Endogenous Peptide Discovery of the Rat Circadian Clock a FOCUSED STUDY of the SUPRACHIASMATIC NUCLEUS by ULTRAHIGH PERFORMANCE TANDEM MASS □ SPECTROMETRY* S

Total Page:16

File Type:pdf, Size:1020Kb

Endogenous Peptide Discovery of the Rat Circadian Clock a FOCUSED STUDY of the SUPRACHIASMATIC NUCLEUS by ULTRAHIGH PERFORMANCE TANDEM MASS □ SPECTROMETRY* S Research Endogenous Peptide Discovery of the Rat Circadian Clock A FOCUSED STUDY OF THE SUPRACHIASMATIC NUCLEUS BY ULTRAHIGH PERFORMANCE TANDEM MASS □ SPECTROMETRY* S Ji Eun Lee‡§, Norman Atkins, Jr.¶, Nathan G. Hatcherʈ, Leonid Zamdborg‡§, Martha U. Gillette§¶**, Jonathan V. Sweedler‡§¶ʈ, and Neil L. Kelleher‡§‡‡ Understanding how a small brain region, the suprachias- pyroglutamylation, or acetylation. These aspects of peptide matic nucleus (SCN), can synchronize the body’s circa- synthesis impact the properties of neuropeptides, further ex- dian rhythms is an ongoing research area. This important panding their diverse physiological implications. Therefore, time-keeping system requires a complex suite of peptide unveiling new peptides and unreported peptide properties is hormones and transmitters that remain incompletely critical to advancing our understanding of nervous system characterized. Here, capillary liquid chromatography and function. FTMS have been coupled with tailored software for the Historically, the analysis of neuropeptides was performed analysis of endogenous peptides present in the SCN of the rat brain. After ex vivo processing of brain slices, by Edman degradation in which the N-terminal amino acid is peptide extraction, identification, and characterization sequentially removed. However, analysis by this method is from tandem FTMS data with <5-ppm mass accuracy slow and does not allow for sequencing of the peptides con- produced a hyperconfident list of 102 endogenous pep- taining N-terminal PTMs (5). Immunological techniques, such tides, including 33 previously unidentified peptides, and as radioimmunoassay and immunohistochemistry, are used 12 peptides that were post-translationally modified with for measuring relative peptide levels and spatial localization, amidation, phosphorylation, pyroglutamylation, or acety- but these methods only detect peptide sequences with known lation. This characterization of endogenous peptides from structure (6). More direct, high throughput methods of ana- the SCN will aid in understanding the molecular mecha- lyzing brain regions can be used. nisms that mediate rhythmic behaviors in mammals. Mass spectrometry, a rapid and sensitive method that has Molecular & Cellular Proteomics 9:285–297, 2010. been used for the analysis of complex biological samples, can detect and identify the precise forms of neuropeptides with- out prior knowledge of peptide identity, with these ap- Central nervous system neuropeptides function in cell-to- proaches making up the field of peptidomics (7–12). The cell signaling and are involved in many physiological pro- direct tissue and single neuron analysis by MALDI MS has cesses such as circadian rhythms, pain, hunger, feeding, and enabled the discovery of hundreds of neuropeptides in the body weight regulation (1–4). Neuropeptides are produced from larger protein precursors by the selective action of en- last decade, and the neuronal homogenate analysis by frac- dopeptidases, which cleave at mono- or dibasic sites and tionation and subsequent ESI or MALDI MS has yielded an then remove the C-terminal basic residues (1, 2). Some neu- equivalent number of new brain peptides (5). Several recent ropeptides undergo functionally important post-translational peptidome studies, including the work by Dowell et al. (10), modifications (PTMs),1 including amidation, phosphorylation, have used the specificity of FTMS for peptide discovery (10, 13–15). Here, we combine the ability to fragment ions at ultrahigh mass accuracy (16) with a software pipeline designed From the Departments of ‡Chemistry and **Cell and Developmental Biology, §Institute for Genomic Biology, ¶Neuroscience Program, and for neuropeptide discovery. We use nanocapillary reversed- ʈBeckman Institute, University of Illinois at Urbana-Champaign, Ur- phase LC coupled to 12 Tesla FTMS for the analysis of peptides bana, Illinois 61801 present in the suprachiasmatic nucleus (SCN) of rat brain. Received, August 6, 2009, and in revised form, November 3, 2009 A relatively small, paired brain nucleus located at the base Published, MCP Papers in Press, November 10, 2009, DOI of the hypothalamus directly above the optic chiasm, the SCN 10.1074/mcp.M900362-MCP200 1 The abbreviations used are: PTM, post-translational modification; contains a biological clock that generates circadian rhythms SCN, suprachiasmatic nucleus; ZT, Zeitgeber time; .puf, ProSight in behaviors and homeostatic functions (17, 18). The SCN upload file; GRP, gastrin-releasing peptide; VIP, vasoactive intestinal comprises ϳ10,000 cellular clocks that are integrated as a peptide; PACAP, pituitary adenylate cyclase-activating polypeptide; tissue level clock which, in turn, orchestrates circadian AVP, arginine-vasopressin; GABA, ␥-aminobutyric acid; CART, co- rhythms throughout the brain and body. It is sensitive to caine- and amphetamine-regulated transcript protein; DRP, dihydro- pyrimidinase-related protein; LTQ, linear trap quadrupole; AA, amino incoming signals from the light-sensing retina and other brain acids. regions, which cause temporal adjustments that align the © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Molecular & Cellular Proteomics 9.2 285 This paper is available on line at http://www.mcponline.org Peptidomics of the Rat Suprachiasmatic Nucleus by FTMS SCN appropriately with changes in environmental or behav- homogeneous by high density genome scan (34) was used for these ioral state. Previous physiological studies have implicated pep- studies. Animals were fed ad libitum and were housed under constant tides as critical synchronizers of normal SCN function as well as temperature and humidity conditions in a 12:12 h light/dark cycle environment. Animals were entrained to this lighting schedule for at mediators of SCN inputs, internal signal processing, and out- least 10 days prior to tissue collection. All collections of ex vivo SCN puts; however, only a small number of peptides have been tissue samples were conducted during mid-subjective daytime ϳ6–7 identified and explored in the SCN, leaving unresolved many h following onset of normal lights-on conditions, referred to as Zeit- circadian mechanisms that may involve peptide function. geber time (ZT) 6–7. All vertebrate animal procedures were carried out Most peptide expression in the SCN has only been studied with protocols approved by the University of Illinois at Urbana-Cham- paign Institutional Animal Care and Use Committee and in full com- through indirect antibody-based techniques (19–29), al- pliance with National Institutes of Health guidelines for humane ani- though we recently used MS approaches to characterize sev- mal care. eral peptides detected in SCN releasates (30). Previous stud- Preparation of SCN Brain Punch Samples—Animal subjects were ies indicate that the SCN expresses a rich diversity of decapitated, and the brain was immediately removed from the skull. peptides relative to other brain regions studied with the The hypothalamus was blocked, and using a mechanical tissue chop- per, coronal brain sections (500-␮m thickness) were prepared. A brain same techniques. Previously used immunohistochemical ap- section containing the mid-SCN was retained. A 2-mm-diameter proaches are not only inadequate for comprehensively eval- sample corer was used to excise the paired SCN from the surround- uating PTMs and alternate isoforms of known peptides but ing hypothalamus, aligning the top edge of the corer with the dorsal are also incapable of exhaustively examining the full peptide SCN border (see supplemental Fig. S1). This punch technique results complement of this complex biological network of peptidergic in minimal harvest of extra-SCN hypothalamic tissue. Optic nerve inputs and intrinsic components. A comprehensive study of tissue at the level of the optic chiasm is contained within the SCN- containing punch. Peptidome analysis of rat optic nerve tissue pro- SCN peptidomics is required that utilizes high resolution strat- duces a peptidomic profile distinct from our SCN peptidomics data egies for directly analyzing the peptide content of the neuronal (unpublished data). The SCN punch preparation was performed in networks comprising the SCN. glucose-/bicarbonate-/gentamicin-supplemented Earle’s balanced In our study, the SCN was obtained from ex vivo coronal salt solution (Invitrogen) perfused with 95% O2,5%CO2. SCN-con- brain slices via tissue punch and subjected to multistage taining punches were immediately transferred to a siliconized micro- centrifuge tube that remained submerged in powered dry ice until the peptide extraction. The SCN tissue extract was analyzed by time of peptide extraction. FTMS/MS, and the high resolution MS and MS/MS data were Peptide Extraction from SCN Punches—Either 12 or 24 SCN processed using ProSightPC 2.0 (16), which allows the iden- punches were pooled and subjected to multistage peptide extraction tification and characterization of peptides or proteins from as described in the recent work by Bora et al. (33). First, 150 or 300 high mass accuracy MS/MS data. In addition, the Sequence ␮l of deionized water, preheated to 90 °C, was added to the SCN Gazer included in ProSightPC was used for manually deter- punches. The sample was boiled for 10 min and centrifuged at 14,000 ϫ g for 10 min. The resulting tissue pellet was subjected to the mining PTMs (31, 32). As a result, a total of 102 endogenous second stage of extraction, whereas the supernatant was retained in peptides were identified, including
Recommended publications
  • Joy Wellness Partners 838 W G Street Suite 201 San Diego, California 92101
    United States of America FEDERAL TRADE COMMISSION Southwest Region 1999 Bryan St., Ste. 2150 Dallas, Texas 75201 June 3, 2020 WARNING LETTER VIA EMAIL TO [email protected] Joy Wellness Partners 838 W G Street Suite 201 San Diego, California 92101 Re: Unsubstantiated Claims for Coronavirus Prevention or Treatment To Whom It May Concern, This is to advise you that FTC staff reviewed your website at https://joywellnesspartners.com/ on May 24, 2020. We have determined that you are unlawfully advertising that certain products treat or prevent Coronavirus Disease 2019 (COVID-19). Some examples of Coronavirus treatment or prevention claims on your website include: In marketing materials accessible on your website by selecting “BLOG” from the navigation menu and clicking on “CORONAVIRUS (COVID-19),” you claim: o Under the heading “Hormones, Peptides, & Immunity”: . You state that “Keeping your immune system running optimally with balanced hormones and peptides helps your body prevent and fight illness, including viruses like COVID-19. Book now [https://intakeq.com/booking/8hkwjk]” . You post a video titled “IMMUNITY, BIOTE, & CORONAVIRUS” featuring Carol Joy Bender, NP. In the video at approximately 31:55, Bender states, “More specifically, I wanted to touch on the things that we’re all concerned about the coronavirus times: what can I do to boost my immune system to keep me healthy? BioTE has already been doing this for us… We have a lot of patients that are already taking their iodine with selenium and zinc. The zinc is one of the mainstay treatments that many of you have read about… zinc helps to reduce the RNA replication inside the cells, when the coronavirus gets in.
    [Show full text]
  • The Hypothalamus in Schizophrenia Research: No Longer a Wallflower Existence
    The Open Neuroendocrinology Journal, 2010, 3, 59-67 59 Open Access The Hypothalamus in Schizophrenia Research: No Longer a Wallflower Existence Hans-Gert Bernstein*,1, Gerburg Keilhoff 2, Johann Steiner1, Henrik Dobrowolny1 and Bernhard Bogerts1 1Department of Psychiatry and 2Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany Abstract: The hypothalamus is commonly believed to play only a subordinated role in schizophrenia. The present review attempts at condensing findings of the last two decades showing that hypothalamus is involved in many pathways found disturbed in schizophrenia (hypothalamus-pituitary- axis, hypothalamus-pituitary-thyroid axis, hypothalamus-pituitary- gonadal axis, metabolic syndrome, sleep-wakefulness cycle, and neuroimmune dysfunction). On the basis of this knowl- edge it is suggested to reconsider the place of the hypothalamus in the puzzle of schizophrenia. Keywords: Hypothalamus, schizophrenia, hippocampus, depression, stress, neuroendocrinology, neuroimmunology. 1. INTRODUCTION to be less, or even only marginally, affected in schizophre- nia. Until recently, the hypothalamus is thought to belong to Schizophrenia is a severe, chronic brain disorder afflict- the latter group. With this review we try to show that this ing about 1% percent of the population. The disease mainly important brain region is in many ways involved in the impairs multiple cognitive domains including memory, at- pathophysiology of schizophrenia, and that we therefore tention and executive function, and typically produces a life- should reconsider the place of the hypothalamus in the puz- time of disability and severe emotional distress for affected zle of schizophrenia. individuals [1]. The clinical features of the disorder appear in the second to third decade of life.
    [Show full text]
  • Thymosin Hh10 Inhibits Angiogenesis and Tumor Growth by Interfering with Ras Function
    Research Article Thymosin hh10 Inhibits Angiogenesis and Tumor Growth by Interfering with Ras Function Seung-Hoon Lee,1 Myung Jin Son,1,2 Sun-Hee Oh,1 Seung-Bae Rho,1 Kyungsook Park,1 Yung-Jin Kim,2 Mi-Sun Park,1 and Je-Ho Lee1 1Molecular Therapy Research Center, Samsung Medical Center, School of Medicine, Sung Kyun Kwan University, Seoul, Korea and 2Department of Molecular Biology, Pusan National University, Busan, Korea Abstract are a family of highly conserved small peptides that inhibit barbed end actin polymerization by sequestering actin mono- Thymosin h10 is a monomeric actin sequestering protein mers (8). Among them, thymosin h4 and thymosin h10 are the that regulates actin dynamics. Previously, we and others h have shown that thymosin h acts as an actin-mediated two most abundant -thymosins in the mammalian species and 10 coexist in some tissue types at varying ratios (9). Although both tumor suppressor. In this study, we show that thymosin h10 is not only a cytoskeletal regulator, but that it also acts as a peptides share a high degree of sequence homology, they show potent inhibitor of angiogenesis and tumor growth by its distinct patterns of expression in several tissues (10) and play interaction with Ras. We found that overexpressed thymosin different roles during rodent development (11). Recently, the angiogenic effects of several members of the thymosin family of h10 significantly inhibited vascular endothelial growth factor–induced endothelial cell proliferation, migration, peptides were studied in the chick chorioallantoic membrane h a invasion, and tube formation in vitro. Vessel sprouting was model (12).
    [Show full text]
  • Changes of Tlqp-21 in Response to Glucose Load
    bioRxiv preprint doi: https://doi.org/10.1101/626283; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. CHANGES OF TLQP-21 IN RESPONSE TO GLUCOSE LOAD Giulia Corda1, Barbara Noli1, Barbara Manconi2, Carla Brancia1, Manuela Pellegrini3, Fabio Naro3, Gian-Luca Ferri1 and Cristina Cocco1 1NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato (CA), Italy2 Department of Life and Enviromental Sciences, University of Cagliari, Monserrato (CA), Italy 3Department of Anatomical, Istological and Legal medicine Sciences of the locomotor apparatus, University of “La Sapienza’, Roma, Italy Abstract 5 The TLQP-21 peptide peripherally potentiates glucose-stimulated insulin secretion. The aim of this study was to investigate a possible endocrine mechanism through which TLQP- 21 increases the insulin secretion. Using an antibody specific for the common N-terminal portion of the TLQP peptides, we studied pancreas and plasma of mice subjected to intraperitoneal glucose load, by immunohistochemistry and immunosorbent assay (ELISA), 10 alone or coupled to High Performance Liquid Chromatography (HLPC). Mice underwent a period of starvation hence have received a glucose load, or saline, and were sacrificed 30 or 120 minutes later. In normal endocrine pancreas, the TLQP-antiserum stained either peripheral or central cells. Interestingly, 30 min after a glucose load, TLQP immunostaining was disappeared in pancreas and, when analysed by ELISA, the TLQP-levels started to 15 increase in plasma reaching peak concentration at 120 min.
    [Show full text]
  • Multiple Beneficial Effects of Melanocortin MC4 Receptor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca - Università degli studi di Napoli Federico II Progress in Neurobiology 148 (2017) 40–56 Contents lists available at ScienceDirect Progress in Neurobiology journal homepage: www.elsevier.com/locate/pneurobio Review article Multiple beneficial effects of melanocortin MC4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives a a a b c Daniela Giuliani , Alessandra Ottani , Laura Neri , Davide Zaffe , Paolo Grieco , d e f a, Jerzy Jochem , Gian Maria Cavallini , Anna Catania , Salvatore Guarini * a Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy b Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy c Department of Pharmacy, University of Napoli “Federico II”, Napoli, Italy d Department of Basic Medical Sciences, School of Public Health in Bytom, Medical University of Silesia, Katowice, Poland e Department of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy f Center for Preclinical Surgical Research, Fondazione IRCCS Ca' Granda À Ospedale Maggiore Policlinico, Milano, Italy A R T I C L E I N F O A B S T R A C T Article history: Received 20 May 2015 Melanocortin peptides induce neuroprotection in acute and chronic experimental neurodegenerative Received in revised form 22 November 2016 conditions. Melanocortins likewise counteract systemic responses to brain injuries. Furthermore, they Accepted 28 November 2016 promote neurogenesis by activating critical signaling pathways. Melanocortin-induced long-lasting Available online 1 December 2016 improvement in synaptic activity and neurological performance, including learning and memory, sensory-motor orientation and coordinated limb use, has been consistently observed in experimental Keywords: models of acute and chronic neurodegeneration.
    [Show full text]
  • Supporting Information for Proteomics DOI 10.1002/Pmic.200700142
    Supporting Information for Proteomics DOI 10.1002/pmic.200700142 Karl Skld, Marcus Svensson, Mathias Norrman, Benita Sjgren, Per Svenningsson and Per E. Andren´ The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: Stathmin 2-20 and peptides as sample quality indicators ª 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com SUPPORTING INFORMATION Supporting Information Table 1. Degraded protein identities and peptide sequences in the striatum after 1, 3, and 10 min post-mortem. UniProtKBa. Protein name Sequenceb Scorec P60710/P63260 Actin, cytoplasmic 1,2 A.LVVDNGSGMCK.A 56 E.MATAASSSSLEKS.Y 55 W.IGGSILASLSTFQQ.M 64 W.ISKQEYDESGPSIVHRK.C 93 M.WISKQEYDESGPSIVHRK.C 56 Q8K021 Secretory carrier-associated F.ATGVMSNKTVQTAAANAASTAATSAAQNAFKGNQM.- 124 membrane protein 1 Q9D164 FXYD domain-containing ion L.ITTNAAEPQK.A 58 transport regulator 6 precursor L.ITTNAAEPQKA.E 57 L.ITTNAAEPQKAE.N 89 L.ITTNAAEPQKAEN.- 54 P99029 Peroxiredoxin 5, mitochondrial M.APIKVGDAIPSVEVF.E 57 precursor P01942 Hemoglobin alpha subunit F.LASVSTVLTSKYR.- 106 M.FASFPTTKTYFPHF.D 72 L.ASHHPADFTPAVHASLDK.F 76 T.LASHHPADFTPAVHASLDK.F 59 L.LVTLASHHPADFTPAVHAS.L 56 L.LVTLASHHPADFTPAVHASLDK.F 71 L.LVTLASHHPADFTPAVHASLDKFLASVST.V 66 T.LASHHPADFTPAVHASLDKFLAS.V 55 L.VTLASHHPADFTPAVHASLDKFLAS.V 68 -.VLSGEDKSNIKAAWGKIGGHGAEYGAEALER.M 97 -.VLSGEDKSNIKAAWGKIGGHGAEYGAEALERM.F 58 P02088/P02089 Hemoglobin beta-1,2 subunit L.LVVYPWTQRY.F 53 L.LVVYPWTQRYF.D 52 Q00623 Apolipoprotein A-I precursor Y.VDAVKDSGRDYVSQFESSSLGQQLN.L
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9517090 Partial characterization and purification of steroidogenic factors in thymic epithelial cell culture-conditioned medium Uzumcu, Mehmet, Ph.D. The Ohio State University, 1994 UMI 300 N.
    [Show full text]
  • Stabilization Stabilizor Workflow Inactivation of Enzymes
    Denator Novel Tissue Sample Preparation Technology for MS Analysis denator.com WATERS 2nd NORDIC MS SYMPOSIUM Tuesday Nov 8 2011 Båstad Katarina Alenäs Denator 2004 University spin-off 2006 Head office at Biotech Center Gothenburg, Sweden Research lab in Uppsala Science Park, Sweden 2008 Stabilizor T1 – Launch 2009-to date Publications: Svensson et al. “Heat stabilization of the tissue proteome” Journal of Proteome Research, 2009 Robinson et al. “Assessing the use of thermal treatment to preserve the intact proteomes of post-mortem heart and brain tissue” Proteomics, 2009 Scholz et al. “Impact of temperature dependent sampling procedures in proteomics and peptidomics” Molecular and Cellular Proteomics, 2010 Goodwin et al. “Stopping the clock on proteomic degradation by heat-treatment at the point of tissue excision” Proteomics, 2010 Rountree et al “Clinical application for the preservation of phospho-proteins through in-situ tissue stabilization” Proteome Science, 2010 Ahmed et al “Preserving protein profiles in tissue samples: Differing outcomes with and without heat stabilization” Journal of Neuroscience Methods, 2011 Colgrave et al “Neuropeptide profiling of the bovine hypothalamus: Thermal stabilization is an effective tool in inhibiting post-mortem degradation” Colgrave et al, Proteomics, 2011 Protein research workflow Collection Sample prep Analysis Bioinformatics Stabilization Extraction 2D-gels Dissection Clean up MS Storage Enrichment Western blot Transport Trypsin cleavage ELISA Laboratory for Biological and Medical Mass Spectrometry,
    [Show full text]
  • Mass Spectrometry-Based Discovery of Circadian Peptides
    Mass spectrometry-based discovery of circadian peptides Nathan G. Hatcher*†, Norman Atkins, Jr.‡, Suresh P. Annangudi*†, Andrew J. Forbes*, Neil L. Kelleher*§, Martha U. Gillette‡§¶, and Jonathan V. Sweedler*†‡§ ʈ *Department of Chemistry; †Beckman Institute; ‡Neuroscience Program; ¶Department of Cell and Developmental Biology; and §Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 Communicated by William T. Greenough, University of Illinois at Urbana–Champaign, Urbana, IL, May 20, 2008 (received for review January 18, 2008) A significant challenge to understanding dynamic and heteroge- (5–8). Captured releasates then were characterized offline with neous brain systems lies in the chemical complexity of secreted MALDI TOF MS. Following this strategy, releasates could be intercellular messengers that change rapidly with space and time. screened for multiple compounds that include known, unex- Two solid-phase extraction collection strategies are presented that pected, or even unknown compounds. relate time and location of peptide release with mass spectrometric We characterized peptides endogenously secreted from the characterization. Here, complex suites of peptide-based cell-to-cell site of the SCN over the course of 24 h as well as peptides signaling molecules are characterized from the mammalian supra- released specifically following electrophysiological stimulation chiasmatic nucleus (SCN), site of the master circadian clock. Ob- of the retinohypothalamic (RHT) tract, the afferent pathway served SCN releasates are peptide rich and demonstrate the co- mediating SCN phase-setting light cues (9, 10). Surprisingly release of established circadian neuropeptides and peptides with complex SCN neuropeptide release spectra were observed with unknown roles in circadian rhythms. Additionally, the content of the use of a combination of neurophysiology and selective SCN releasate is stimulation specific.
    [Show full text]
  • RNA Sequencing Analysis Reveals the Gnrh Induced Citrullinome
    Authors Michelle A. Londe, Kenneth G. Gerow, Amy M. Navratil, Shaihla A. Khan, Brian S. Edwards, Paul R. Thompson, John Diller, Kenneth L. Jones, and Brian D. Cherrington This dissertation/thesis is available at Wyoming Scholars Repository: http://repository.uwyo.edu/honors_theses_15-16/48 Londe 1 RNA sequencing analysis reveals the GnRH induced citrullinome Michelle A. Londe1, Shaihla A. Khan2, Brian S. Edwards2, Paul R. Thompson3, John Diller4, Kenneth L. Jones4, Kenneth G. Gerow1, Brian D. Cherrington2, Amy M. Navratil2 1Department of Statistics, University of Wyoming, Laramie, Wyoming, 82071 2Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, 82071 3University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA, United States of America 4 Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz campus, Aurora, 80045. Key words: histone modification, peptidylarginine deiminase, gene regulation, RNA-sequencing Londe 2 Secretion of gonadotropin releasing hormone (GnRH) from the hypothalamus is critical for the secretion of the gonadotropins luteinizing hormone (LH) and follicle stimulating hormone (FSH). GnRH binds to its receptors on the plasma membrane of anterior pituitary gonadotropes and stimulates the release of these hormones. LH is crucial for regulating the function of the testes in men and the ovaries in women. In women, LH is important in carrying out functions in women’s menstrual cycles and stimulates the release of progesterone if pregnancy occurs.1 FSH is also important for reproduction, with its main roles also responsible for the maintenance of the menstrual cycle, release of estrogen and progesterone, as well as the growth of ovarian follicles.2 Given the essential role of gonadotropin production to fertility, major effort has gone into defining the mechanisms initiated by GnRH to regulate gonadotropin gene expression at the promoter/transcription factor level.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,133,863 B2 Maggio (45) Date of Patent: Mar
    USOO8133863B2 (12) United States Patent (10) Patent No.: US 8,133,863 B2 Maggio (45) Date of Patent: Mar. 13, 2012 (54) STABILIZING ALKYLGLYCOSIDE 3.5. A g E. S. et al COMPOSITIONS AND METHODS THEREOF 5,369,095 A 1 1/1994 KeeOnahoe et al. et al. 5,556,757 A 9, 1996 A1 tal. (75) Inventor: Edward T. Maggio, San Diego, CA 5,556,940 A 9, 1996 WRC (US) 6,524,557 B1 2/2003 Backstrom et al. 6,551.578 B2 * 4/2003 Adjei et al. ..................... 424/45 (73) Assignee: Aegis Therapeutics, LLC, San Diego, 2002fO1105247,425,542 A1B2 9/20088, 2002 CowanMaggio et al. CA (US) 2004/0209814 A1 10, 2004 Nauck et al. 2005/0215475 A1 9/2005 Ong et al. (*) Notice: Subject to any disclaimer, the term of this 2005/0276843 Al 12/2005 Quay et al. patent is extended or adjusted under 35 2006/0046962 A1 3/2006 Meezan et al. .................. 514/12 2006, OO74025 A1 4/2006 Quay et al. U.S.C. 154(b) by 443 days. 2006/0183674 A1 8/2006 Brand et al. 21) Appl. No.: 12/360,758 2007/01 11938 A1 5, 2007 Pert et al. (21) Appl. No.: 9 (Continued) (22) Filed: Jan. 27, 2009 FOREIGN PATENT DOCUMENTS US 2009/0197816A1 Aug. 6, 2009 (Continued) OTHER PUBLICATIONS Related U.S. Application Data Brown et al. Affinity Purification of a Somatostatin Receptor-G- (60) Division of application No. 12/119,378, filed on May protein Complex... The Journal of Biological Chemistry. Mar. 25. 12, 2008, which is a continuation-in-part of 1993, Vol.
    [Show full text]
  • Selective Expression of TLQP-21 and Other VGF Peptides in Gastric Neuroendocrine Cells and Modulation by Feeding
    329 Selective expression of TLQP-21 and other VGF peptides in gastric neuroendocrine cells and modulation by feeding Carla Brancia1, Cristina Cocco1, Filomena D’Amato1, Barbara Noli1, Fabrizio Sanna2, Roberta Possenti3, Antonio Argiolas2 and Gian-Luca Ferri1 1NEF-Laboratory, Department of Cytomorphology and 2Department of Neuroscience, University of Cagliari, 09042 Monserrato (Cagliari), Italy 3Institute of Neurobiology and Molecular Medicine, CNR, and Department of Neuroscience, Tor Vergata University, 00133 Rome, Italy (Correspondence should be addressed to G-L Ferri; Email: [email protected]) Abstract Although vgf gene knockout mice are hypermetabolic, confined to neurons. VGF mRNA was present in the above administration of the VGF peptide TLQP-21 itself increased gastric endocrine cell types, and was prominent in chief cells, energy consumption. Agonist–antagonist roles are thus in parallel with low-intensity staining for further cleaved suggested for different VGF peptides, and the definition of products from the C-terminal region of VGF (HVLL their tissue heterogeneity is mandatory. We studied the rat peptides: VGF605–614). In swine stomach, a comparable stomach using antisera to C- or N-terminal sequences of profile of VGF peptides was revealed by immunohistochem- known or predicted VGF peptides in immunohistochemistry istry. When fed and fasted rats were studied, a clear-cut, and ELISA. TLQP (rat VGF556–565) peptide/s were most selective decrease on fasting was observed for TLQP peptides abundant (162G11 pmol/g, meanGS.E.M.) and were brightly only (162G11 vs 74G5.3 pmol/g, fed versus fasted rats, immunostained in enterochromaffin-like (ECL) cells and meanGS.E.M., P!0.00001). In conclusion, specific VGF somatostatin cells.
    [Show full text]