Behavioural Adaptations of the Generalist Herbivore Helicoverpa Punctigera (Lepidoptera: Noctuidae) with Respect to Primary and Secondary Hosts

Total Page:16

File Type:pdf, Size:1020Kb

Behavioural Adaptations of the Generalist Herbivore Helicoverpa Punctigera (Lepidoptera: Noctuidae) with Respect to Primary and Secondary Hosts i Behavioural adaptations of the generalist herbivore Helicoverpa punctigera (Lepidoptera: Noctuidae) with respect to primary and secondary hosts Lachlan Craig Jones BSc (Hons) University of Queensland 2015 BSc University of Queensland 2014 A thesis submitted for the award of Doctor of Philosophy at the University of Queensland in 2020 School of Biological Sciences ii Abstract Generalist insects are defined by the extreme diversity of host plants they feed upon in nature. Typically, most individuals develop on only one or a few host species, however, which we term primary hosts. From this perspective, generalists are like specialists except for, at times, using plants outside their range of specialisation. I sought to understand the adaptations involved in host use patterns of generalist herbivores, focussing on behavioural mechanisms of host plant acceptance in adults and larvae. I began by analysing results from 178 studies (on 161 insect species) that tested the relationship between egg-laying across host species and the subsequent survival of the resulting offspring. For each study, I researched the native ranges of all plant and insect species that were tested, along with the range of host plants fed on by the study insect(s). This allowed me to divide the results into generalists and specialists, tested with their native or non-native host plants. I found that 83% of insects allocated eggs adaptively across their native hosts, with no differences between generalists and specialists or across insect taxa. Based on that background, the rest of the thesis focused on interactions between the generalist moth Helicoverpa punctigera and its host plants. This insect is endemic to Australia and mainly inhabits the dry interior regions, although spring migrations to sub-coastal agricultural regions has seen it become a significant seasonal pest on cotton, beans and various other crops. Although H. punctigera has been recorded on at least 170 plant species across 40 families, under natural conditions larvae are found predominantly on plants in the daisy (Asteraceae) and legume (Fabaceae) families, including 6-8 species of primary hosts on which larval incidence and abundance in the field is especially high. In Chapter 3 I tested how the larval performance, larval attraction and adult oviposition of H. punctigera differed across four native host plants, two of them primary and two secondary. I found that neither relative attraction of the larvae nor numbers of eggs laid across the four host plants matched larval survival on these plants. Primary hosts, determined through relative larval abundance across host species in the field, were not necessarily more attractive to ovipositing moths or feeding caterpillars, suggesting other important factors not captured in these tests influence attraction, survival and retention of insects on host plants in the field. Oviposition rates across host species correlated best with early stage rather than overall larval survival, whereas larval attraction to host plants was poorly correlated with survival at any stage. In Chapter 4 I investigated how generalists allocate most of their eggs to primary hosts while still accepting secondary hosts when primary hosts are scarce. This could occur through an oviposition threshold that is lower on primary hosts, a feedback loop where oviposition on primary hosts stimulates more subsequent egg- iii laying than secondary hosts, or that moths assess alternatives and choose primary hosts. I tested this by measuring moth flight time and counting how many landings preceded oviposition on a primary host relative to their equivalent performance on each of two secondary hosts. I also compared the rates at which subsequent eggs were laid on primary and secondary hosts during the first hour after initial oviposition, and overnight. I found that oviposition involves thresholds and feedback loops, rather than choice, allowing H. punctigera to specialise on a few plant species within its broader host range. In chapter 5 I observed larvae across individual plants in the field, finding that plants hosting larvae typically had more flowers than average. I also performed field experiments with potted primary and secondary host plants. I placed larvae on the ground equidistant from each plant or, in a second test, onto one of the plant species and left for 24 hours. Larvae starting from a neutral position typically move to the primary host. Nevertheless, a quarter of larvae that had been placed on a plant and left for 24 hours did move to the other host, regardless of which plant they had started on. This suggests caterpillars leave even highly acceptable plants essentially at random and likely feed on several individual plants over their developmental span, yet they are receptive to olfactory cues when approaching host plants. Generalists, like specialists, possess host recognition adaptations specific to a relatively narrow range of primary host plant species. Facultative use of secondary hosts by H. punctigera is achieved through their oviposition threshold and feedback mechanisms. These are likely adaptations to its arid environment, where host plant availability varies spatio-temporally. The mobile larvae can also recognise and locate host plants, probably by tracking plant volatiles. Besides improving understanding of behaviour and host plant associations, these results have possible management consequences, as Helicoverpa larvae in pigeon pea refuges could be exposed to transgenic insecticidal cotton if they move between pigeon pea and cotton plants. iv Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, financial support and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my higher degree by research candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis and have sought permission from co-authors for any jointly authored works included in the thesis. v Publications included in this thesis Jones LC, Rafter MA and Walter GH (2019) Insects allocate eggs adaptively across their native host plants. Arthropod-Plant Interactions 13: 181–191. Jones LC, Rafter MA and Walter GH (2020) Host plant acceptance in a generalist insect: threshold, feedback or choice? Behaviour 157: 1059-1089. Jones LC, Rafter MA and Walter GH (in press) Interactions of Helicoverpa punctigera larvae and adults with four native host plants relative to field use patterns. A manuscript accepted by Environmental Entomology on 6th November 2020. Submitted manuscripts included in this thesis Jones LC, Rafter MA and Walter GH (Resubmitted) Showier plants host more larvae: distribution and movement of generalist caterpillars among plants in the field. A manuscript resubmitted to Ecological Entomology on 21st August 2020. Other publications during candidature Journal articles resulting from Honours research: Jones LC, Foster BJ, Rafter MA and Walter GH (2018) Tiny insects against the weather – flight and foraging patterns of Frankliniella schultzei (Thripidae) not altered by onset of rainfall. Insect Science 25: 1119-1127. Jones LC, Rafter MA and Walter GH (2018) Colonisation of primary and secondary host plant species by Frankliniella schultzei thrips: a balance between attraction and repulsion? Arthropod-Plant Interactions 12: 321-328. Journal article resulting from a side project pursued during my PhD: Jones LC (2020) Maternal aggression and juvenile sociality in hibiscus harlequin bugs. Journal of Insect Behavior https://doi.org/10.1007/s10905-020-09751-z Conference abstracts: Jones LC, Rafter MA and Walter GH (2019) Insects allocate eggs adaptively when host plants are native. Oral presentation – Plant Herbivore Interactions Gordon Research Seminar (Ventura, CA USA) Jones LC, Rafter MA and Walter GH (2019) Host plant discrimination in a generalist insect – threshold, feedback or choice? Poster presentation – Plant Herbivore Interactions Gordon Research Conference (Ventura, CA USA) vi Contributions by others to the thesis My supervisors Gimme Walter and Michelle Rafter were involved in discussion of research aims and methods as well as critically revising drafts of the thesis chapters. Statement of parts of the thesis submitted to qualify
Recommended publications
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Pharmaceutical Sciences
    IAJPS 2019, 06 (10), 12713-12727 Muhammad Yousaf Ghilzai et al ISSN 2349-7750 CODEN [USA]: IAJPBB ISSN: 2349-7750 INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES Available online at: http://www.iajps.com Research Article FOOD PREFERENCE OF QUETTA BORER, AEOLESTHES SARTA COLEOPTERA; (CERAMBYCIDAE) UNDER CONTROL CONDITION 1Muhammad Yousaf Ghilzai,1Arshad Ghani Khan,2Imran Ali Sani, 2Nisar Ahmed 1Mohammad Amin 1Zafarullah,1Azhar Sheikh,1Essa Khan, 1Zia ul Haq,2Umair Ahmed, 3Sajid Nabi 1Balochistan Agriculture College Quetta, Pakistan 2Balochistan University of Information Technology Engineering and Management sciences, BUITEMS, Quetta, Pakistan 3University of Balochistan, Quetta Pakistan Article Received: March 2019 Accepted: April 2019 Published: October 2019 Abstract: Balochistan is the largest province of Pakistan, which is blessed with four agro-ecological zones and it has unique environment condition for the production of a great variety of quality fruits, that’s why the province is known as the fruit-basket of the country. Among these fruits’ apple, apricot and almond are considered as important fruits of the world and Pakistan. Fruits provide nutrients and vitamins to the human. These fruits are generally grown in temperate regions of Pakistan especially in Balochistan and Khyber Pakhtunkhwa (KPK). These fruits are attacked by number of insect pests viz, codling moth, shot hole borer, aphids and san Jose scale but borers (roundhead borer and flat-headed borer) are most serious/ destructive pest and potential threat to deciduous fruit of Balochistan. Adult stages feed on the buds, cortex and causing heavy leaf defoliation. While, immature stage (larvae) bore into the tree and destroyed their xylem and phloem bundle which badly affects the yield of the tree.
    [Show full text]
  • Review of Entomological Research on Sweet Potato in Ethiopia
    Discourse Journal of Agriculture and Food Sciences www.resjournals.org/JAFS Vol. 1(5), pp. 83-92, May 2013 Review of Entomological Research on Sweet Potato in Ethiopia Ermias Shonga, Mesele Gemu, Tesfaye Tadesse and Elias Urage Awassa Agricultural Research Centre, Southern Agricultural Research Institute/SARI,P. O. Box 06. Awassa, SNNPR Email : [email protected] Abstract: Sweet potato is one of the most widely grown root crops in SSA, it is particularly important in countries surrounding the Great Lakes in Eastern and Central Africa, in Angola, Madagascar, Malawi and Mozambique in Southern Africa, Nigeria in West Africa and China being the largest producer worldwide. In Africa, it is grown predominantly in small plots by poorer farmers, and hence known as the “poor man’s food.” However it is among well known and established crops in Southern, Eastern and South western parts of Ethiopia. It is produced annually on over 53 thousand hectares of land with total production over 4,240 tons and average productivity of 8.0 tons per hectare. The production and productivity of the crop is extremely low as compared to other African and Asian countries where it gives more than 18t/ha. The lower productivity of sweet potato is mainly due to the existence of common, major, minor and sporadic insect pests. Sweet potato weevil is known as the most pit fall for production and productivity of the crop followed by viral diseases in the country. In addition, sweet potato butter fly is the most devastating pest in major sweet potato growing zones in the country but its occurrence is sporadic based on agro-ecological condition.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Chrysanthemoides Monilifera Ssp
    MANAGEMENT OF BONESEED (CHRYSANTHEMOIDES MONILIFERA SSP. MONILIFERA) (L.) T. NORL. USING FIRE, HERBICIDES AND OTHER TECHNIQUES IN AUSTRALIAN WOODLANDS Rachel L. Melland Thesis submitted for the degree of Doctor of Philosophy School of Agriculture, Food and Wine University of Adelaide August 2007 Table of Contents TABLE OF CONTENTS ....................................................................................................... II ABSTRACT ............................................................................................................................ VI DECLARATION ................................................................................................................ VIII ACKNOWLEDGEMENTS .................................................................................................. IX CHAPTER 1: INTRODUCTION ............................................................................................ 1 1.1 AIMS OF THIS THESIS .......................................................................................................... 3 CHAPTER 2: LITERATURE REVIEW ............................................................................... 5 2.1 PROCESSES OF NATIVE ECOSYSTEM DEGRADATION ............................................................ 5 2.2 GLOBAL PLANT INVASIONS – ECOSYSTEM DEGRADING PROCESSES .................................... 6 2.3 THE ENVIRONMENTAL WEED PROBLEM IN AUSTRALIA ..................................................... 10 2.4 CAUSES AND PROCESSES OF INVASIVENESS .....................................................................
    [Show full text]
  • 4 Reproductive Biology of Cerambycids
    4 Reproductive Biology of Cerambycids Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois Qiao Wang Massey University Palmerston North, New Zealand CONTENTS 4.1 Introduction .................................................................................................................................. 133 4.2 Phenology of Adults ..................................................................................................................... 134 4.3 Diet of Adults ............................................................................................................................... 138 4.4 Location of Host Plants and Mates .............................................................................................. 138 4.5 Recognition of Mates ................................................................................................................... 140 4.6 Copulation .................................................................................................................................... 141 4.7 Larval Host Plants, Oviposition Behavior, and Larval Development .......................................... 142 4.8 Mating Strategy ............................................................................................................................ 144 4.9 Conclusion .................................................................................................................................... 148 Acknowledgments .................................................................................................................................
    [Show full text]
  • Effect of Trap Color on Captures of Bark- and Wood-Boring Beetles
    insects Article Effect of Trap Color on Captures of Bark- and Wood-Boring Beetles (Coleoptera; Buprestidae and Scolytinae) and Associated Predators Giacomo Cavaletto 1,*, Massimo Faccoli 1, Lorenzo Marini 1 , Johannes Spaethe 2 , Gianluca Magnani 3 and Davide Rassati 1,* 1 Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16–35020 Legnaro, Italy; [email protected] (M.F.); [email protected] (L.M.) 2 Department of Behavioral Physiology & Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; [email protected] 3 Via Gianfanti 6, 47521 Cesena, Italy; [email protected] * Correspondence: [email protected] (G.C.); [email protected] (D.R.); Tel.: +39-049-8272875 (G.C.); +39-049-8272803 (D.R.) Received: 9 October 2020; Accepted: 28 October 2020; Published: 30 October 2020 Simple Summary: Several wood-associated insects are inadvertently introduced every year within wood-packaging materials used in international trade. These insects can cause impressive economic and ecological damage in the invaded environment. Thus, several countries use traps baited with pheromones and plant volatiles at ports of entry and surrounding natural areas to intercept incoming exotic species soon after their arrival and thereby reduce the likelihood of their establishment. In this study, we investigated the performance of eight trap colors in attracting jewel beetles and bark and ambrosia beetles to test if the trap colors currently used in survey programs worldwide are the most efficient for trapping these potential forest pests. In addition, we tested whether trap colors can be exploited to minimize inadvertent removal of their natural enemies.
    [Show full text]
  • Schutz Des Naturhaushaltes Vor Den Auswirkungen Der Anwendung Von Pflanzenschutzmitteln Aus Der Luft in Wäldern Und Im Weinbau
    TEXTE 21/2017 Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit Forschungskennzahl 3714 67 406 0 UBA-FB 002461 Schutz des Naturhaushaltes vor den Auswirkungen der Anwendung von Pflanzenschutzmitteln aus der Luft in Wäldern und im Weinbau von Dr. Ingo Brunk, Thomas Sobczyk, Dr. Jörg Lorenz Technische Universität Dresden, Fakultät für Umweltwissenschaften, Institut für Forstbotanik und Forstzoologie, Tharandt Im Auftrag des Umweltbundesamtes Impressum Herausgeber: Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Durchführung der Studie: Technische Universität Dresden, Fakultät für Umweltwissenschaften, Institut für Forstbotanik und Forstzoologie, Professur für Forstzoologie, Prof. Dr. Mechthild Roth Pienner Straße 7 (Cotta-Bau), 01737 Tharandt Abschlussdatum: Januar 2017 Redaktion: Fachgebiet IV 1.3 Pflanzenschutz Dr. Mareike Güth, Dr. Daniela Felsmann Publikationen als pdf: http://www.umweltbundesamt.de/publikationen ISSN 1862-4359 Dessau-Roßlau, März 2017 Das diesem Bericht zu Grunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit unter der Forschungskennzahl 3714 67 406 0 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren. UBA Texte Entwicklung geeigneter Risikominimierungsansätze für die Luftausbringung von PSM Kurzbeschreibung Die Bekämpfung
    [Show full text]
  • Flora and Fauna Guarantee Act 1988 Protected Flora List November 2019
    Department of Environment, Land, Water & Planning Flora and Fauna Guarantee Act 1988 Protected Flora List November 2019 What is Protected Flora? Protected flora are native plants or communities of native plants that have legal protection under the Flora and Fauna Guarantee Act 1988. The Protected Flora List includes plants from three sources: plant taxa (species, subspecies or varieties) listed as threatened under the Flora and Fauna Guarantee Act 1988 plant taxa belonging to communities listed as threatened under the Flora and Fauna Guarantee Act 1988 plant taxa which are not threatened but require protection for other reasons. For example, some species which are attractive or highly sought after, such as orchids and grass trees, are protected so that the removal of these species from the wild can be controlled. For all listed species protection includes living (eg flowers, seeds, shoots and roots) and non-living (eg bark, leaves and other litter) plant material. Do I need a permit or licence? The handling of protected flora is regulated by the Department of Environment, Land, Water & Planning (DELWP) to ensure that any harvesting or loss is ecologically sustainable. You must obtain a ‘Protected Flora Licence’ or Permit from one of the Regional Offices of DELWP if you want to collect protected native plants or if you are planning to do works or other activities on public land which might kill, injure or disturb protected native plants. In most cases, you do not require a Licence or Permit for works or activities on private land, although you may require a planning permit from your local council.
    [Show full text]
  • 25Th U.S. Department of Agriculture Interagency Research Forum On
    US Department of Agriculture Forest FHTET- 2014-01 Service December 2014 On the cover Vincent D’Amico for providing the cover artwork, “…and uphill both ways” CAUTION: PESTICIDES Pesticide Precautionary Statement This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Product Disclaimer Reference herein to any specific commercial products, processes, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recom- mendation, or favoring by the United States government. The views and opinions of wuthors expressed herein do not necessarily reflect those of the United States government, and shall not be used for advertising or product endorsement purposes. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C.
    [Show full text]
  • Hemiptera: Membracidae Rafinesque, 1815) Del Sendero Principal De La Quebrada La Vieja (Colombia: Bogotá D.C.)
    Algunas anotaciones sobre la biología de las espinitas (Hemiptera: Membracidae Rafinesque, 1815) del sendero principal de la Quebrada La Vieja (Colombia: Bogotá D.C.) Mario Arias Universidad Pedagógica Nacional Facultad de Ciencia y Tecnología Licenciatura en Biología Bogotá D.C., Colombia 2018 Algunas anotaciones sobre la biología de las espinitas (Hemiptera: Membracidae Rafinesque, 1815) del sendero principal de la Quebrada La Vieja (Colombia: Bogotá D.C.) Mario Arias Trabajo de grado presentado como requisito parcial para optar al título de: Licenciado en Biología Director: Martha Jeaneth García Sarmiento MSc Línea de investigación: Faunística y conservación con énfasis en los artrópodos Universidad Pedagógica Nacional Facultad de Ciencia y Tecnología Licenciatura en Biología Bogotá D.C., Colombia 2018 Agradecimientos Agradezco particularmente a la profesora Martha García por guiar este trabajo de grado y por sus valiosos aportes para la construcción del mismo, sus correcciones, sugerencias, paciencia y confianza fueron valiosas para cumplir esta meta. Al estudiante de maestría de la Universidad CES Camilo Flórez Valencia por la bibliografía y corroboración a nivel especifico de los membrácidos. Al estudiante de maestría del Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) Nicolás Quijano por su invaluable ayuda en la obtención de libros en Costa Rica. Al licenciado en Biología Santiago Rodríguez por sus reiterados ánimos para llevar a cabo este trabajo. Al estudiante Andrés David Murcia por el préstamo de la cámara digital. Al M.Sc Ricardo Martínez por el préstamo de los instrumentos de laboratorio. Agradezco especialmente a mi familia, la confianza y creencia que depositaron en mí, ha sido el bastón con el cual he logrado sobreponerme a malos momentos, por eso este pequeño paso es una dedicación a Edilma Arias y Ángela Mireya Arias, indudablemente son personas trascendentales e irrepetibles en mi vida.
    [Show full text]
  • GALLARDO, P.: Relationship Between Insect Damage and Chlorophyll Content in Mediterranean Oak Species
    Cárdenas – Gallardo: Relationship between insect damage and chlorophyll content in Mediterranean oak species - 477 - RELATIONSHIP BETWEEN INSECT DAMAGE AND CHLOROPHYLL CONTENT IN MEDITERRANEAN OAK SPECIES CÁRDENAS, A. M.* ‒ GALLARDO, P. Dpto. de Zoología, Edificio Darwin, Campus Rabanales, E-14071, University of Córdoba, Córdoba, Spain (tel: +34 957 218604) *Corresponding author e-mail: [email protected] (Received 10th Jun 2016; accepted 23rd Jul 2016) Abstract. Considering that the damage caused by phytophagous insects can alter the chlorophyll content of plants, we established the hypothesis that variations in chlorophyll concentration could be applied to assess stress caused by these kind of harmful agents. In this paper, relationship between insect damage and the chlorophyll content of sclerophyllous oak species (Quercus suber and Q. ilex) is investigated. The survey was carried out in Hornachuelos Natural Park (southern Iberian Peninsula). For each plant species, a comparative study of chlorophyll concentration on healthy leaves was performed among a control group of harmless trees and other groups affected by one of the following damaging insects: woodborers, chewing and gall-formers. Results relative to Q. ilex indicated that only damage by gall-formers had a significant effect on average chlorophyll content of healthy leaves. As regard Q. suber, differences in chlorophyll content were only significant when injuries were caused by the woodborer Coraebus florentinus. In conclusion, insect damage could influence the chlorophyll content of the holm and cork oaks, but the effect varies depending on the plant species and the type of harmful agent. Keywords: environmental assessment, oak forests, Quercus ilex, Quercus suber, photosynthesis Introduction Several herbivorous insects are associated with Quercus species (Romanyk and Cadahía, 1992) and, depending on the way of affecting the plant, can be classified as woodborers, carpophagous and folivorous (chewing insects and galls-formers).
    [Show full text]