Endocrine System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mahvash Disease
a ular nd G ec en l e o t i M c f M o l e Journal of Molecular and Genetic d a i Lucas et al., J Mol Genet Med 2013, 7:4 n c r i n u e o DOI: 10.4172/1747-0862.1000084 J Medicine ISSN: 1747-0862 ReviewResearch Article Article OpenOpen Access Access Mahvash Disease: Pancreatic Neuroendocrine Tumor Syndrome Caused by Inactivating Glucagon Receptor Mutation Matthew B Lucas1, Victoria E Yu1 and Run Yu2* 1Harvard-Westlake School, Los Angeles, California, USA 2Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, California, USA Abstract Mahvash disease is a novel pancreatic neuroendocrine tumor syndrome caused by inactivating glucagon receptor mutations. Its discovery was triggered by comparison of a patient with pancreatic neuroendocrine tumors, pancreatic α cell hyperplasia, extreme hyperglucagonemia but without glucagonoma syndrome, and occasional hypoglycemia, with the glucagon receptor knockout mice which exhibit similar phenotype and ultimately prove to be a model of Mahvash disease. So far 6 cases have been reported. The inheritance, prevalence, pathogenesis, natural history, diagnosis, treatment, and long-term follow-up of Mahvash disease are discussed in this article. Although rare, Mahvash disease provides important insights into the pathogenesis of pancreatic neuroendocrine tumors, pancreatic α cell fate regulation by glucagon signaling, and safety of glucagon signaling inhibition for diabetes treatment. Keywords: Mahvash disease; Pancreatic neuroendocrine tumor; tumor. She was tentatively diagnosed with probable glucagonoma and Pancreatic α cell hyperplasia; Hyperglucagonemia; Glucagon receptor; underwent pylorus-sparing pancreaticoduodenectomy to remove this Mutation tumor. Glucagon levels, however, remained elevated postoperatively [6]. Introduction The histological examination of the resected surgical specimen Human tumor syndromes are usually caused by inherited or de revealed unexpected results. -
A Genetically Modified Dermal Micro-Organ Expressing Erythropoietin
(19) & (11) EP 2 377 401 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 19.10.2011 Bulletin 2011/42 A01N 63/00 (2006.01) A01N 65/00 (2009.01) C12N 5/00 (2006.01) C12N 5/02 (2006.01) (2010.01) (21) Application number: 11174205.2 C12N 5/071 (22) Date of filing: 29.04.2004 (84) Designated Contracting States: • Bukhman, Mordechay AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 21891 Carmiel (IL) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Stern, Baruch, S. Designated Extension States: 34366 Haifa (IL) AL HR LT LV MK • Shalhevet, David 36090 Kiryat Tivon (IL) (30) Priority: 01.05.2003 US 466793 P • Shavitt, Menachem, D. 06.08.2003 US 492754 P 20142 D.N. Misgav (IL) • Pearlman, Andrew, L. (62) Document number(s) of the earlier application(s) in 20164 D.N. Miscav (IL) accordance with Art. 76 EPC: • Noam, Shani 04760621.5 / 1 653 807 30900 Zichron Yaakov (IL) • Almon, Einat (71) Applicant: Medgenics, Inc. 23840 Timrat (IL) Palo Alto, CA 94303 (US) (74) Representative: Modiano, Micaela Nadia (72) Inventors: Modiano & Partners • Bellomo, Stephen, F. Thierschstrasse 11 30900 Zichron Yaakov (IL) 80538 München (DE) • Lippin, Itzhak 42920 Moshav Beit Yitzhak (IL) Remarks: • Piva, Guillermo, Alberto This application was filed on 15-07-2011 as a Winston Salem, NC North Carolina 27104 (US) divisional application to the application mentioned • Rosenberg, Lior under INID code 62. 84965 Omer (IL) (54) A genetically modified dermal micro-organ expressing erythropoietin (57) The present invention is directed to a genetically cro-organ -
(12) United States Patent (10) Patent No.: US 7,256.253 B2 Bridon Et Al
US00725.6253B2 (12) United States Patent (10) Patent No.: US 7,256.253 B2 Bridon et al. (45) Date of Patent: Aug. 14, 2007 (54) PROTECTION OF ENDOGENOUS 6,500,918 B2 12/2002 Ezrin et al. THERAPEUTIC PEPTIDES FROM 6,514,500 B1 2/2003 Bridon et al. PEPTIDASE ACTIVITY THROUGH 6,593,295 B2 7/2003 Bridon et al. CONUGATION TO BLOOD COMPONENTS 6,602,981 B2 8/2003 Ezrin et al. 6,610,825 B2 8, 2003 Ezrin et al. (75)75 Inventors: Dominique P. Bridon, San Francisco, 6,706,892 B1 3/2004 Ezrin et al. CA (US); Alan M. Ezrin, Moraga, CA (US); Peter G. Milner, Los Altos, CA 6,849,714 B1 2/2005 Bridon et al. (US); Darren L. Holmes, Anaheim, CA 2002fOO18751 A1 2/2002 Bridon et al. (US); Karen Thibaudeau, Rosemere 2003, OO73630 A1 4/2003 Bridon et al. (CA) 2003/O105867 A1 6/2003 Colrain et al. 2003. O108568 A1 6/2003 Bridon et al. (73) Assignee: Conjuchem Biotechnologies Inc., 2003/0170250 A1 9, 2003 EZrin et al. Montreal (CA) 2004/O127398 A1 7, 2004 Bridon et al. (*) Notice: Subject to any disclaimer, the term of this 2004/O138100 A1 7/2004 Bridon et al. patent is extended or adjusted under 35 2004/O156859 A1 8, 2004 Ezrin et al. U.S.C. 154(b) by 0 days. 2004/0248782 A1 12/2004 Bridon et al. 2004/0266673 Al 12/2004 Bakis et al. (21) Appl. No.: 11/066,697 2005, 0037974 A1 2/2005 Krantz et al. 2005, OO65075 A1 3, 2005 Erickson et al. -
Insulin Sensitivity and ß-Cell Function in Women with Polycystic Ovary
Pathophysiology/Complications ORIGINAL ARTICLE Insulin Sensitivity and -Cell Function in Women With Polycystic Ovary Syndrome JANA VRB´IKOVA´, MD MARKETA´ VANKOVA´, MS found defective insulin secretion (9–11), BELA BENDLOVA´, PHD KAREL VONDRA, MD whereas others have described an in- MARTIN HILL, PHD LUBOSLAV STARKA´ , MD, DSC crease of insulin secretion (12,13). In the present study, IS and -cell function (F) in lean (BMI Ͻ27 kg/m2) and obese (BMI Ն27 kg/m2) women with PCOS were studied using oral glucose tol-   OBJECTIVE — To evaluate insulin sensitivity (IS) and -cell function ( F) in lean and obese erance tests (OGTTs) and insulin toler- women with polycystic ovary syndrome (PCOS), either separately or by using a disposition index ance tests (ITTs) as methods available in (DI). daily practice. The authors have tried to evaluate PCOS women in terms of IS RESEARCH DESIGN AND METHODS — A total of 64 women with PCOS and 20 and/or F either separately or by the tool healthy women were examined by anthropometry, oral glucose tolerance tests (OGTTs), and insulin tolerance tests. Statistical analysis used one-way ANOVA, Kruskal-Wallis, and Mann- of disposition index (DI), which could be Whitney U tests, as appropriate. more informative than isolated evalua- tions of IS and F. RESULTS — A significantly higher waist-to-hip ratio (P Ͻ 0.0001) was found in both lean and obese women with PCOS. Higher basal blood glucose (P Ͻ 0.004) and blood glucose values at RESEARCH DESIGN AND 3 h of OGTT (P Ͻ 0.008) were found in lean and obese PCOS subjects in comparison with METHODS — In all, 64 women with control subjects. -
Endocrine Cell Type Sorting and Mature Architecture in the Islets Of
www.nature.com/scientificreports OPEN Endocrine cell type sorting and mature architecture in the islets of Langerhans require expression of Received: 16 April 2018 Accepted: 4 July 2018 Roundabout receptors in β cells Published: xx xx xxxx Melissa T. Adams, Jennifer M. Gilbert, Jesus Hinojosa Paiz, Faith M. Bowman & Barak Blum Pancreatic islets of Langerhans display characteristic spatial architecture of their endocrine cell types. This architecture is critical for cell-cell communication and coordinated hormone secretion. Islet architecture is disrupted in type-2 diabetes. Moreover, the generation of architecturally correct islets in vitro remains a challenge in regenerative approaches to type-1 diabetes. Although the characteristic islet architecture is well documented, the mechanisms controlling its formation remain obscure. Here, we report that correct endocrine cell type sorting and the formation of mature islet architecture require the expression of Roundabout (Robo) receptors in β cells. Mice with whole-body deletion of Robo1 and conditional deletion of Robo2 either in all endocrine cells or selectively in β cells show complete loss of endocrine cell type sorting, highlighting the importance of β cells as the primary organizer of islet architecture. Conditional deletion of Robo in mature β cells subsequent to islet formation results in a similar phenotype. Finally, we provide evidence to suggest that the loss of islet architecture in Robo KO mice is not due to β cell transdiferentiation, cell death or loss of β cell diferentiation or maturation. Te islets of Langerhans display typical, species-specifc architecture, with distinct spatial organization of their various endocrine cell types1–5. In the mouse, the core of the islet is composed mostly of insulin-secreting β cells, while glucagon-secreting α cells, somatostatin-secreting δ cells and pancreatic polypeptide-secreting PP cells are located at the islet periphery3. -
The Role of Thyroid Hormone
Central Journal of Endocrinology, Diabetes & Obesity Mini Review Special Issue on Role of Thyroid Hormone Pancreatic and Islet Develop- in Metabolic Homeostasis ment and Function: The Role of *Corresponding authors Teresa L Mastracci, Department of Pediatrics, Indiana University School of Medicine, Herman B Wells Center for Thyroid Hormone Pediatric Research, 635 Barnhill Dr, MS2031, Indianapolis, IN, USA 46202, Tel: 317-278-8940; Fax: 317-274-4107; Teresa L Mastracci1,5* and Carmella Evans-Molina2,3,4,5* Email: 1Department of Pediatrics, Indiana University School of Medicine, USA Carmella Evans-Molina, Department of Medicine, 2Department of Medicine, Indiana University School of Medicine, USA Cellular and Integrative Physiology, Biochemistry and 3Department of Cellular and Integrative Physiology, Indiana University School of Molecular Biology, Herman B Wells Center for Pediatric Medicine, USA Research, Indiana University School of Medicine, 4Department of Biochemistry and Molecular Biology, Indiana University School of Indiana University School of Medicine, 635 Barnhill Dr., Medicine, USA MS2031, Indianapolis, IN, USA 46202, Tel: 317-278-3177; 5Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Fax: 317-274-4107; Email: USA Submitted: 12 June 2014 Accepted: 17 July 2014 Published: 19 July 2014 Abstract ISSN: 2333-6692 A gradually expanding body of literature suggests that Thyroid Hormone (TH) Copyright and Thyroid Hormone Receptors (TRs) play a contributing role in pancreatic and islet © 2014 Mastracci et al. cell development, maturation, and function. Studies using a variety of model systems capable of exploiting species-specific developmental paradigms have revealed the OPEN ACCESS contribution of TH to cellular differentiation, lineage decisions, and endocrine cell specification. -
Monoclonal Antibody to Parathyroid Hormone / PTH (1-38) - Purified
OriGene Technologies, Inc. OriGene Technologies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] AM02147PU-N Monoclonal Antibody to Parathyroid hormone / PTH (1-38) - Purified Alternate names: Parathormone, Parathyrin Quantity: 0.1 mg Background: Parathyroid hormone (PTH), or Parathormone, is secreted by the parathyroid glands as a polypeptide containing 84 amino acids. It acts to increase the concentration of calcium in the blood, whereas calcitonin (a hormone produced by the parafollicular cells of the thyroid gland) acts to decrease calcium concentration. Uniprot ID: P01270 NCBI: NP_000306.1 GeneID: 5741 Host / Isotype: Mouse / IgG1 Recommended Isotype SM10P (for use in human samples), AM03095PU-N Controls: Clone: A1/70 Immunogen: Synthetic Human PTH (aa 1-38) poly-Lysine conjugated. AA Sequence: SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNFVALG Format: State: Lyophilized purified IgG fraction from Cell Culture Supernatant Purification: Protein G Chromatography Buffer System: PBS, pH 7.4 Reconstitution: Restore in aqua bidest to 1 mg/ml Applications: RIA: 20 ng/ml. ELISA: 1 µg/ml (Ref.1). ILMA: 20 µg/ml (Ref.3). Immunohistochemistry on Cryosections and Paraffin Sections: 2 µg/ml. Other applications not tested. Optimal dilutions are dependent on conditions and should be determined by the user. Specificity: This antibody detects PTH peptide (aa 15-25; 1-34; 1-38; 1-84; 7-84). There were no cross reactivities obtained with synthetic Human PTH (aa 1-3; 1-10; 4-16; 28-48; 39-84; 44-68; 53-84) nor with PTHrP (aa 1-86), Calcitonin, Gastrin, Beta-2 Microglobulin, Thymulin, Thyroglobulin, Streptavidin, or Glutathione S-transferase. -
Activity of the Pineal Gland, Thymus and Hypophysial- Adrenal System in Oncological Patients I.F
138 Experimental Oncology 25, 138-142, 2003 (June) ACTIVITY OF THE PINEAL GLAND, THYMUS AND HYPOPHYSIAL- ADRENAL SYSTEM IN ONCOLOGICAL PATIENTS I.F. Labunets*, Yu.A. Grinevich Institute of Oncology, Academy of Medical Sciences of Ukraine, Kyiv 03022, Ukraine ÀÊÒÈÂÍÎÑÒÜ ÝÏÈÔÈÇÀ, ÒÈÌÓÑÀ È ÃÈÏÎÔÈÇÀÐÍÎ- ÍÀÄÏÎ×Å×ÍÈÊÎÂÎÉ ÑÈÑÒÅÌÛ Ó ÁÎËÜÍÛÕ ÎÍÊÎËÎÃÈ×ÅÑÊÎÃÎ ÏÐÎÔÈËß È.Ô. Ëàáóíåö*, Þ.À. Ãðèíåâè÷ Èíñòèòóò îíêîëîãèè ÀÌÍ Óêðàèíû, Êèåâ, Óêðàèíà Melatonin, thymic serum factor (FTS), alpha-melanocytestimulating hormone (alpha-MSH) and cortisol levels in blood serum and urine of healthy subjects and patients with skin melanoma and malignant thymoma of different age groups have been studied. It has been found that in healthy 20–29 year old men the highest melatonin level was observed in winter, those of FTS, cortisol and alpha-MSH — in summer-autumn, autumn-winter and summer, respectively. In male induviduals over 30 years, the increase of melatonin level in winter was not registered, and in those over 40, the stable secretion of FTS and cortisol and decrease of alpha-MSH acrophase at spring time were observed. In healthy women under 40, melatonin level was heightened in follicular and luteal phase of cycle and that of FTS — in luteal phase. Stability of melatonin secretion and reduction of FTS content in luteal phase of cycle were typical for women over 40. The age-related disorders of indices were more pronounced upon tumor development. In men under 40 years suffering from melanoma and thymoma, circannual changes of pineal gland, thymus and hypophysial-adrenal system function were typical for healthy subjects after 40 years. In women with melanoma and thymoma under 40 years melatonin and FTS level during menstrual cycle were similar with those in healthy women over 40. -
Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs. -
Alpha Cell Dysfunction in Type 1 Diabetes T Gina L.C
Peptides 100 (2018) 54–60 Contents lists available at ScienceDirect Peptides journal homepage: www.elsevier.com/locate/peptides Review Alpha cell dysfunction in type 1 diabetes T Gina L.C. Yosten Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO 63104, United States ARTICLE INFO ABSTRACT Keywords: Type 1 diabetes is characterized by selective loss of beta cells and insulin secretion, which significantly impact Type 1 diabetes glucose homeostasis. However, this progressive disease is also associated with dysfunction of the alpha cell Alpha cell component of the islet, which can exacerbate hyperglycemia due to paradoxical hyperglucagonemia or lead to Glucagon severe hypoglycemia as a result of failed counterregulation. In this review, the physiology of alpha cell secretion Hypoglycemia and the potential mechanisms underlying alpha cell dysfunction in type 1 diabetes will be explored. Because type Hyperglycemia 1 diabetes is a progressive disease, a synthesized timeline of aberrant alpha cell function will be presented as an attempt to delineate the natural history of type 1 diabetes with respect to the alpha cell. 1. Introduction species-specificdifferences in islet architecture and cell signaling. For example, although most studies of alpha cell function utilize mouse or Type 1 diabetes (T1D) is an autoimmune disease characterized by rat models, rodent islets are characterized by the localization of beta selective destruction of the pancreatic beta cells [2,50]. Beta cell loss cells predominantly in the center of the islet, surrounded by alpha, can occur over extended periods of time (months to years), but due to delta, and other cell types, which comprise the outer layer of the islets the remarkable compensatory capacity of the beta cells, overt diabetes [40,53]. -
First Responder Cells Drive the First-Phase [Ca2+] Response
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.424082; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Functional architecture of the pancreatic islets: First responder cells drive the first-phase [Ca2+] response Vira Kravetsa,b, JaeAnn M. Dwuleta, Wolfgang E. Schleicherb, David J. Hodsonc, Anna M. Davis,a Robert A. Piscopiob, Maura Sticco-Ivins,b Richard K.P. Benningera,b,1. a Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, CO. USA b Barbara Davis center for childhood diabetes, University of Colorado, Anschutz Medical campus, Aurora, CO. USA c Institute of Metabolism and Systems Research, University of Birmingham, Birmingham. UK, and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK 1 To whom correspondence should be addressed: [email protected] Tel: (303) 724-6388. Fax: (303) 724-5800. 1775 Aurora court, M20-4306D, mailstop B140, University of Colorado Anschutz Medical campus, Aurora, CO. 80045. Short title: First responder cells control islet function Keywords: Laser ablation; Multicellular Dynamics; Biological Networks; Optical Microscopy; Diabetes; Gap junctions. Manuscript word count (main text, excluding methods): 5311. Abstract word count: 294 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.424082; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Insulin-secreting b-cells are functionally heterogeneous. Subpopulations of b-cells can control islet function and the regulation of hormone release, such as driving the second (oscillatory) phase of free-calcium ([Ca2+]) following glucose elevation. -
AVP-Induced Counter-Regulatory Glucagon Is Diminished in Type 1 Diabetes
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.927426; this version posted January 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. AVP-induced counter-regulatory glucagon is diminished in type 1 diabetes Angela Kim1,2, Jakob G. Knudsen3,4, Joseph C. Madara1, Anna Benrick5, Thomas Hill3, Lina Abdul Kadir3, Joely A. Kellard3, Lisa Mellander5, Caroline Miranda5, Haopeng Lin6, Timothy James7, Kinga Suba8, Aliya F. Spigelman6, Yanling Wu5, Patrick E. MacDonald6, Ingrid Wernstedt Asterholm5, Tore Magnussen9, Mikkel Christensen9,10,11, Tina Vilsboll9,10,12, Victoria Salem8, Filip K. Knop9,10,12,13, Patrik Rorsman3,5, Bradford B. Lowell1,2, Linford J.B. Briant3,14,* Affiliations 1Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. 2Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA. 3Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX4 7LE, UK. 4Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen. 5Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden. 6Alberta Diabetes Institute, 6-126 Li Ka Shing Centre for Health Research Innovation, Edmonton, Alberta, T6G 2E1, Canada. 7Department of Clinical Biochemistry, John Radcliffe, Oxford NHS Trust, OX3 9DU, Oxford, UK. 8Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, W12 0NN, UK.