Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P. -
The Membrane Complement Regulatory Protein CD59 and Its Association with Rheumatoid Arthritis and Systemic Lupus Erythematosus
Current Medicine Research and Practice 9 (2019) 182e188 Contents lists available at ScienceDirect Current Medicine Research and Practice journal homepage: www.elsevier.com/locate/cmrp Review Article The membrane complement regulatory protein CD59 and its association with rheumatoid arthritis and systemic lupus erythematosus * Nibhriti Das a, Devyani Anand a, Bintili Biswas b, Deepa Kumari c, Monika Gandhi c, a Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India b Department of Zoology, Ramjas College, University of Delhi, India c University School of Biotechnology, Guru Gobind Singh Indraprastha University, India article info abstract Article history: The complement cascade consisting of about 50 soluble and cell surface proteins is activated in auto- Received 8 May 2019 immune inflammatory disorders. This contributes to the pathological manifestations in these diseases. In Accepted 30 July 2019 normal health, the soluble and membrane complement regulatory proteins protect the host against Available online 5 August 2019 complement-mediated self-tissue injury by controlling the extent of complement activation within the desired limits for the host's benefit. CD59 is a membrane complement regulatory protein that inhibits the Keywords: formation of the terminal complement complex or membrane attack complex (C5b6789n) which is CD59 generated on complement activation by any of the three pathways, namely, the classical, alternative, and RA SLE the mannose-binding lectin pathway. Animal experiments and human studies have suggested impor- Pathophysiology tance of membrane complement proteins including CD59 in the pathophysiology of rheumatoid arthritis Disease marker (RA) and systemic lupus erythematosus (SLE). Here is a brief review on CD59 and its distribution, structure, functions, and association with RA and SLE starting with a brief introduction on the com- plement system, its activation, the biological functions, and relations of membrane complement regu- latory proteins, especially CD59, with RA and SLE. -
Regulation of Procollagen Amino-Propeptide Processing During Mouse Embryogenesis by Specialization of Homologous ADAMTS Protease
DEVELOPMENT AND DISEASE RESEARCH ARTICLE 1587 Development 133, 1587-1596 (2006) doi:10.1242/dev.02308 Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis Carine Le Goff1, Robert P. T. Somerville1, Frederic Kesteloot2, Kimerly Powell1, David E. Birk3, Alain C. Colige2 and Suneel S. Apte1,* Mutations in ADAMTS2, a procollagen amino-propeptidase, cause severe skin fragility, designated as dermatosparaxis in animals, and a subtype of the Ehlers-Danlos syndrome (dermatosparactic type or VIIC) in humans. Not all collagen-rich tissues are affected to the same degree, which suggests compensation by the ADAMTS2 homologs ADAMTS3 and ADAMTS14. In situ hybridization of Adamts2, Adamts3 and Adamts14, and of the genes encoding the major fibrillar collagens, Col1a1, Col2a1 and Col3a1, during mouse embryogenesis, demonstrated distinct tissue-specific, overlapping expression patterns of the protease and substrate genes. Adamts3, but not Adamts2 or Adamts14, was co-expressed with Col2a1 in cartilage throughout development, and with Col1a1 in bone and musculotendinous tissues. ADAMTS3 induced procollagen I processing in dermatosparactic fibroblasts, suggesting a role in procollagen I processing during musculoskeletal development. Adamts2, but not Adamts3 or Adamts14, was co-expressed with Col3a1 in many tissues including the lungs and aorta, and Adamts2–/– mice showed widespread defects in procollagen III processing. Adamts2–/– mice had abnormal lungs, characterized by a decreased parenchymal density. However, the aorta and collagen fibrils in the aortic wall appeared normal. Although Adamts14 lacked developmental tissue-specific expression, it was co-expressed with Adamts2 in mature dermis, which possibly explains the presence of some processed skin procollagen in dermatosparaxis. -
Role of Proteases in Dysfunctional Placental Vascular Remodelling in Preeclampsia
Accepted Manuscript Role of proteases in dysfunctional placental vascular remodelling in preeclampsia Jaime A. Gutiérrez, Isabel Gómez, Delia I. Chiarello, Rocío Salsoso, Andrés D. Klein, Enrique Guzmán-Gutiérrez, Fernando Toledo, Luis Sobrevia PII: S0925-4439(19)30115-2 DOI: https://doi.org/10.1016/j.bbadis.2019.04.004 Reference: BBADIS 65448 To appear in: BBA - Molecular Basis of Disease Received date: 23 February 2018 Revised date: 20 December 2018 Accepted date: 6 January 2019 Please cite this article as: J.A. Gutiérrez, I. Gómez, D.I. Chiarello, et al., Role of proteases in dysfunctional placental vascular remodelling in preeclampsia, BBA - Molecular Basis of Disease, https://doi.org/10.1016/j.bbadis.2019.04.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Role of proteases in dysfunctional placental vascular remodelling in preeclampsia Jaime A. Gutiérrez1,7 *, Isabel Gómez1, Delia I Chiarello7, Rocío Salsoso5,7†, Andrés D Klein2, Enrique Guzmán-Gutiérrez3, Fernando Toledo4,7, Luis Sobrevia5,6,7 * 1 Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile. 2 Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7590943, Chile. -
More Than a Pore: Nonlytic Antimicrobial Functions of Downloaded from Complement and Bacterial Strategies for Evasion
REVIEW More than a Pore: Nonlytic Antimicrobial Functions of Downloaded from Complement and Bacterial Strategies for Evasion Elisabet Bjanes,a Victor Nizeta,b aDivision of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA bSkaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA http://mmbr.asm.org/ SUMMARY ........................................................................1 INTRODUCTION ...................................................................2 BY THE BOOK: CANONICAL COMPLEMENT CASCADES ...............................2 Off to the Races—Pathway Activation . 2 More and More—Amplification . 3 End of the Line—Termination . 3 Pump the Brakes—Inhibition . 5 Surviving MAC Attack—Evasion of Complement Lysis by Gram-Negative Bacteria . 6 NONLYTIC COMPLEMENT FUNCTIONS AND BACTERIAL EVASION MECHANISMS ......8 Special Considerations in Gram-Positive Bacteria . 8 on January 27, 2021 at UNIV OF CALIF SAN DIEGO Preparing the Meal—Complement Aids Opsonization and Phagocytosis . 8 Food for Thought—Complement Traffics to Autophagy . 10 Fueling the Fire—Complement Modulates Inflammatory Responses . 11 Casting a Wider NET—Complement and Neutrophil Synergy . 12 Inside Scoop—Novel Roles of Intracellular Complement . 13 Tying the Clot—Complement and Coagulation Cross Talk . 15 Bridging the Gap—Complement Instructs Adaptive Immunity . 17 REFRAMING SCIENTIFIC PARADIGMS AND THERAPEUTIC APPROACHES TO ENCOMPASS COMPLEMENT ..................................................18 -
Calpain-5 Gene Expression in the Mouse Eye and Brain
Schaefer et al. BMC Res Notes (2017) 10:602 DOI 10.1186/s13104-017-2927-8 BMC Research Notes RESEARCH NOTE Open Access Calpain‑5 gene expression in the mouse eye and brain Kellie Schaefer1, MaryAnn Mahajan1, Anuradha Gore1, Stephen H. Tsang3, Alexander G. Bassuk4 and Vinit B. Mahajan1,2* Abstract Objective: Our objective was to characterize CAPN5 gene expression in the mouse central nervous system. Mouse brain and eye sections were probed with two high-afnity RNA oligonucleotide analogs designed to bind CAPN5 RNA and one scramble, control oligonucleotide. Images were captured in brightfeld. Results: CAPN5 RNA probes were validated on mouse breast cancer tumor tissue. In the eye, CAPN5 was expressed in the ganglion cell, inner nuclear and outer nuclear layers of the retina. Signal could not be detected in the ciliary body or the iris because of the high density of melanin. In the brain, CAPN5 was expressed in the granule cell layers of the hippocampus and cerebellum. There was scattered expression in pons. The visual cortex showed faint signal. Most signal in the brain was in a punctate pattern. Keywords: CAPN5, Calpain, In situ hybridization, Retina, Brain, Gene expression Introduction pigmentosa, retinal neovascularization, and proliferative Calpain-5 (CAPN5) is a member of the calpain family of retinopathy. Which ultimately leads to blindness [20]. calcium-activated proteases that target a variety of path- Currently there is no treatment. ways to exert control over numerous processes, includ- An important question to understanding how CAPN5 ing tissue necrosis, cytoskeletal remodeling, cell-cycle leads to disease is identifying which tissues CAPN5 is control, cell migration, myofbril turnover, regulation expressed in and the levels of CAPN5 in those tissues. -
And MMP-Mediated Cell–Matrix Interactions in the Tumor Microenvironment
International Journal of Molecular Sciences Review Hold on or Cut? Integrin- and MMP-Mediated Cell–Matrix Interactions in the Tumor Microenvironment Stephan Niland and Johannes A. Eble * Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; [email protected] * Correspondence: [email protected] Abstract: The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs. Keywords: tumor microenvironment; extracellular matrix; integrins; matrix metalloproteinases; matrikines Citation: Niland, S.; Eble, J.A. Hold on or Cut? Integrin- and MMP-Mediated Cell–Matrix 1. Introduction Interactions in the Tumor Microenvironment. -
Human ADAM12 Quantikine ELISA
Quantikine® ELISA Human ADAM12 Immunoassay Catalog Number DAD120 For the quantitative determination of A Disintegrin And Metalloproteinase domain- containing protein 12 (ADAM12) concentrations in cell culture supernates, serum, plasma, and urine. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION .....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ...................................................................................................................................................2 LIMITATIONS OF THE PROCEDURE .................................................................................................................................2 TECHNICAL HINTS .................................................................................................................................................................2 MATERIALS PROVIDED & STORAGE CONDITIONS ...................................................................................................3 OTHER SUPPLIES REQUIRED .............................................................................................................................................3 PRECAUTIONS .........................................................................................................................................................................4 -
Crystal Structures of the Noncatalytic Domains of ADAMTS13 Reveal Multiple Discontinuous Exosites for Von Willebrand Factor
Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor Masashi Akiyamaa,1, Soichi Takedaa,1,2, Koichi Kokamea, Junichi Takagib, and Toshiyuki Miyataa,2 aNational Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan; and bLaboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan Edited by Philip W. Majerus, Washington University Medical School, St. Louis, MO, and approved September 16, 2009 (received for review August 27, 2009) ADAMTS13 specifically cleaves plasma von Willebrand factor (VWF) distribution of VWF multimers is important for normal hemo- and thereby controls VWF-mediated platelet thrombus formation. stasis, as large multimers are hemostatically more active than Severe deficiencies in ADAMTS13 can cause life-threatening throm- small multimers (3). Deficiencies in ADAMTS13 activity, caused botic thrombocytopenic purpura. Here, we determined 2 crystal either by genetic mutations in the ADAMTS13 gene or by structures of ADAMTS13-DTCS (residues 287–685), an exosite- acquired inhibitory autoantibodies directed against the AD- containing human ADAMTS13 fragment, at 2.6-Å and 2.8-Å reso- AMTS13 protein, results in the accumulation of UL-VWF in the lution. The structures revealed folding similarities between the plasma (8–11). The UL-VWF accumulation leads to the forma- disintegrin-like (D) domain and the N-terminal portion of the tion of disseminated platelet-rich microthrombi in the micro- cysteine-rich domain (designated the CA domain). The spacer (S) vasculature, which results in the life-threatening disease, throm- domain forms a globular functional unit with a 10-stranded botic thrombocytopenic purpura (TTP). -
Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions, ADYU J SCI, 10(2), 413-426
Aydogan Türkoğlu & Gültekin Tosun (2020) Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions, ADYU J SCI, 10(2), 413-426 Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions Sümeyye AYDOGAN TÜRKOĞLU1,*, Sinem GÜLTEKİN TOSUN2 1Balıkesir University, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balıkesir, Turkey [email protected], ORCID: 0000-0003-1754-0700 2Erciyes University, Institute of Health Sciences, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey [email protected], ORCID: 0000-0002-3927-0089 Received: 03.05.2020 Accepted: 25.09.2020 Published: 30.12.2020 Abstract ADAMTS2 (a disintegrin and metalloproteinase with thrombospondin motifs 2), an N- propeptidase isoenzyme, is an enzyme involved in collagen biosynthesis by providing the amino ends of procollagen to be cut away. ADAMTS2 has anti-angiogenic activity as well as provides the processing of collagen. With this activity, it has become a target in cancer studies. Hypoxic regulation is a process that affects the expression of a large number of genes at the cellular level. Within the scope of our study, the cloning of the ADAMTS2 gene and its expression in Saos-2 (human bone carcinoma) cell line were performed ectopically. For this purpose, the transient transfection of the expression vector containing ADAMTS2 coding sequence was transfected by the calcium-phosphate precipitation method. Recombinant ADAMTS2 mRNA expression was checked by Real-Time PCR in Saos-2 cells. It was observed that there was a 50-fold increase in ADAMTS2 mRNA expression in the transfected Saos-2 cells compared to the control group. -
Original Article Association Between the ADAMT33 Variant and Carotid Artery Intima-Media Thickness in the Chinese Han Population
Int J Clin Exp Med 2019;12(1):1269-1275 www.ijcem.com /ISSN:1940-5901/IJCEM0073744 Original Article Association between the ADAMT33 variant and carotid artery intima-media thickness in the Chinese Han population Xiaolin Zhang, Liwen Liu, Ruoxi Gu, Xiaozeng Wang Cardiovascular Research Institute and Department of Cardiology, The General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, Liaoning Province, China Received January 31, 2018; Accepted October 8, 2018; Epub January 15, 2019; Published January 30, 2019 Abstract: Background: The ADAM33 with a disintegrin domain and a metalloprotease domain attaches an important role in regulating smooth vascular cell migration and proteolysis. In the present study, we investigated the associa- tion between ADAM33 variants and carotid artery intima-media thickness (CIMT) in the Chinese Han population. Methods: In a community population (n=620), CIMT was determined using the ultrasound to detect the carotid artery intima-media thickness. We screened the ADAM33 variations using PCR-direct sequencing method and in- vestigated the relationship between ADAM33 variations and CIMT in Chinese Northern Han population. Results: The ADAM33 expression was increased in the atherosclerotic carotid artery from CIMT patients compared with the normal subjects by the immunohistochemical staining. Furthermore, ADAM33 rs514174 was closely related to the increased risk of CIMT patients (OR=1.43, 95% CI: 1.08-1.89, P≤0.05). In addition, the rs514174 TT genotype of ADAM33 was significantly associated with the increased ADAM33 mRNA expression in patients with CIMT (P<0.05). Conclusion: Our study provides the further support for the ADAM33 rs514174 variant as a direct risk factor for CIMT. -
ADAMTS Proteases in Vascular Biology
Review MATBIO-1141; No. of pages: 8; 4C: 3, 6 ADAMTS proteases in vascular biology Juan Carlos Rodríguez-Manzaneque 1, Rubén Fernández-Rodríguez 1, Francisco Javier Rodríguez-Baena 1 and M. Luisa Iruela-Arispe 2 1 - GENYO, Centre for Genomics and Oncological Research, Pfizer, Universidad de Granada, Junta de Andalucía, 18016 Granada, Spain 2 - Department of Molecular, Cell, and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA Correspondence to Juan Carlos Rodríguez-Manzaneque and M. Luisa Iruela-Arispe: J.C Rodríguez-Manzaneque is to be contacted at: GENYO, 15 PTS Granada - Avda. de la Ilustración 114, Granada 18016, Spain; M.L. Iruela-Arispe, Department of Molecular, Cell and Developmental Biology, UCLA, 615 Charles Young Drive East, Los Angeles, CA 90095, USA. [email protected]; [email protected] http://dx.doi.org/10.1016/j.matbio.2015.02.004 Edited by W.C. Parks and S. Apte Abstract ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) proteases comprise the most recently discovered branch of the extracellular metalloenzymes. Research during the last 15 years, uncovered their association with a variety of physiological and pathological processes including blood coagulation, tissue repair, fertility, arthritis and cancer. Importantly, a frequent feature of ADAMTS enzymes relates to their effects on vascular-related phenomena, including angiogenesis. Their specific roles in vascular biology have been clarified by information on their expression profiles and substrate specificity. Through their catalytic activity, ADAMTS proteases modify rather than degrade extracellular proteins. They predominantly target proteoglycans and glycoproteins abundant in the basement membrane, therefore their broad contributions to the vasculature should not come as a surprise.