Primary Endocrine Organs, Tissues and Cells That Produce Hormones

Total Page:16

File Type:pdf, Size:1020Kb

Primary Endocrine Organs, Tissues and Cells That Produce Hormones Primary Endocrine Organs, Tissues and Cells that produce Hormones Cell Type Organ responsible for Target Organ or Item # Secretion Initiated by Secretion Inhibited by Hormone Hormone Illustration Alternate Name responsible for Secretion Tissue Secretion Physiological changes Adrenal Glands 1 activated by a stressful Relaxed and calm states of being Norepinephrine Noradrenaline and levarterenol Chromaffin cells Brain (adrenal medulla) event. 2 Melatonin receptors Atenolol and luzindole Melatonin N-acetyl-5-methoxytryptamine Pineal Gland Pinealocytes Brain Regulate male reproductive Adrenal Glands Anterior pituitary 3 ACTH Gonadocorticotropic Hormone GnRh Brain processes (adrenal cortex) gland Low level of cortisol, 4 Increased levels of cortisol Adrenocorticotropic Hormone (ACTH) Corticotropin Anterior Pituitary Corticotrophs Adrenal cortex stress, fever Peptides released by Syncytiotrophoblast during Human Chorionic Somatomammotropin 5 It inhibits insulin. Growth hormone (GH) Anterior pituitary gland. Somatotroph cells neurosecretory nuclei pregnancy (hCS) of the hypothalamus 1 OF 16 Primary Endocrine Organs, Tissues and Cells that produce Hormones Primary Endocrine Organs, Tissues and Cells that produce Hormones Target Consequences of Feed Back Molecular Item # Organ/Tissue Principle Action Chemical Class Consequences of excess Reference deficieny System Structure Illustration Increased heart contraction rate, Fight or flight response to stress, also Orthostatic hyptension and constriction of blood vessels, Neurogenesis.com 1 known as adrenaline. Prepares the Amino acid Negative http://en.wikipedia.org/ blood vessel disease. bronchiole dilation, and increased body for increased activity. wiki/Norepinephrine metabolic rate. Increase hormone can cause a www.springerlink.com/i Influences daily rhythms, sleep and for sleeping disorder .( Also sleep can ndex/M6621743540748 2 some people seasonal changes in Insomnia, trouble sleeping Circadin Negative 70.pdf Biology of help growth development and energy. mood. Humans Only if you sleep for 8-10 hrs.) en.wikipedia.org/wiki/M Stimulates the anterior pituitary gland Biology of humans 3 Underproduction of testosterone Peptid Sexual Infantilism Negative http://en.wikipedia.org/ to release LH wiki/Gonadotropin Stimulates synthesis and release of http://en.wikipedia.org/wiki/ 4 Hypoadrenalism Peptide Hyperadrenalism Negative Adrenocorticotropic_hormo hormones from adrenal glands. ne http://medical- dictionary.thefreedictio Stimulates growth and cell reproduction Thickens the bones of the jaw, 5 Growth failure and short stature Polypeptide Negative nary.com/human+chori in humans and other animals. fingers and toes onic+somatomammotr opin 2 OF 16 Cell Type Organ responsible for Target Organ or Item # Secretion Initiated by Secretion Inhibited by Hormone Hormone Illustration Alternate Name responsible for Secretion Tissue Secretion Low levels of thyroid Neurosecretory Cells, 6 High levels of thyroid hormones Thyroid Stimulating Hormone (TSH) Thyrotropin Anterior Pituitary Thyroid Gland hormones Thyrotrophs 7 T cells (lymphoctes) Low level of T cells Thymosin Thymopoietin Thymus Cortex Lymphoid It is released in response It is released in response to to atrial stretch and a atrial stretch and a variety of variety of other signals Atrial natriuretic factor (ANF), 8 Low blood pressure. Atrial Natriuretic Peptide (ANP) other signals induced by Atrial myocytes Heart induced by hypervolemia, or atriopeptin hypervolemia, exercise or exercise or caloric caloric restriction. restriction. High Calcium 9 Low levels of calcium in blood Parathyroid Hormone PTH and Parathormone Parathyroid Gland Parathyroid chief cell Blood concentration in blood Blood glucose levels start Alphn cells of b ilet of 10 Glucagon-like peptide-1 Glucagon Pancreatic Peptide Pancreas Blood stream to fall too low langerhans 3 OF 16 Target Consequences of Feed Back Molecular Item # Organ/Tissue Principle Action Chemical Class Consequences of excess Reference deficieny System Structure Illustration Stimulates synthesis and release of http://en.wikipedia.org/wiki/ 16 thyroid hormones, growth and function Hypothyroidism Glycoprotein Hyperthyroidism Negative Thyroid- of thyroid gland stimulating_hormone http://www.ncbi.nlm.nih Promotes maturation if white blood Decrease T cells can occur in Blood (white blood .gov/pmc/articles/PMC2 7 No consequences Negative cells infection and disease. cells) 138952/ Biology of Humans ANP acts to reduce the water, sodium and adipose loads on the circulatory http://www.ncbi.nlm.nih 8 Increased blood pressure. Polypeptide Low blood pressure. Negative system, thereby reducing blood .gov/pubmed/8897999 pressure.[1] Hypoparathyroidism, increased concentrations of Calcium, and Primary and secondary http://www.webmd.com/a-to- 9 Increases blood levels of calcium Peptid Negative z-guides/parathyroid- decreased concentrations of hyperparathyroidism. hormone Phosphorous. Cause liver to convert stored glycogen http://www.springerlink. into glucose and release it into the Causing pancreatic tumors as com/content/w0l1768t5 10 Hypoglycaemia 29 amino acid polypeptide Negative 354vk25/ bloodstream, raising blood glucose glucagonoma. http://en.wikipedia.org/ levels wiki/Glucagon 4 OF 16 Cell Type Organ responsible for Target Organ or Item # Secretion Initiated by Secretion Inhibited by Hormone Hormone Illustration Alternate Name responsible for Secretion Tissue Secretion Mechanical or infant 12 Absence of nipple stimulation Prolactin (PRL) Luteotropic Hormone Anterior Pituitary Lactotrophs Breasts suckling Breast and uterus, Aromatase inhibitors work by Corpus luteum, and the brain, bone, liver, 13 Pregnancy inhibiting the action of the Estrogen Androgen Developing follicles placenta. heart and other enzyme aromatase tissues. Stress that causes Physical stimulation of the catecholamines to be released. 14 Oxytocin (OT) Pitocin Posterior Pituitary Neurosecretory Cells Breasts and Uterus breasts The Catecholamines repress the oxytocin neurons. Decrase the glucose in the NPH Insulin, Lente Insulin, Liver and skeletal 15 Phospholipase A2 Insulin Pancreas B islet cells blood strream Insulin Aspart, Insulin glargine muscules Falling levels of EPO, Chemotherapy and PO2 is Extraglomerular 16 Erythropoietin (EPO) Epoetin alfa Kidneys Liver moderate bleeding normal, EPO derease mesangial 5 OF 16 Target Consequences of Feed Back Molecular Item # Organ/Tissue Principle Action Chemical Class Consequences of excess Reference deficieny System Structure Illustration Enlarge mammary glands in both 121 Stimulates breasts to produce milk. Absence of milk production Protein Negative http://en.wikipedia.org/wiki/Prolac male/females, infertility, galactorrhea tin They promote the development of High estrogen levels during female secondary sexual Low estrogen levels during perimenopause and menopause can http://www.natural- characteristics, such as breasts, and 13 pregnancy can reduce future Steroid have effects such as headaches, Positive hormones.net/estrogen- are also involved in the thickening of fertility for female offspring. breast tenderness and even in some high-levels.htm the endometrium and other aspects of cases breast cancer if left untreated. regulating the menstrual cycle. Impairs maternal skeletal Stimulates uterine muscle contraction, There is no known effect for the http://www.gfmer.ch/Endo/L 14 remodeling, gives problems with Peptide Positive and secretion of milk excess of Oxytocin. ectures_10/Oxytocin.htm nursing and uterine contractions. /www.diabitieslife.com 15 Use and remove glucose Diabetes Peptide Low blood glucose Negative http://www.medicinenet. com/insulin/article.htm Hormone released from th e kindeny 16 that stimulates thr production of red Anemia Peptid Polycythemia Negative http://en.wikipedia.org/ cells in the bone morrow wiki/Hormone 6 OF 16 Cell Type Organ responsible for Target Organ or Item # Secretion Initiated by Secretion Inhibited by Hormone Hormone Illustration Alternate Name responsible for Secretion Tissue Secretion Kidneys, and Sodium ions, and dopamine, 11β,21-dihydroxy-3,20- Adrenal Glands 17 Angiotensin II Aldosterone Zona glomerulosa cells increases blood ANH dioxopregn-4-en-18-al (adrenal cortex) volume 18 Blood vessels Increased Ca & phosphate Calcitrol (1,25-dihydroxyvitaminD3) Kidneys Parathyroid cells Kidneys It is initiated by the Angiotensin II (ANG II) inhibits 19 interaction of angiotensin bTREK-1 (bovine KCNK2) K(+) Angiotensin II Renin substrate. Liver Adrenocortical cells Kidneys II with the AT1 receptor. channels. Stomach and 20 Gastric luminade peptides The presence of acid Gastrin Gastric acid GI Tract G cells duodenum. Glucose-dependent Insulinotropic Gastric inhibitory polypeptide 21 Lipoprotein lipase Small meals Small intestine K cells Small intestine Peptide (GIP) 7 OF 16 Target Consequences of Feed Back Molecular Item # Organ/Tissue Principle Action Chemical Class Consequences of excess Reference deficieny System Structure Illustration Hyperkalemia with an increase 17 Increases blood pressure Steroid Addisons disease Negative 1 in total body potassium health.allrefer.com http://en.wikipedia.org/wiki/ Aldosterone http://www.news- It increases the level of calcium in the Active form of 18 Hypocalcemia and osteoporosis. Hypercalcaemia Negative medical.net/news/2009 blood vitamin D /02/05/45634.aspx http://hyper.ahajournal Angiotensin II acts as an endocrine, s.org/cgi/content/full/hy 19 autocrine/ paracrine, and intracrine Hypotension Oligopeptide Hypertension Negative
Recommended publications
  • Joy Wellness Partners 838 W G Street Suite 201 San Diego, California 92101
    United States of America FEDERAL TRADE COMMISSION Southwest Region 1999 Bryan St., Ste. 2150 Dallas, Texas 75201 June 3, 2020 WARNING LETTER VIA EMAIL TO [email protected] Joy Wellness Partners 838 W G Street Suite 201 San Diego, California 92101 Re: Unsubstantiated Claims for Coronavirus Prevention or Treatment To Whom It May Concern, This is to advise you that FTC staff reviewed your website at https://joywellnesspartners.com/ on May 24, 2020. We have determined that you are unlawfully advertising that certain products treat or prevent Coronavirus Disease 2019 (COVID-19). Some examples of Coronavirus treatment or prevention claims on your website include: In marketing materials accessible on your website by selecting “BLOG” from the navigation menu and clicking on “CORONAVIRUS (COVID-19),” you claim: o Under the heading “Hormones, Peptides, & Immunity”: . You state that “Keeping your immune system running optimally with balanced hormones and peptides helps your body prevent and fight illness, including viruses like COVID-19. Book now [https://intakeq.com/booking/8hkwjk]” . You post a video titled “IMMUNITY, BIOTE, & CORONAVIRUS” featuring Carol Joy Bender, NP. In the video at approximately 31:55, Bender states, “More specifically, I wanted to touch on the things that we’re all concerned about the coronavirus times: what can I do to boost my immune system to keep me healthy? BioTE has already been doing this for us… We have a lot of patients that are already taking their iodine with selenium and zinc. The zinc is one of the mainstay treatments that many of you have read about… zinc helps to reduce the RNA replication inside the cells, when the coronavirus gets in.
    [Show full text]
  • WO 2013/096741 A2 27 June 2013 (27.06.2013) P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/096741 A2 27 June 2013 (27.06.2013) P CT (51) International Patent Classification: (74) Agents: GEORGE, Nikolaos C. et al; Jones Day, 222 A61K 35/12 (2006.01) East 41st Street, New York, NY 10017-6702 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 12/07 1192 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 2 1 December 2012 (21 .12.2012) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 61/579,942 23 December 201 1 (23. 12.201 1) US RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 61/592,350 30 January 2012 (30.01.2012) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 61/696,527 4 September 2012 (04.09.2012) us ZM, ZW. (71) Applicant: ANTHROGENESIS CORPORATION (84) Designated States (unless otherwise indicated, for every [US/US]; 33 Technology Drive, Warren, NJ 07059 (US).
    [Show full text]
  • A Genetically Modified Dermal Micro-Organ Expressing Erythropoietin
    (19) & (11) EP 2 377 401 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 19.10.2011 Bulletin 2011/42 A01N 63/00 (2006.01) A01N 65/00 (2009.01) C12N 5/00 (2006.01) C12N 5/02 (2006.01) (2010.01) (21) Application number: 11174205.2 C12N 5/071 (22) Date of filing: 29.04.2004 (84) Designated Contracting States: • Bukhman, Mordechay AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 21891 Carmiel (IL) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Stern, Baruch, S. Designated Extension States: 34366 Haifa (IL) AL HR LT LV MK • Shalhevet, David 36090 Kiryat Tivon (IL) (30) Priority: 01.05.2003 US 466793 P • Shavitt, Menachem, D. 06.08.2003 US 492754 P 20142 D.N. Misgav (IL) • Pearlman, Andrew, L. (62) Document number(s) of the earlier application(s) in 20164 D.N. Miscav (IL) accordance with Art. 76 EPC: • Noam, Shani 04760621.5 / 1 653 807 30900 Zichron Yaakov (IL) • Almon, Einat (71) Applicant: Medgenics, Inc. 23840 Timrat (IL) Palo Alto, CA 94303 (US) (74) Representative: Modiano, Micaela Nadia (72) Inventors: Modiano & Partners • Bellomo, Stephen, F. Thierschstrasse 11 30900 Zichron Yaakov (IL) 80538 München (DE) • Lippin, Itzhak 42920 Moshav Beit Yitzhak (IL) Remarks: • Piva, Guillermo, Alberto This application was filed on 15-07-2011 as a Winston Salem, NC North Carolina 27104 (US) divisional application to the application mentioned • Rosenberg, Lior under INID code 62. 84965 Omer (IL) (54) A genetically modified dermal micro-organ expressing erythropoietin (57) The present invention is directed to a genetically cro-organ
    [Show full text]
  • The Fine Structure of the Parathyroid Gland*
    The Fine Structure of the Parathyroid Gland* BY JERRY STEVEN TRIER, M.D. (From the Department of Anatomy, University of Washington School of Medicine, Seattle) PLATES 3 TO 10 (Received for publication, July 29, 1957) ABSTRACT The fine structure of the parathyroid of the macaque is described, and is cor- related with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron mierographs. The chief cells contain within their cyto- plasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic rcticulum of the ergastoplasmic or granular type. Oxyphll cells are characterized by juxtanuclear bodies and by numerous mito- chondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described. INTRODUCTION Other contributions to the present concepts con cerning the human parathyroid can be found in the It is the purpose of the present paper to report some observations on the fine structure of the reports of Bergstrand (7), Morgan (34), Pappen- parathyroid gland employing the electron micro- heimer and Wilens (45), Castleman and Mallory (10), and Gilmour (20).
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Endogenous Peptide Discovery of the Rat Circadian Clock a FOCUSED STUDY of the SUPRACHIASMATIC NUCLEUS by ULTRAHIGH PERFORMANCE TANDEM MASS □ SPECTROMETRY* S
    Research Endogenous Peptide Discovery of the Rat Circadian Clock A FOCUSED STUDY OF THE SUPRACHIASMATIC NUCLEUS BY ULTRAHIGH PERFORMANCE TANDEM MASS □ SPECTROMETRY* S Ji Eun Lee‡§, Norman Atkins, Jr.¶, Nathan G. Hatcherʈ, Leonid Zamdborg‡§, Martha U. Gillette§¶**, Jonathan V. Sweedler‡§¶ʈ, and Neil L. Kelleher‡§‡‡ Understanding how a small brain region, the suprachias- pyroglutamylation, or acetylation. These aspects of peptide matic nucleus (SCN), can synchronize the body’s circa- synthesis impact the properties of neuropeptides, further ex- dian rhythms is an ongoing research area. This important panding their diverse physiological implications. Therefore, time-keeping system requires a complex suite of peptide unveiling new peptides and unreported peptide properties is hormones and transmitters that remain incompletely critical to advancing our understanding of nervous system characterized. Here, capillary liquid chromatography and function. FTMS have been coupled with tailored software for the Historically, the analysis of neuropeptides was performed analysis of endogenous peptides present in the SCN of the rat brain. After ex vivo processing of brain slices, by Edman degradation in which the N-terminal amino acid is peptide extraction, identification, and characterization sequentially removed. However, analysis by this method is from tandem FTMS data with <5-ppm mass accuracy slow and does not allow for sequencing of the peptides con- produced a hyperconfident list of 102 endogenous pep- taining N-terminal PTMs (5). Immunological techniques, such tides, including 33 previously unidentified peptides, and as radioimmunoassay and immunohistochemistry, are used 12 peptides that were post-translationally modified with for measuring relative peptide levels and spatial localization, amidation, phosphorylation, pyroglutamylation, or acety- but these methods only detect peptide sequences with known lation.
    [Show full text]
  • Thymosin Hh10 Inhibits Angiogenesis and Tumor Growth by Interfering with Ras Function
    Research Article Thymosin hh10 Inhibits Angiogenesis and Tumor Growth by Interfering with Ras Function Seung-Hoon Lee,1 Myung Jin Son,1,2 Sun-Hee Oh,1 Seung-Bae Rho,1 Kyungsook Park,1 Yung-Jin Kim,2 Mi-Sun Park,1 and Je-Ho Lee1 1Molecular Therapy Research Center, Samsung Medical Center, School of Medicine, Sung Kyun Kwan University, Seoul, Korea and 2Department of Molecular Biology, Pusan National University, Busan, Korea Abstract are a family of highly conserved small peptides that inhibit barbed end actin polymerization by sequestering actin mono- Thymosin h10 is a monomeric actin sequestering protein mers (8). Among them, thymosin h4 and thymosin h10 are the that regulates actin dynamics. Previously, we and others h have shown that thymosin h acts as an actin-mediated two most abundant -thymosins in the mammalian species and 10 coexist in some tissue types at varying ratios (9). Although both tumor suppressor. In this study, we show that thymosin h10 is not only a cytoskeletal regulator, but that it also acts as a peptides share a high degree of sequence homology, they show potent inhibitor of angiogenesis and tumor growth by its distinct patterns of expression in several tissues (10) and play interaction with Ras. We found that overexpressed thymosin different roles during rodent development (11). Recently, the angiogenic effects of several members of the thymosin family of h10 significantly inhibited vascular endothelial growth factor–induced endothelial cell proliferation, migration, peptides were studied in the chick chorioallantoic membrane h a invasion, and tube formation in vitro. Vessel sprouting was model (12).
    [Show full text]
  • WO 2015/168656 A2 5 November 2015 (05.11.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/168656 A2 5 November 2015 (05.11.2015) P O P C T (51) International Patent Classification: (72) Inventors: HSIAO, Sonny; 1985 Pleasant Valley Avenue, A61K 48/00 (2006.01) Apartment 7, Oakland, CA 9461 1 (US). LIU, Cheng; 24 N Hill Court, Oakland, CA 94618 (US). LIU, Hong; 5573 (21) International Application Number: Woodview Drive, El Sobrante, CA 94803 (US). PCT/US20 15/02895 1 (74) Agents: GIERING, Jeffery, C. et al; Wilson Sonsini (22) International Filing Date: Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA 1 May 2015 (01 .05.2015) 94304-1050 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 61/988,070 2 May 2014 (02.05.2014) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicant: ADHEREN INCORPORATED [US/US]; HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 1026 Rispin Drive, Berkeley, CA 94705 (US). KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (72) Inventors; and PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (71) Applicants : TWITE, Amy, A.
    [Show full text]
  • Multiple Beneficial Effects of Melanocortin MC4 Receptor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca - Università degli studi di Napoli Federico II Progress in Neurobiology 148 (2017) 40–56 Contents lists available at ScienceDirect Progress in Neurobiology journal homepage: www.elsevier.com/locate/pneurobio Review article Multiple beneficial effects of melanocortin MC4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives a a a b c Daniela Giuliani , Alessandra Ottani , Laura Neri , Davide Zaffe , Paolo Grieco , d e f a, Jerzy Jochem , Gian Maria Cavallini , Anna Catania , Salvatore Guarini * a Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy b Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy c Department of Pharmacy, University of Napoli “Federico II”, Napoli, Italy d Department of Basic Medical Sciences, School of Public Health in Bytom, Medical University of Silesia, Katowice, Poland e Department of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy f Center for Preclinical Surgical Research, Fondazione IRCCS Ca' Granda À Ospedale Maggiore Policlinico, Milano, Italy A R T I C L E I N F O A B S T R A C T Article history: Received 20 May 2015 Melanocortin peptides induce neuroprotection in acute and chronic experimental neurodegenerative Received in revised form 22 November 2016 conditions. Melanocortins likewise counteract systemic responses to brain injuries. Furthermore, they Accepted 28 November 2016 promote neurogenesis by activating critical signaling pathways. Melanocortin-induced long-lasting Available online 1 December 2016 improvement in synaptic activity and neurological performance, including learning and memory, sensory-motor orientation and coordinated limb use, has been consistently observed in experimental Keywords: models of acute and chronic neurodegeneration.
    [Show full text]
  • Supporting Information for Proteomics DOI 10.1002/Pmic.200700142
    Supporting Information for Proteomics DOI 10.1002/pmic.200700142 Karl Skld, Marcus Svensson, Mathias Norrman, Benita Sjgren, Per Svenningsson and Per E. Andren´ The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: Stathmin 2-20 and peptides as sample quality indicators ª 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com SUPPORTING INFORMATION Supporting Information Table 1. Degraded protein identities and peptide sequences in the striatum after 1, 3, and 10 min post-mortem. UniProtKBa. Protein name Sequenceb Scorec P60710/P63260 Actin, cytoplasmic 1,2 A.LVVDNGSGMCK.A 56 E.MATAASSSSLEKS.Y 55 W.IGGSILASLSTFQQ.M 64 W.ISKQEYDESGPSIVHRK.C 93 M.WISKQEYDESGPSIVHRK.C 56 Q8K021 Secretory carrier-associated F.ATGVMSNKTVQTAAANAASTAATSAAQNAFKGNQM.- 124 membrane protein 1 Q9D164 FXYD domain-containing ion L.ITTNAAEPQK.A 58 transport regulator 6 precursor L.ITTNAAEPQKA.E 57 L.ITTNAAEPQKAE.N 89 L.ITTNAAEPQKAEN.- 54 P99029 Peroxiredoxin 5, mitochondrial M.APIKVGDAIPSVEVF.E 57 precursor P01942 Hemoglobin alpha subunit F.LASVSTVLTSKYR.- 106 M.FASFPTTKTYFPHF.D 72 L.ASHHPADFTPAVHASLDK.F 76 T.LASHHPADFTPAVHASLDK.F 59 L.LVTLASHHPADFTPAVHAS.L 56 L.LVTLASHHPADFTPAVHASLDK.F 71 L.LVTLASHHPADFTPAVHASLDKFLASVST.V 66 T.LASHHPADFTPAVHASLDKFLAS.V 55 L.VTLASHHPADFTPAVHASLDKFLAS.V 68 -.VLSGEDKSNIKAAWGKIGGHGAEYGAEALER.M 97 -.VLSGEDKSNIKAAWGKIGGHGAEYGAEALERM.F 58 P02088/P02089 Hemoglobin beta-1,2 subunit L.LVVYPWTQRY.F 53 L.LVVYPWTQRYF.D 52 Q00623 Apolipoprotein A-I precursor Y.VDAVKDSGRDYVSQFESSSLGQQLN.L
    [Show full text]
  • Nomenclatore Per L'anatomia Patologica Italiana Arrigo Bondi
    NAP Nomenclatore per l’Anatomia Patologica Italiana Versione 1.9 Arrigo Bondi Bologna, 2016 NAP v. 1.9, pag 2 Arrigo Bondi * NAP - Nomenclatore per l’Anatomia Patologica Italiana Versione 1.9 * Componente Direttivo Nazionale SIAPEC-IAP Società Italiana di Anatomia Patologica e Citodiagnostica International Academy of Pathology, Italian Division NAP – Depositato presso S.I.A.E. Registrazione n. 2012001925 Distribuito da Palermo, 1 Marzo 2016 NAP v. 1.9, pag 3 Sommario Le novità della versione 1.9 ............................................................................................................... 4 Cosa è cambiato rispetto alla versione 1.8 ........................................................................................... 4 I Nomenclatori della Medicina. ........................................................................................................ 5 ICD, SNOMED ed altri sistemi per la codifica delle diagnosi. ........................................................... 5 Codifica medica ........................................................................................................................... 5 Storia della codifica in medicina .................................................................................................. 5 Lo SNOMED ............................................................................................................................... 6 Un Nomenclatore per l’Anatomia Patologica Italiana ................................................................. 6 Il NAP .................................................................................................................................................
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9517090 Partial characterization and purification of steroidogenic factors in thymic epithelial cell culture-conditioned medium Uzumcu, Mehmet, Ph.D. The Ohio State University, 1994 UMI 300 N.
    [Show full text]