at the Second Workshop on an order of magnitude more precise (DESY, Hamburg), CLEO (CESR, Tau Lepton Physics, held at Ohio than the previous measurement by Cornell), and the LEP experiments at State University, September 8-11. -
Recent Progress on Isospin Breaking Corrections and Their Impact on the Muon G −2 Value *
CPC(HEP & NP), 2010, 34(6): 1{6 Chinese Physics C Vol. 34, No. 6, Jun., 2010 Recent progress on isospin breaking corrections and their impact on the muon g −2 value * Gabriel L´opez Castro1) Departamento de F´ısica, Cinvestav, Apartado Postal 14-740, 07000 M´exico, D.F M´exico Abstract We describe some recent results on isospin breaking corrections which are of relevance for predictions had;LO of the leading order hadronic contribution to the muon anomalous magnetic moment aµ when using τ lepton data. When these corrections are applied to the new combined data on the ππ0 spectral function, the had;LO + − prediction for aµ based on τ lepton data gets closer to the one obtained using e e data. Key words isospin breaking, tau decays, muon magnetic moment, radiative corrections PACS 12.40.Bv, 13.35.Dx, 13.40.Em, 13.40.Ks 1 Introduction τ ππν predicted from e+e− data corrected by IB ! effects was underestimated by more than 4σ with re- Currently, the accuracy of the Standard Model spect to the average of direct measurements [4, 6]. prediction of the muon anomalous magnetic moment Given this `e+e− vs τ discrepancy'2), it is believed aµ = (g 2)=2 is limited by the uncertainties of that τ decay data does not provide at present a re- − had;LO hadronic contributions [1, 2]. The dominant term in liable determination of aµ (currently, other use- had;LO the leading order hadronic contribution aµ and ful contributions from τ decay data involve only the an important part of its associated uncertainty is pro- 2π and 4π channels [2]). -
Orsay Tau Workshop Was Situation Is Far from Clear
page 3). The RFQ has superseded linear collider ideas aired in reports of the annular coupled structure, a the large high-voltage systems pre from SLAC (Stanford), CERN, KEK new coupled-cell configuration. viously necessary in ion accelerator (Japan), and Novosibirsk. Prototyping and construction of injection systems and makes com The larger, more exotic and some parts of the JHP linac is un pact linacs possible, even for a more expensive these machines derway at KEK. space-based system. Exhibited at become, the more the engineering Linac technology has taken root the conference was the 1 MeV must depart from cut-and-try to ac in several fields outside of the par RFQ successfully tested aboard a curate design. Thus another tech ticle physics laboratories. One new rocket in a Los Alamos defence nological advance is in computer community with more than 16 pro technology project. design codes. The newer codes jects represented at Linac90 and Among many other advanced can handle r.f. cavities, beam op surveyed by C. Pellegrini (UCLA) is RFQ projects heard at Linac90 tics elements, and beam dynamics developing the free electron laser, were the 250 mA unit at CERN re with greater accuracy. This has requiring a high intensity electron li ported by M. Weiss; the 100% been important for RFQ and super nac. One example, reported by P. duty-factor 75 mA RFQ at Chalk conducting cavity development, O'Shea (Los Alamos), will run 300 River, reported by G. McMichael; and design of any high perfor A at 40 MeV. and a variable-energy RFQ for hea mance machine. -
The “Boggart” of Particle Physics
The “Boggart” of Particle Physics Dept of Physics Pradipta Ghosh 26th March, 2021 March 26, 2021 1 / 19 “Hogwarts” of the Particle Physics The Standard Model The Inmates and Laws Elementary Particles Basic Interactions and mediators Not included in the Standard Model Image acknowledgement: Harry Potter Wiki, Wikipedia March 26, 2021 2 / 19 Hogwarts of the Particle Physics: The inmates Elementary Particles and Mediators DOD: 4 July 2012 The missing piece 1964-2012 1 eV/c2 = 1.783×10−36 kg C = 1 in natural unit system Neutrinos are Mass-less in the Standard Model Image acknowledgement: Wikipedia March 26, 2021 3 / 19 Theory: Glashow, 1961, Weinberg, 1967, Salam, 1968 1979 Sheldon Steven Abdus Glashow Weinberg Salam “Hogwarts” of Particle Physics: Founders Theory: Greenberg, 1964, Han, Nambu, 1964, Bardeen, Fritzsch, Gell-Mann, 1973 C. R. Tom Gerald Theory: Hagen Guralnik 1973 Kibble 2004 David H. D. F. Wilczek Gross Politzer François Theory: Nambu, Peter Englert Jona-Lasinio 1961 Higgs 1999 Robert Gerard Martinus 2013 Brout 2008 't Hooft J. G. Veltman Theory: Brout, Englert, Higgs, Guralnik, Hagen, Kibble, 1964 Yoichiro Nambu Image acknowledgement: Wikipedia March 26, 2021 4 / 19 Muon S. Neddermeyer Electron (1936) (1897) Theory: Pauli, 1930 Tau e-Neutrino (1975) (1956) 1995 Martin Clyde C. D. Anderson Cowan 1995 1906 Lewis Perl t-Neutrino Frederick m-Neutrino (1962) (2000) Carlo Rubbia Reines J. J. Thomson Theory: 1940 DONUT Coll. Theory: 1970 Simon van der Meer 1984 + - 1988 W ,W ,Z UA1, UA2 (1983) CERN Leon M. Melvin Jack The Seekers Theory: Glashow, Weinberg, Salam, 1968 Lederman Schwartz Steinberger Theory: 1973 Gluons Light quarks DORIS (1978) (up,down,strange) PETRA (1979) SLAC (1968) DESY 2008 Theory: Gell-Mann, 1962 T.