A Genetically Modified Dermal Micro-Organ Expressing Erythropoietin

Total Page:16

File Type:pdf, Size:1020Kb

A Genetically Modified Dermal Micro-Organ Expressing Erythropoietin (19) & (11) EP 2 377 401 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 19.10.2011 Bulletin 2011/42 A01N 63/00 (2006.01) A01N 65/00 (2009.01) C12N 5/00 (2006.01) C12N 5/02 (2006.01) (2010.01) (21) Application number: 11174205.2 C12N 5/071 (22) Date of filing: 29.04.2004 (84) Designated Contracting States: • Bukhman, Mordechay AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 21891 Carmiel (IL) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Stern, Baruch, S. Designated Extension States: 34366 Haifa (IL) AL HR LT LV MK • Shalhevet, David 36090 Kiryat Tivon (IL) (30) Priority: 01.05.2003 US 466793 P • Shavitt, Menachem, D. 06.08.2003 US 492754 P 20142 D.N. Misgav (IL) • Pearlman, Andrew, L. (62) Document number(s) of the earlier application(s) in 20164 D.N. Miscav (IL) accordance with Art. 76 EPC: • Noam, Shani 04760621.5 / 1 653 807 30900 Zichron Yaakov (IL) • Almon, Einat (71) Applicant: Medgenics, Inc. 23840 Timrat (IL) Palo Alto, CA 94303 (US) (74) Representative: Modiano, Micaela Nadia (72) Inventors: Modiano & Partners • Bellomo, Stephen, F. Thierschstrasse 11 30900 Zichron Yaakov (IL) 80538 München (DE) • Lippin, Itzhak 42920 Moshav Beit Yitzhak (IL) Remarks: • Piva, Guillermo, Alberto This application was filed on 15-07-2011 as a Winston Salem, NC North Carolina 27104 (US) divisional application to the application mentioned • Rosenberg, Lior under INID code 62. 84965 Omer (IL) (54) A genetically modified dermal micro-organ expressing erythropoietin (57) The present invention is directed to a genetically cro-organ and diffusion of cellular waste out of said cells modified dermal micro-organ expressing at least one re- so as to minimize cellular toxicity and concomitant death combinant gene product, wherein said dermal micro-or- due to insufficient nutrition and accumulation of waste in gan consists essentially of a plurality of dermal compo- said dermal micro organ, wherein at least some of said nents and does not include epidermal layers, which main- cells of said genetically modified dermal micro-organ ex- tains the micro- architecture and three dimensional struc- press at least a portion of at least one recombinant gene ture of the dermal tissue from which it is derived, having product, wherein said recombinant gene product is eryth- dimensions selected so as to enable passive diffusion of ropoietin. adequate nutrients and gases to cells of said dermal mi- EP 2 377 401 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 377 401 A1 2 Description augmentation procedures. To operate this device, which is not commonly used, a sharpened cutting tube, which FIELD OF THE INVENTION includes a reusable thick walled tube with an inner diam- eter of approximately 4.5 mm, is manually rotated at a [0001] The invention relates to the field of tissue based 5 very slow speed. Using this type of device generally re- micro organs, therapeutic tissue based micro organs and quires applying pressure to the skin surface directly methods and apparatuses for harvesting, processing, im- above the harvest site and installing sutures with active planting and manipulating dermal tissue. tugging as the cutting tube is pushed forward. Further- more, the resulting harvested dermis is generally not uni- BACKGROUND OF THE INVENTION 10 form in dimensions and includes "plugs" of epidermis at either end of the dermal core. [0002] Various methods for delivering therapeutic agents are known. For example, therapeutic agents can SUMMARY OF THE INVENTION be delivered orally, transdermally, by inhalation, by in- jection and by depot with slow release. In each of these 15 [0007] Embodiments of some aspects of the present cases the method of delivery is limited by the body proc- invention provide a DMO/DTMO with the ability to be esses that the agent is subjected to, by the requirement maintained ex-vivo in a generally viable state, which may for frequent administration, and limitations on the size of allow various manipulations to be performedon the DMO, molecules that can be utilized. For some of the methods, while keeping a high production and secretion level of the amount of therapeutic agent varies between admin- 20 the desired therapeutic agent. In addition, embodiments istrations. of some aspects of the present invention provide a meth- [0003] A dermal micro organ (DMO), which can be sus- od of harvesting a DMO and subsequently implanting a tained outside the body ("ex-vivo" or "in-vitro") in an au- DTMO without forming keratin cysts or keratin micro- tonomously functional state for an extended periods of cysts, e.g., upon implantation of the DTMO subcutane- time, and to which various manipulations can be applied, 25 ously or deeper in the body. Furthermore, it will be ap- may then be implanted subcutaneously or within the body preciated by persons skilled in the art that the methods for the purpose of treating diseases, or disorders, or for and devices according to some embodiments of the plastic surgical purposes. The DMO can be modified to present invention may be relatively uncomplicated and, express a gene product of interest. These modified der- therefore, the level of skill required from a professional mal micro organs are generally referred to as Dermal 30 to carry out the methods and/or to use the devices of the Therapeutic Micro Organs (DTMOs). present invention may not be as demanding as those [0004] Skin micro organs, including layers of epider- required in conventional procedures. mal and dermal tissues, for example; as outlined in [0008] Some exemplary embodiments of the invention PCT/IL02/0880, have been observed to be associated provide a dermal micro organ (DMO) having a plurality with a number of clinical challenges. Harvesting of a skin 35 of dermal components, which may include cells of the sample leaves a superficial wound on the patient that dermal tissue and a surrounding matrix. The DMO ac- may last several weeks and may leave scars. The har- cording to embodiments of the invention may generally vested skin sample requires significant processing to retain a micro-architecture and three dimensional struc- generate micro organs from this sample. Also, implanta- ture of the dermal organ from which it is obtained and tion of skin micro organs subcutaneously or deeper in 40 the dimensions of the DMO may allow passive diffusion the body have been found to result in the development of adequate nutrients and gases to the cells and diffusion of keratin cysts or keratin micro-cysts. Additionally, im- of cellular waste out of the cells so as to minimize cellular plantation of skin micro organs as a graft onto the skin toxicity and concomitant death-due to insufficient nutri- surface in "slits" requires significant technical expertise tion and accumulation of waste. in order to handle the MO while maintaining its proper 45 [0009] In some exemplary embodiments of the inven- orientation. tion, the dermal micro organ of the invention does not [0005] Harvesting of dermis, e.g., to be used as a "filler produce keratin or produces negligible amounts of ker- material" in a plastic surgical or cosmetic procedure, is atin. known in the art. Conventional harvesting techniques in- [0010] In some embodiments of the invention, the der- clude using a dermatome or scalpel to peel away a layer 50 mal micro organ does not produce keratin and/or keratin of epidermis in order to expose a section of dermis. The cysts following subcutaneous or deeper implantation in dermatome or scalpel may then be used again to man- a body. ually harvest the exposed section of dermis. [0011] Inanother embodimentof the invention, the der- [0006] Another conventional apparatus for harvesting mal micro organ of the invention produces micro keratin dermis, albeit not commonly used, is the Martin Dermal 55 cysts following that will atrophy within a relatively short Harvester marketed by Padgett (Part No. P-225) for the period of time, e.g., days or weeks after subcutaneous indication of harvesting dermal cores from the back for implantation. subsequent implantation into the lips during cosmetic lip [0012] Inanother embodimentof the invention, the der- 2 3 EP 2 377 401 A1 4 mal micro organ of the invention contains hair follicles netically modified dermal micro organ of the invention and sebaceous glands, which will atrophy after a short produces substantially no keratin. period of time, e.g., days or weeks. [0018] In some embodiments, the invention provides [0013] Inanother embodiment of the invention, the der- a method of delivering to a recipient a recombinant gene mal micro organ of the invention contains glands that will 5 product produced by the dermal micro organ. connect to the skin surface after a short period of time, [0019] In some embodiments, the invention provides e,g., days or weeks. a method of inducing a local or systemic physiological [0014] Further exemplary embodiments of the inven- effect by implanting a dermal micro organ in a recipient. tion provide a method and apparatus of harvesting a der- [0020] In another embodiment the invention provides mal micro organ. The method may include stabilizing 10 a method of delivering a protein of interest to a subject. and/or supporting a skin-related tissue structure from The method includes implanting the genetically modified which a dermal micro organ is to be harvested, e.g., such dermal micro organ into the skin, under the skin or at that the skin-related tissue structure is maintained at a other locations in the body. desired shape and/or position, separating at least a por- [0021] In another embodiment, the invention provides tion of the dermal micro organ from the skin- related tissue 15 a method of implanting a dermal micro organ so as to structure, and isolating the separated dermal micro organ avoid or to reduce keratin cyst formation.
Recommended publications
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Physiology G Endocrine
    2/28/18 Introduction • Endocrine system works with nervous system to coordinate body functions - Nervous system uses impulses and Endocrine System neurotransmitters - Endocrine system uses hormones • Many cells have receptors for both Chapter 24 neurotransmitters and hormones and can be regulated by both chemicals Copyright © 2016 by Elsevier Inc. All rights reserved. 1 Copyright © 2016 by Elsevier Inc. All rights reserved. 2 Comparing Endocrine and Introduction Nervous System Functions • Exocrine glands: Secrete products into ducts that open into body cavities - Sudoriferous: Secrete sweat - Sebaceous: Secrete oil - Ceruminous: Secrete ear wax • Endocrine glands - Secrete hormones directly into bloodstream - Ductless glands Copyright © 2016 by Elsevier Inc. All rights reserved. 3 Copyright © 2016 by Elsevier Inc. All rights reserved. 4 Major Endocrine Glands Anatomy • Hypothalamus • Pituitary • Pineal • Thyroid • Parathyroids • Adrenals • Pancreatic islets • Ovaries • Testes • Hormones From Koeppen BM: Berne & Levy Physiology, Updated Edition, ed 6, St. Louis, 2010, Mosby. Copyright © 2016 by Elsevier Inc. All rights reserved. 5 Copyright © 2016 by Elsevier Inc. All rights reserved. 6 1 2/28/18 Physiology Hormones and Regulation • Hormone production and secretion • Chemical messengers that regulate the • Regulation of metabolism physiologic activity of other cells • Stress adaptation • Have potential to come in contact with every • Chemical composition and fluid volume cell type regulation - Target cells are chemically compatible with
    [Show full text]
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.
    [Show full text]
  • Endocrine System
    Chapter 17 *Lecture PowerPoint The Endocrine System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • In humans, two systems—the nervous and endocrine—communicate with neurotransmitters and hormones • This chapter is about the endocrine system – Chemical identity – How they are made and transported – How they produce effects on their target cells • The endocrine system is involved in adaptation to stress • There are many pathologies that result from endocrine dysfunctions 17-2 Overview of the Endocrine System • Expected Learning Outcomes – Define hormone and endocrine system. – Name several organs of the endocrine system. – Contrast endocrine with exocrine glands. – Recognize the standard abbreviations for many hormones. – Compare and contrast the nervous and endocrine systems. 17-3 Overview of the Endocrine System • The body has four principal mechanisms of communication between cells – Gap junctions • Pores in cell membrane allow signaling molecules, nutrients, and electrolytes to move from cell to cell – Neurotransmitters • Released from neurons to travel across synaptic cleft to second cell – Paracrine (local) hormones • Secreted into tissue fluids to affect nearby cells – Hormones • Chemical messengers that travel in the bloodstream to other tissues and organs 17-4 Overview of the Endocrine System • Endocrine system—glands, tissues, and cells that secrete hormones
    [Show full text]
  • Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are
    cells Article Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling Valérie Haydont 1,*, Véronique Neiveyans 1, Philippe Perez 1, Élodie Busson 2, 2 1, 3,4,5,6, , Jean-Jacques Lataillade , Daniel Asselineau y and Nicolas O. Fortunel y * 1 Advanced Research, L’Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France; [email protected] (V.N.); [email protected] (P.P.); [email protected] (D.A.) 2 Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), 91223 CEDEX Brétigny sur Orge, France; [email protected] (É.B.); [email protected] (J.-J.L.) 3 Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France 4 INSERM U967, 92260 Fontenay-aux-Roses, France 5 Université Paris-Diderot, 75013 Paris 7, France 6 Université Paris-Saclay, 78140 Paris 11, France * Correspondence: [email protected] (V.H.); [email protected] (N.O.F.); Tel.: +33-1-48-68-96-00 (V.H.); +33-1-60-87-34-92 or +33-1-60-87-34-98 (N.O.F.) These authors contributed equally to the work. y Received: 15 December 2019; Accepted: 24 January 2020; Published: 5 February 2020 Abstract: Human skin dermis contains fibroblast subpopulations in which characterization is crucial due to their roles in extracellular matrix (ECM) biology.
    [Show full text]
  • Downloaded at Google Indexer on July 22, 2021
    Downloaded by guest on October 1, 2021 Proc. Nati. Acad. Sci. USA Vol. 88, pp. 2603-2607, March 1991 Neurobiology Evidence for thymopoietin and thymopoietin/a-bungarotoxin/ nicotinic receptors within the brain M. QUIK*t, U. BABUf, T. AUDHYA*, AND G. GOLDSTEINt *Department of Pharmacology, McGill University, McIntyre Medical Building, 3655 Drummond Street, Montreal, Quebec H3G 1Y6, Canada; and timmunobiology Research Institute, Route 22 East, P.O. Box 999, Annandale, NJ 08801-0999 Communicated by Edward A. Boyse, December 20, 1990 ABSTRACT Thymopoietin, a polypeptide hormone of the These observations suggested that thymopoietin may repre- thymus that has pleiotropic actions on the immune, endocrine, sent an endogenous ligand for the nicotinic a-BGT-binding and nervous systems, potently interacts with the neuromuscu- site in brain; however, the identification of receptor-specific lar nicotinic acetylcholine receptor. Thymopoietin binds to the binding of radiolabeled thymopoietin to a site in brain that nicotinic a-bungarotoxin (a-BGT) receptor in muscle and, like also recognized a-BGT and nicotinic ligands would substan- a-BGT, inhibits cholinergic transmission at this site. Evidence tially support the above hypothesis. The present studies show is given that radiolabeled thymopoietin similarly binds to a that in brain 125I-thymopoietin binds in a specific manner to nicotinic a-BGT-binding site within the brain and does so with a receptor site that also interacts with nicotinic ligands and the characteristics of a specific receptor ligand. Thus specific a-BGT and, furthermore, that a constituent in brain extracts binding to neuronal membranes was saturable, of high affinity has the immunological reactivity and molecular mass of (Kd = 8 nM), linear with increased tissue concentration, and thymopoietin.
    [Show full text]
  • The Role of Lamin Associated Domains in Global Chromatin Organization and Nuclear Architecture
    THE ROLE OF LAMIN ASSOCIATED DOMAINS IN GLOBAL CHROMATIN ORGANIZATION AND NUCLEAR ARCHITECTURE By Teresa Romeo Luperchio A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2016 © 2016 Teresa Romeo Luperchio All Rights Reserved ABSTRACT Nuclear structure and scaffolding have been implicated in expression and regulation of the genome (Elcock and Bridger 2010; Fedorova and Zink 2008; Ferrai et al. 2010; Li and Reinberg 2011; Austin and Bellini 2010). Discrete domains of chromatin exist within the nuclear volume, and are suggested to be organized by patterns of gene activity (Zhao, Bodnar, and Spector 2009). The nuclear periphery, which consists of the inner nuclear membrane and associated proteins, forms a sub- nuclear compartment that is mostly associated with transcriptionally repressed chromatin and low gene expression (Guelen et al. 2008). Previous studies from our lab and others have shown that repositioning genes to the nuclear periphery is sufficient to induce transcriptional repression (K L Reddy et al. 2008; Finlan et al. 2008). In addition, a number of studies have provided evidence that many tissue types, including muscle, brain and blood, use the nuclear periphery as a compartment during development to regulate expression of lineage specific genes (Meister et al. 2010; Szczerbal, Foster, and Bridger 2009; Yao et al. 2011; Kosak et al. 2002; Peric-Hupkes et al. 2010). These large regions of chromatin that come in molecular contact with the nuclear periphery are called Lamin Associated Domains (LADs). The studies described in this dissertation have furthered our understanding of maintenance and establishment of LADs as well as the relationship of LADs with the epigenome and other factors that influence three-dimensional chromatin structure.
    [Show full text]
  • Immune Cells in Spleen and Mucosa + CD127 Neg Production of IL-17 and IL-22 by CD3 TLR5 Signaling Stimulates the Innate
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 neg is online at: average * The Journal of Immunology , 23 of which you can access for free at: 2010; 185:1177-1185; Prepublished online 21 Immune Cells in Spleen and Mucosa from submission to initial decision + 4 weeks from acceptance to publication TLR5 Signaling Stimulates the Innate Production of IL-17 and IL-22 by CD3 CD127 Laurye Van Maele, Christophe Carnoy, Delphine Cayet, Pascal Songhet, Laure Dumoutier, Isabel Ferrero, Laure Janot, François Erard, Julie Bertout, Hélène Leger, Florent Sebbane, Arndt Benecke, Jean-Christophe Renauld, Wolf-Dietrich Hardt, Bernhard Ryffel and Jean-Claude Sirard June 2010; doi: 10.4049/jimmunol.1000115 http://www.jimmunol.org/content/185/2/1177 J Immunol cites 51 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/185/2/1177.full#ref-list-1 http://www.jimmunol.org/content/suppl/2010/06/21/jimmunol.100011 5.DC1 This article Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • P75 Neurotrophin Receptor Expression Is a Characteristic of the Mitotically Quiescent Cancer Stem Cell Population Present in Esophageal Squamous Cell Carcinoma
    INTERNATIONAL JOURNAL OF ONCOLOGY 48: 1943-1954, 2016 p75 neurotrophin receptor expression is a characteristic of the mitotically quiescent cancer stem cell population present in esophageal squamous cell carcinoma TETSUJI YAMAGUCHI1, TOMOYUKI OKUMURA1, Katsuhisa HIRANO1, TORU Watanabe1, Takuya Nagata1, Yutaka SHIMADA2 and KAZUHIRO TSUKADA1 1Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194; 2Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan Received December 8, 2015; Accepted January 11, 2016 DOI: 10.3892/ijo.2016.3432 Abstract. Mitotically quiescent cancer stem cells (CSC) are identified and isolated based on their p75NTR expression, hypothesized to exhibit a more aggressive phenotype involving providing researchers with a novel diagnostic and therapeutic greater therapeutic resistance and metastasis. The aim of our target. study was to develop a method for identifying quiescent CSC in esophageal squamous cell carcinoma (ESCC) based on Introduction their expression of the p75 neurotrophin receptor (p75NTR) and other proposed CSC markers, such as CD44 and CD90. Recent studies have demonstrated that some cancer stem Double immunostaining of surgical ESCC specimens cells (CSC) remain in a mitotically quiescent state, which revealed that the mean Ki-67-labeling index of the p75NTR- enhances their chemoresistance and results in a more inva- positive cells was significantly lower than that of the sive and aggressive phenotype (1,2). The p75 neurotrophin p75NTR-negative cells. Real-time PCR analysis of sorted receptor (p75NTR) is expressed in the quiescent basal layer of fractions of ESCC cell lines (KYSE cells) revealed that stem the esophageal epithelium (3,4), and in esophageal squamous cell-related genes (Nanog, p63 and Bmi-1) and epithelial- cell carcinoma (ESCC).
    [Show full text]
  • Immune Response of Hepatitis B Vaccine Among Persons with Diabetes a Systematic Review of the Literature
    SYSTEMATIC REVIEW Immune Response of Hepatitis B Vaccine Among Persons With Diabetes A systematic review of the literature 1 SARAH F. SCHILLIE, MD among persons with diabetes show some 2 PHILIP R. SPRADLING, MD 1 heterogeneity compared with adults without TRUDY V. MURPHY, MD diabetes. Differences in diabetes type, man- agement, and glycemic control, as well as vaccine, dosage, administration route, or schedule, may underlie this heterogeneity. n October 2011, the Advisory Com- and other comorbid conditions (6–12). The 2011 ACIP recommendation for hepa- Imittee on Immunization Practices Results of studies of the hepatitis B vac- titis B vaccination for adults with diabetes, an (ACIP) recommended hepatitis B vac- cine among persons with diabetes gener- increasing incidence of diabetes, and the cination for adults with diabetes in the ally follow these patterns (13,14). high prevalence of diabetes among certain United States (1). Serosurvey data from Primary hepatitis B vaccination usu- groups recommended for hepatitis B vacci- the 1999–2010 National Health and Nu- ally consists of 3 (or 4) doses of 10 or nation (e.g., persons with end-stage renal trition Examination Survey found that 20 mg of recombinant hepatitis B surface disease) suggests that a review of vaccine ef- noninstitutionalized adults aged $18 antigen (HBsAg) protein administered in- ficacy among persons with diabetes may be years with diabetes have an increased se- tramuscularly into the deltoid muscle timely. We therefore performed a systematic roprevalence of past or current hepatitis B on a 0-, 1-, and 6-month schedule review of the literatureandsummarizedthe virus (HBV) infection (1).
    [Show full text]
  • Breast Cancer Disparities How Can We Leverage Genomics to Improve Outcomes?
    Breast Cancer Disparities How Can We Leverage Genomics to Improve Outcomes? a b, Melissa B. Davis, PhD , Lisa A. Newman, MD, MPH * KEYWORDS Disparities Genetics Genomics African ancestry KEY POINTS Advances in breast cancer genomics will provide important insights regarding explanations for variations in incidence, as well as disparate outcomes, between African American and white American breast cancer patients. Germline genomics are essential in genetic counseling and risk assessment programs; somatic or tumor-based genomics will be critical in defining prognostic and therapeutic algorithms. It is imperative that the oncology community be prepared to apply these technologies equitably to diverse patient populations. BACKGROUND Disparities in breast cancer risk and outcome related to racial-ethnic identity in the United States have been documented by population-based statistics from the Surveil- lance, Epidemiology, and End Results (SEER) Program over the past several decades. These patterns are further supported by data from a variety of health care systems and oncology programs. Variations in the breast cancer burden of African Americans (AA) women compared with white American (WA) women have been the subject of rigorous study1 because of the magnitude of the observed differences and are the focus of this article. Table 1 summarizes these divergent patterns. Breast cancer mortality rates are higher for AA compared with WA women, and this is at least partly explained by a more advanced stage distribution, with AA women being diagnosed more frequently with larger, node-positive disease. Breast cancer incidence Disclosure: This work was partially supported by Susan G. Komen for the Cure through Komen Scholars Leadership Grant HFHS F11047 (LAN).
    [Show full text]