Genome and Biodiversity Research Division

Total Page:16

File Type:pdf, Size:1020Kb

Genome and Biodiversity Research Division Message from the President In accordance with the administrative reform policy of the Government, the National Institute of Agrobiological Sciences (NIAS) was founded on April 1, 2001. NIAS was formed out of several pre- viously existing institutions, including the National Institute of Agrobiological Resources (NIAR) which has conducted plant science research with emphasis on genome level research and the National Institute of Sericultural and Entomological Science (NISES) which has conducted insect science research with emphasis on clarification of insect properties. In addition, several animal scientists in both the National Institute of Animal Industry and the National Institute of Animal Health joined the new institution. NIAS's roll is to conduct basic research in the field of life science of insects, animals and plants, to promote and accelerate technological innovation in the agricultural field and to contribute to the gener- ation of new bio-industries. Results from these research activities are expected to address expected future needs of society in these areas. To fulfill the mission of NIAS, it is necessary to conduct our research strategically and intensively. It is also nec- essary to report our research results and to receive worldwide evaluation. Therefore, we publish this Annual Report in new style to inform the interna- tional community of our research activities. We welcome comments and suggestions on our program. Masaki Iwabuchi President National Institute of Agrobiological Sciences Contents Message from the President Organization Topics of Research in This Year Genome and Biodiversity Research Division ¡Sequence analysis of rice chromosome 1.................................................................................................................. 1 ¡Restriction of a QTL region for backfat thickness to the pericentromeric long arm of swine chromosome 7 in a Meishan and Goettingen cross-population ......................................................... 2 ¡Identification and etiology of the causal organism of red stripe of rice.................................................................... 4 ¡Visualization of repeated sequences in liverwort sex chromosomes with their heterogeneous localization ............................................................................................................... 6 ¡Discovery of Fusarium species previously unreported from Japan, and reevaluation of the taxonomic characters of the false-head-forming Gibberella fujikuroi-species complex ................................................................................................................................. 7 ¡Isolation and identification of factors responsible for resistance to bruchid in rice bean (Vigna umbellata).......................................................................................................................... 8 ¡Piglets prodcution after transfer to recipients of blastocysts produced in vitro ........................................................ 9 Insect and Animal Sciences Division ¡ASABF-type antimicrobial peptides: a novel antibiotic agent against both prokaryotic and eukaryotic pathogens ...................................................................................................... 11 ¡Introduction of exogenous DNA into early chicken embryos by in vivo electroporation of stage X blastoderm .................................................................................................. 12 ¡Transient in vivo reporter gene assay for ecdysteroid actions in Bombyx mori silk gland using gene gun ....................................................................................................... 13 ¡Factors reducing cocoon filament quality in silkworm reared on an artificial diet during all instars....................... 14 ¡Detection method for follicle and oocyte normality based on MMP activity........................................................... 15 ¡Establishment of a c-myc-immortalized microglial cell line from TNF-α-deficient mice ....................................... 17 ¡Caveolae-associated vimentin is involved in adipocyte differentiation of bovine intramuscular preadipocyte (BIP) cells ............................................................................................ 18 ¡Development of techniques to record and analyze cardiac electrical activity of bovine fetuses .............................. 19 ¡Simple identification of five Orius species occurring in Japan using multiplex PCR.............................................. 21 ¡Novel insect primary culture method using a newly developed medium and extracellular matrix .................................................................................................................................... 22 ¡A new mulberry cultivar ‘Popberry’ suitable for fruit production............................................................................ 23 ¡Breeding of the silkworm race "Sericin-hope" secreting silk protein in which sericin is contained in high concentration.......................................................................................... 24 Plant Science Division ¡Release from post-transcriptional gene silencing by cell proliferation in transgenic Tobacco plants ................................................................................................................................................................. 26 ¡Development of a series of chromosome segment substitution lines and their utilization in the genetic analysis of quantitative traits in rice........................................................................................... 27 ¡Collection and functional annotation of rice full length cDNA clones and construction of a database ................... 28 ¡Crystallographic study of C-type lectin-like proteins from snake venom ................................................................ 29 ¡High precision NMR structure of the RING-H2 finger domain of EL 5, a rice protein in response to N-acetylchitooligosaccahride elicitor .................................................................. 30 ¡Two rice genes responsive to N-acetylchitooligosaccharide and gibberellin ........................................................... 31 ¡Critical amino acid residues for catalytic activity of CtpA, the carbxyl-terminal processing protease for the D1 protein of photosystem II ................................................................................ 32 ¡Regulatory and genetic mechanisms of photorespiration in C3-C4 intermediate photosynthesis ........................... 33 ¡Silencing of the tapetum-specific zinc-finger gene, TAZ1, causes premature degeneration of tapetum and pollen abortion in petunia ........................................................................................................ 35 ¡Alternative oxidase and stress resistance in plants ................................................................................................... 36 ¡Molecular cloning of rice chloride channel genes .................................................................................................... 37 ¡Construction of high-density HEGS (high efficiency genome scanning) genome maps of rice and barley in a short time, each by a single researcher ...................................................................................................... 38 ¡A novel method for targeting a transgene product to an ER-derived protein body (PB-I) in rice endosperm.............................................................................................................................................. 40 ¡Regulation of rice plant height by Gibberrelin 2-oxidase gene expression .............................................................. 41 ¡Transgenic rice plants expressing pig CYP2C49 for phytoremediation ................................................................... 42 ¡Mutation induction with gamma ray and ion beam irradiation in tartary buckwheat ............................................... 43 Research Activities Genome and Biodiversity Research Division 45 ¡Genome Research Department ................................................................................................................................. 46 ¡Genetic Diversity Department .................................................................................................................................. 51 ¡Genebank................................................................................................................................................................... 57 Insect and Animal Sciences Division 61 ¡Developmental Biology Department......................................................................................................................... 62 ¡Molecular Biology and Immunology Department .................................................................................................... 66 ¡Physiology and Genetic Regulation Department ...................................................................................................... 68 ¡Insect Genetics and Evolution Department............................................................................................................... 74 ¡Insect Biomaterial and Technology Department....................................................................................................... 78 ¡Insect Biotechnology and Sericology Department ..................................................................................................
Recommended publications
  • 4.04 Pheromones of Terrestrial Invertebrates
    4.04 Pheromones of Terrestrial Invertebrates Wittko Francke, University of Hamburg, Hamburg, Germany Stefan Schulz, Technische Universita¨ t Braunschweig, Braunschweig, Germany ª 2010 Elsevier Ltd. All rights reserved. 4.04.1 Introduction 154 4.04.2 Pheromone Biology 154 4.04.2.1 Endocrinology 154 4.04.2.2 Neurophysiology 155 4.04.2.3 Pest Management 156 4.04.3 Isolation and Structure Elucidation 156 4.04.4 Aromatic Compounds 159 4.04.4.1 Nitrogen-Containing Aromatic Compounds 161 4.04.5 Unbranched Aliphatic Compounds 163 4.04.5.1 Mixtures of Hydrocarbons Acting as Pheromones 163 4.04.5.2 Female Lepidopteran Sex Pheromones 164 4.04.5.3 Pheromones According to Carbon Chains 168 4.04.5.3.1 C1-units 168 4.04.5.3.2 C2-units 168 4.04.5.3.3 C4-units 168 4.04.5.3.4 C5-units 168 4.04.5.3.5 C6-units 169 4.04.5.3.6 C7-units 169 4.04.5.3.7 C8-units 169 4.04.5.3.8 C9-units 170 4.04.5.3.9 C10-units 170 4.04.5.3.10 C11-units 171 4.04.5.3.11 C12-units 172 4.04.5.3.12 C13-units 172 4.04.5.3.13 C14-units 173 4.04.5.3.14 C15-units 174 4.04.5.3.15 C16-units 174 4.04.5.3.16 C17-units 175 4.04.5.3.17 C18-units 176 4.04.5.3.18 C19-units 176 4.04.5.3.19 C20-units 178 4.04.5.3.20 C21-units 178 4.04.5.3.21 C22-units 180 4.04.5.3.22 C23-units 180 4.04.5.3.23 C24-units 181 4.04.5.3.24 C25-units 181 4.04.5.3.25 C26-units 181 4.04.5.3.26 C27-units 181 4.04.5.3.27 C29-units 182 4.04.5.3.28 C31-units 182 4.04.6 Terpenes 183 4.04.6.1 Monoterpenes 189 4.04.6.2 Sesquiterpenes 192 4.04.6.3 Norterpenes 194 4.04.6.4 Homoterpenes 195 153 154 Pheromones of Terrestrial Invertebrates 4.04.7 Propanogenins and Related Compounds 196 4.04.8 Mixed Structures 200 4.04.9 Other Structures 205 References 207 4.04.1 Introduction This chapter is a continuation and an updated version of our earlier discussion of pheromones.1 Covering the literature of the past decade until the end of 2008, it predominantly deals with structures of new compounds that have been identified to play a role as (components of) pheromones in systems of chemical communication among arthropods.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS INDONESIA January 2007 Forest Resources Development Service Working Paper FBS/19E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests - Indonesia DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Indonesia. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests - Indonesia TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • 3Rd ISIP 2003 (Epoxyalkenyl Pheromone:Biosynthesis)
    The 3rd International Symposium on Insect Pheromones Sweden, 2003 May Session III Biosynthesis of Epoxyalkenyl Sex Pheromones: Biosynthetic Pathway, Substrate Specificity, and Endocrine Control Tetsu ANDO Tokyo University of Agric. & Tech. Graduate School of BASE I. Biosynthetic Pathways for Lepidopteran Pheromones Tipe I (Acetate of unsaturated fatty alcohol) Anadevidia peponis Acetyl CoA ∆11-desaturation 16:Acyl Z11-16:Acyl Z9-14:Acyl reduction 12 7 1 O β-oxidation acetylation O Z7-12:Acyl Z7-12:OAc Type II (Epoxide of unsaturated hydrocabon) A. s. cretacea Z9,Z12,Z15-18:Acyl decarboxylation epoxidation Z11,Z14,Z17-20:Acyl Z3,Z6,Z9-19:H epo3,Z6,Z9-19:H 1 O 69 19 3 II. In Vivo Experiments with Geometrid Moth ① Ascotis selenaria cretacea Japanese giant looper GC-MS analysis of the Pheromone Gland Extract from the Females Treated Proposed biosynthetic pathway 18 1215 9 1 with D3-Z3,Z6,Z9-19:H CO-SR B A D3-Z3,Z6,Z9-19:H Acetyl-CoA 20 17 14 11 1 CO-SR 13 6 9 - CO2 19 Z3,Z6,Z9-19:H O epoxidation A) epo3,Z6,Z9-19:H (endogenous) epo3,Z6,Z9-19:H B) D3-epo3,Z6,Z9-19:H (exogenous) II. In Vivo Experiments with Geometrid Moth ② (A) Specificity of epoxidation in A. s. cretacea Z3,Z6,Z9-19:H Z6,Z9-19:H Z3,Z6,Z9-17:H Z4-19:H no change Z3,Z6,Z9-22:H 3,4-epoxides E3-19:H Z3,Z6-19:H Z2-19:H Z3-19H, Z3-17:H Epoxydase Attacked only (Z)-3-double bond without the substrate specificity on the carbon length and unsaturation degree Strict formation of hydrocarbons Species-specific pheromones (B) Other steps Identification of Z11,Z14,Z17-20:Acid unsuccessful Incorporation of D4-Z11,Z14,Z17-20:Acid Reductase? Z9,Z12,Z15-18:Acyl Z3,Z6,Z9-18:H epo3,Z6,Z9-18:H ? Decarboxylase? Epoxydase Z11,Z14,Z17-20:Acyl Z3,Z6,Z9-19:H epo3,Z6,Z9-19:H III.
    [Show full text]
  • A Revision of the Japanese Lymantriidae (Ii)
    Jap. J. M. Sc. & Biol., 10, 187-219, 1957 A REVISION OF THE JAPANESE LYMANTRIIDAE (II) HIROSHI INOUE1) Eiko-Gakuen, Funakoshi, Yokosuka2) (Received: April 13th, 1957) Genus Lymantria Hubner Lymantria Hubner, 1819, p. 160; Hampson, 1892, p. 459; Strand, 1911, p. 126; id., 1915, p. 320; Pierce & Beirne, 1941, p. 43. Liparis Ochsenheimer, 1810, p. 186 (nec Scopoli, 1777). Porthetria Hubner, 1819, p. 160. Enome Walker, 1855b, p. 883. •¬ genitalia : uncus hooked; valva fused, variable in shape, almost always produced into an arm; aedoeagus simple; j uxta a moderately broad plate ; cornutus wanting. From the structure of male genitalia the Japanese representatives may be divided into the following groups: Group 1: dis par subspp., xylina subspp. Uncus narrow, long, valva with costal half extended as an arm, its inner surface without ampulla. Group 2: lucescens, monacha. Uncus broad, short, valva with costa ex- tended as an arm, inner surface with ampulla. Group 3: minomonis. Uncus as in group 2, valva with costal arm broad and short, inner surface with complicated ampulla. Group 4 : f umida. Uncus as in the preceding, valva fused, apex produced into an arm, ampulla a large plate. Group 5: bantaizana. Uncus as in the preceding group, valva with a long arm from apex, ampulla large, triangular. Group 6: mat hura aurora. Uncus as in the preceding group, valva forked, tegumen with dorso-lateral margin strongly extended as a •gpseudo-valva•h. 26. L. dispar (Linne) (Maimai-ga, Shiroshita-maimai) Phalaena Bombyx dispar L., 1758, p. 501. Lymantria dispar Staudinger, 1901, p. 117; Strand, 1911, p. 127; Goldschmidt, 1940, p.
    [Show full text]
  • REPORT on APPLES – Fruit Pathway and Alert List
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 5 - REPORT on APPLES – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Wistermann A, Steffen K, Grousset F, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Apples – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/107o25ccc1b2c DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on Apples – Fruit pathway and Alert List 1. Introduction ................................................................................................................................................... 3 1.1 Background on apple .................................................................................................................................... 3 1.2 Data on production and trade of apple fruit ................................................................................................... 3 1.3 Pathway ‘apple fruit’ .....................................................................................................................................
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]
  • Research Article
    z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 6, Issue, 10, pp.9052--9056, October, 2014 ISSN: 0975-833X RESEARCH ARTICLE BIOCONTROL POTENTIAL OF ENTOMOPHAGOUS PREDATOR EOCANTHECONA FURCELLATA (WOLFF) AGAINST PERICALLIA RICINI (FAB.) LARVAE 1*Nancy Shophiya, J. and 2Sahayaraj, K. 1School of ENVITOX and Biotechnology, Loyola College, Chennai-600 034, India 2Crop Protection Research Centre, St.Xavier’s College, Palayamkottai-627 002, India ARTICLE INFO ABSTRACT Article History: Laboratory experiments were conducted to find out the impact of the prey, Periallia ricini third Received 26th July, 2014 instars stage and deprivation period on the feeding behavior and predatory rate of life stages was Received in revised form evaluated against an economically important lepidopteran pest, P. ricini (Lepidoptera: Arctiidae) st 29th August, 2014 under laboratory conditions. Third, fourth, fifth (nymphal instars) and adult (male and female) at 1 , nd rd Accepted 18th September, 2014 2 and 3 day under laboratory conditions. Results revealed that the third, fourth and fifth instars Published online 25th October, 2014 predator Eocantheona furcellata consumed 2.8, 5.8 and 7.3 preys and completed the stadia period in 3.9, 5.4 and 6.2 days and hence this predator could be used for the biological control agent of P. Key words: ricini. However, more studies are necessary to recommend this predator as a biological control agent. Pericallia ricini, Eocantheona furcellata, Biological control potential. Copyright © 2014 Nancy Shophiya and Sahayaraj. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Pheromone Production, Male Abundance, Body Size, and the Evolution of Elaborate Antennae in Moths Matthew R
    Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths Matthew R. E. Symonds1,2, Tamara L. Johnson1 & Mark A. Elgar1 1Department of Zoology, University of Melbourne, Victoria 3010, Australia 2Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia. Keywords Abstract Antennal morphology, forewing length, Lepidoptera, phylogenetic generalized least The males of some species of moths possess elaborate feathery antennae. It is widely squares, sex pheromone. assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically Correspondence released in minute quantities. Accordingly, females of species in which males have Matthew R. E. Symonds, School of Life and elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce Environmental Sciences, Deakin University, 221 the smallest quantities of pheromone. Alternatively, antennal morphology may Burwood Highway, Burwood, Victoria 3125, Australia. Tel: +61 3 9251 7437; Fax: +61 3 be associated with the chemical properties of the pheromone components, with 9251 7626; E-mail: elaborate antennae being associated with pheromones that diffuse more quickly (i.e., [email protected] have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence Funded by a Discovery Project grant from the more elaborate antennae. We conducted a phylogenetic comparative analysis to test Australian Research Council (DP0987360). these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing Received: 13 September 2011; Revised: 23 length), which suggests a biological cost that smaller moth species cannot bear.
    [Show full text]
  • Formosan Entomologist Journal Homepage: Entsocjournal.Yabee.Com.Tw
    DOI:10.6662/TESFE.202002_40(1).002 台灣昆蟲 Formosan Entomol. 40: 10-83 (2020) 研究報告 Formosan Entomologist Journal Homepage: entsocjournal.yabee.com.tw An Annotated Checklist of Macro Moths in Mid- to High-Mountain Ranges of Taiwan (Lepidoptera: Macroheterocera) Shipher Wu1*, Chien-Ming Fu2, Han-Rong Tzuoo3, Li-Cheng Shih4, Wei-Chun Chang5, Hsu-Hong Lin4 1 Biodiversity Research Center, Academia Sinica, Taipei 2 No. 8, Tayuan 7th St., Taiping, Taichung 3 No. 9, Ln. 133, Chung Hsiao 3rd Rd., Puli, Nantou 4 Endemic Species Research Institute, Nantou 5 Taipei City Youth Development Office, Taipei * Corresponding email: [email protected] Received: 21 February 2020 Accepted: 14 May 2020 Available online: 26 June 2020 ABSTRACT The aim of the present study was to provide an annotated checklist of Macroheterocera (macro moths) in mid- to high-elevation regions (>2000 m above sea level) of Taiwan. Although such faunistic studies were conducted extensively in the region during the first decade of the early 20th century, there are a few new taxa, taxonomic revisions, misidentifications, and misspellings, which should be documented. We examined 1,276 species in 652 genera, 59 subfamilies, and 15 families. We propose 4 new combinations, namely Arichanna refracta Inoue, 1978 stat. nov.; Psyra matsumurai Bastelberger, 1909 stat. nov.; Olene baibarana (Matsumura, 1927) comb. nov.; and Cerynia usuguronis (Matsumura, 1927) comb. nov.. The noctuid Blepharita alpestris Chang, 1991 is regarded as a junior synonym of Mamestra brassicae (Linnaeus, 1758) (syn. nov.). The geometrids Palaseomystis falcataria (Moore, 1867 [1868]), Venusia megaspilata (Warren, 1895), and Gandaritis whitelyi (Butler, 1878) and the erebid Ericeia elongata Prout, 1929 are newly recorded in the fauna of Taiwan.
    [Show full text]
  • A Molecular Phylogeny of the Palaearctic and O.Pdf
    CSIRO PUBLISHING Invertebrate Systematics, 2017, 31, 427–441 http://dx.doi.org/10.1071/IS17005 A molecular phylogeny of the Palaearctic and Oriental members of the tribe Boarmiini (Lepidoptera : Geometridae : Ennominae) Nan Jiang A,D, Xinxin Li A,B,D, Axel Hausmann C, Rui Cheng A, Dayong Xue A and Hongxiang Han A,E AKey Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China. BUniversity of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049 China. CSNSB – Zoologische Staatssammlung München, Münchhausenstraße 21, Munich 81247, Germany. DThese authors contributed equally to this work. ECorresponding author. Email: [email protected] Abstract. Owing to the high species diversity and the lack of a modern revision, the phylogenetic relationships within the tribe Boarmiini remain largely unexplored. In this study, we reconstruct the first molecular phylogeny of the Palaearctic and Oriental members of Boarmiini, and infer the relationships among tribes within the ‘boarmiine’ lineage. One mitochondrial (COI) and four nuclear (EF-1a, CAD, RpS5, GAPDH) genes for 56 genera and 96 species of Boarmiini mostly from the Palaearctic and Oriental regions were included in the study. Analyses of Bayesian inference and maximum likelihood recovered largely congruent results. The monophyly of Boarmiini is supported by our results. Seven clades and seven subclades within Boarmiini were found. The molecular results coupled with morphological studies suggested the synonymisation of Zanclopera Warren, 1894, syn. nov. with Krananda Moore, 1868. The following new combinations are proposed: Krananda straminearia (Leech, 1897) (comb. nov.), Krananda falcata (Warren, 1894) (comb.
    [Show full text]
  • Macro Moths of Tinsukia District, Assam: a JEZS 2017; 5(6): 1612-1621 © 2017 JEZS Provisional Inventory Received: 10-09-2017 Accepted: 11-10-2017
    Journal of Entomology and Zoology Studies 2017; 5(6): 1612-1621 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Macro moths of Tinsukia district, Assam: A JEZS 2017; 5(6): 1612-1621 © 2017 JEZS provisional inventory Received: 10-09-2017 Accepted: 11-10-2017 Subhasish Arandhara Subhasish Arandhara, Suman Barman, Rubul Tanti and Abhijit Boruah Upor Ubon Village, Kakopather, Tinsukia, Assam, India Abstract Suman Barman This list reports 333 macro moth species for the Tinsukia district of Assam, India. The moths were Department of Wildlife Sciences, captured by light trapping as well as by opportunistic sighting across 37 sites in the district for a period of Gauhati University, Assam, three years from 2013-2016. Identification was based on material and visual examination of the samples India with relevant literature and online databases. The list includes the family, subfamily, tribes, scientific name, the author and year of publication of description for each identified species. 60 species in this Rubul Tanti inventory remain confirmed up to genus. Department of Wildlife Biology, A.V.C. College, Tamil Nadu, Keywords: Macro moths, inventory, Lepidoptera, Tinsukia, Assam India Introduction Abhijit Boruah Upor Ubon Village, Kakopather, The order Lepidoptera, a major group of plant-eating insects and thus, from the agricultural Tinsukia, Assam, India and forestry point of view they are of immense importance [1]. About 134 families comprising 157, 000 species of living Lepidoptera, including the butterflies has been documented globally [2], holding around 17% of the world's known insect fauna. Estimates, however, suggest more species in the order [3]. Naturalists for convenience categorised moths into two informal groups, the macro moths having larger physical size and recency in evolution and micro moths [4] that are smaller in size and primitive in origin .
    [Show full text]
  • Diversität Von Nachtfaltergemeinschaften Entlang Eines Höhengradienten in Südecuador (Lepidoptera: Pyraloidea, Arctiidae)
    Diversität von Nachtfaltergemeinschaften entlang eines Höhengradienten in Südecuador (Lepidoptera: Pyraloidea, Arctiidae) Dissertation zur Erlangung des Doktorgrades an der Fakultät Biologie/Chemie/Geowissenschaften der Universität Bayreuth vorgelegt von Dirk Süßenbach aus Bayreuth Bayreuth, Januar 2003 Die vorliegende Arbeit wurde am Lehrstuhl Tierökologie I der Universität Bayreuth in der Arbeitsgruppe von Prof. Dr. Konrad Fiedler erstellt und von der Deutschen Forschungsgemeinschaft gefördert (Projekt Fi 547/5-1, 5-3, FOR 402/1-1 Tp 15). Vollständiger Abdruck der von der Fakultät Biologie/Chemie/Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.). Tag der Einreichung: 08.01.2003 Tag des wissenschaftlichen Kolloquiums: 09.04.2003 1. Gutachter: Prof. Dr. K. Fiedler 2. Gutachter: PD Dr. B. Stadler Prüfungsausschuss: Prof. Dr. G. Rambold (Vorsitzender) Prof. Dr. K. Dettner Prof. Dr. Chr. Engels INHALTSVERZEICHNIS 1. Einleitung ...................................................................................................................... 1 2. Untersuchungsgebiet ................................................................................................... 13 3. Methodik...................................................................................................................... 20 3.1 Lichtfang.............................................................................................................. 20 3.2 Probennahme, Präparation
    [Show full text]