Eucalyptus Insects, Diseases, and Adverse Aboitic Factors

Total Page:16

File Type:pdf, Size:1020Kb

Eucalyptus Insects, Diseases, and Adverse Aboitic Factors Advanced Forest Protection, Inc. 11/14/2011 i Advanced Forest Protection, Inc. 11/14/2011 Guide to Potential Insects, Diseases, and Other Damaging Agents of Eucalyptus in the Southeastern United States Prepared by: Advanced Forest Protection, Inc. Other Contributors: Editor: Dr. Ronald F. Billings, Texas Forest Service Guide for public use and educational purposes only. Not for sale. Cover photos: Upper right: Eucalyptus longhorned borers, photo by J. K. Clark, University of California Statewide IPM Program. Left: Eucalyptus stand in south Florida, photo by Ed Barnard (Florida DACS, retired); Bugwood.org. ii Advanced Forest Protection, Inc. 11/14/2011 Table of Contents Preface....................................................................................................................................... 1 Introduction ............................................................................................................................... 3 Literature Review and Selection of Damaging Agents................................................. 4 Organization and Content ............................................................................................. 5 Definition of Terms....................................................................................................... 5 Signs and symptoms ..................................................................................................... 6 Classification of fungi ................................................................................................... 7 Insect Pests .............................................................................................................................. 10 Sap-sucking insects ..................................................................................................... 10 Blue gum psyllid (Ctenarytaina eucalypti ).................................................... 10 Red gum lerp psyllid (Glycaspis brimblecombei) .......................................... 11 Other psyllids .................................................................................................. 11 Winter bronzing bug (Thaumastocoris peregrinus ) ...................................... 12 Gall-forming insects.................................................................................................... 13 Blue gum chalcid (Leptocybe invasa) ............................................................. 13 Other gall wasps .............................................................................................. 15 Leaf and shoot feeding insects - defoliators ............................................................... 16 Eucalyptus tortoise beetles .............................................................................. 16 Australian gum tree weevil (Gonipterus scutellatus) ..................................... 17 Purple moth (Sarsina violascens) ................................................................... 18 Texas leaf-cutting ant (Atta texana) ................................................................ 20 Phloem and wood-boring insects ................................................................................ 23 Eucalypt longhorned borers (Phoracantha semipunctata and P. recurva) ..... 23 Diseases................................................................................................................................... 23 Propagation diseases ................................................................................................... 23 Cylindrocladium disease ................................................................................. 23 Botrytis cinerea ............................................................................................... 23 Pithium spp. .................................................................................................... 23 Rhizoctonia solani ........................................................................................... 23 Foliage and shoot diseases .......................................................................................... 24 Cylindrocladium leaf spot and blight .............................................................. 24 Mycosphaerella leaf diseases .......................................................................... 24 Phaeophleospora leaf disease ......................................................................... 24 Other leaf diseases: Alternaria, Aulographina, Cryptosporiopsis, Fairmaniella, Harknessia, Microsphaeropsis ................................................ 24 Eucalyptus rust (Puccinia psidii) .................................................................... 24 Canker and dieback diseases ....................................................................................... 24 Botryosphaeria dothidea-ribis complex ......................................................... 25 Ceratocystis wilt (Ceratocystis fimbriata) ...................................................... 25 Coniothyrium canker ....................................................................................... 25 Eucalyptus canker (Chrysoporthe cubensis) ................................................... 25 Pink disease (Erythricium salmonicolor)........................................................ 25 Bacterial wilt ................................................................................................... 25 Stem and root rots ....................................................................................................... 26 Armillaria, Ganoderma, Phellinus stem and root rot ..................................... 26 iii Advanced Forest Protection, Inc. 11/14/2011 Phytophthora root rot ...................................................................................... 26 Decline - Diseases of complex origin ......................................................................... 26 Non-infectious Disorders (Abiotic Agents) ............................................................................ 26 Rooting problems ........................................................................................................ 27 Weather ....................................................................................................................... 27 Excess soil moisture .................................................................................................... 27 Fire .............................................................................................................................. 27 Chemical injury ........................................................................................................... 27 Nutrient deficiencies ................................................................................................... 28 Survey and Diagnosis of Tree Health Problems ..................................................................... 43 Survey, Monitoring, Detection, and Evaluation ......................................................... 43 Diagnosis of Plant Health Problems ........................................................................... 44 Preparation, equipment and supplies .............................................................. 44 Fieldwork – How to review the site and examine the plants for clues ........... 45 Diagnostic Questionnaire (Data Form) ........................................................... 46 Where to find help and send samples ............................................................. 46 Collecting, handling, and shipping samples for laboratory diagnosis ............ 47 Guidelines for taking digital images ............................................................... 48 Chemical analysis of nutrient concentrations in plant tissues ........................ 51 Eucalyptus Insect and Disease Management Strategies ......................................................... 53 Avoidance of New Pest Introductions ........................................................................ 53 Risk Management ....................................................................................................... 53 Insect- and Disease-Resistant Planting Stock ............................................................. 54 Managing Tree Health and Avoiding Stress ............................................................... 55 Matching species, provenance, and variety to the planting site ...................... 55 Silvicultural treatments ................................................................................... 56 Biological Control ....................................................................................................... 56 Pesticide Use ............................................................................................................... 57 Glossary of Terms ................................................................................................................... 58 References ............................................................................................................................... 67 Additional Resources .............................................................................................................. 82 Eucalyptus Experts by Specialty ................................................................................. 82 Forest pathology.............................................................................................. 82 Forest entomology .........................................................................................
Recommended publications
  • Paropsine Beetles (Coleoptera: Chrysomelidae) in South-Eastern Queensland Hardwood Plantations: Identifying Potential Pest Species
    270 Paropsine beetles in Queensland hardwood plantations Paropsine beetles (Coleoptera: Chrysomelidae) in south-eastern Queensland hardwood plantations: identifying potential pest species Helen F. Nahrung1,2,3 1School of Natural Resource Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia; and 2Horticulture and Forestry Science, Queensland Department of Primary Industries and Fisheries, Gate 3, 80 Meiers Road, Indooroopilly, Queensland 4068, Australia 3Email: [email protected] Revised manuscript received 17 May 2006 Summary The expansion of hardwood plantations throughout peri-coastal Australia, often with eucalypt species planted outside their native Paropsine chrysomelid beetles are significant defoliators of ranges (e.g. E. globulus Labill. in Western Australia; E. nitens Australian eucalypts. In Queensland, the relatively recent (Deane and Maiden) Maiden in Tasmania), resulted in expansion of hardwood plantations has resulted in the emergence unpredicted paropsine species emerging as pests. For example, of new pest species. Here I identify paropsine beetles collected C. agricola (Chapuis) was not considered a risk to commercial from Eucalyptus cloeziana Muell. and E. dunnii Maiden, two of forestry but became a significant pest of E. nitens in Tasmania the major Eucalyptus species grown in plantations in south-eastern (de Little 1989), and the two most abundant paropsine species Queensland, and estimate the relative abundance of each (C. variicollis (Chapuis) and C. nobilitata (Erichson)) in paropsine species. Although I was unable to identify all taxa to E. globulus plantations in WA were not pests of native forest species level, at least 17 paropsine species were collected, about there (compare Selman 1994; Loch 2005), nor were they initially one-third of which have not been previously associated with considered pests of E.
    [Show full text]
  • Eucalyptus Rubida Subsp. Rubida
    Plants of South Eastern New South Wales Flower buds on leafy stem. Australian Plant Image Index, photographer Peter Ormay, Canberra, ACT Juvenile leaves. Australian Plant Image Index, photographer Peter Ormay, Canberra, ACT Line drawings. e. juvenile (right) and adult (left) Tree. Photographer Jackie Miles leaves; buds and gumnuts. KR Thiele, Australian National Herbarium, © 2021 Royal Botanic Gardens Board, Melbourne, Vic Common name Candlebark, Ribbon gum, White gum Family Myrtaceae Where found Dry forest, woodland, and grassy areas, usually on cold flats. Western Slopes, Kosciuszko National Park, the mountains to the north, ACT, and tablelands. Occasionally in the ranges. Notes Tree to 40 m tall. Bark smooth throughout or with some patches of rough, greyish bark at the base. Rough bark shortly fibrous, platy, at times shedding irregularly, grey to grey-black. Smooth bark shedding in long ribbons, with horizontal black scars, often powdery. Branchlets glaucous or non-glaucous. Juvenile stems rounded in cross section, glaucous. Juvenile leaves opposite each other for many pairs, stalkless, 2-6 cm long, 25-65 mm wide, glaucous. Adult leaves alternating up the stems, 6.8-17.5 cm long, 8-34 mm wide, glossy or dull, green, grey-green, or glaucous. Flowers white, with 0 petals. Flower clusters 3- or 7- flowered. Mature flower buds 4–9 mm long, caps as long as or shorter than the base. Flowers Spring-Autumn. Gumnuts 4-8 mm in diameter. Gumnuts that have dropped their seed have protruding valves or valves that are not very noticeable. Hybridises with Eucalyptus aggregata and Eucalyptus nortonii. May hybridise with Eucalyptus parvula.
    [Show full text]
  • Biology of Chrysophtharta Agricola (Coleoptera, Chrysomelidae), a Pest of Eucalyptus Plantations in South-Eastern Australia
    Australian Forestry 2004 Vol. 67, No. 1 pp. 59–66 59 Biology of Chrysophtharta agricola (Coleoptera, Chrysomelidae), a pest of Eucalyptus plantations in south-eastern Australia Helen F. Nahrung CRC for Sustainable Production Forestry, GPO Box 252-12, Hobart, Tasmania 7001, Australia, and School of Agricultural Science, University of Tasmania, GPO Box 252-54, Hobart, Tasmania 7001, Australia Current address: School of Natural Resource Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia Email: [email protected] Revised manuscript received 10 September 2003 Summary which had been identified by Chapuis as C. bimaculata. Blackburn (1899) reported that ‘it is difficult to find two specimens absolutely Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae) alike’, which may reflect confusion between teneral (i.e. an adult is a pest of eucalypt production forests in south-eastern Australia. with a soft cuticle, as when it has recently emerged from the pupa) Biological characteristics including high fecundity and adult and mature beetles, as described by de Little (1979) and Selman longevity result in the production of large numbers of offspring, (1994b). Weise (1901) changed its generic placement from despite high levels of offspring mortality from natural enemies. Paropsis to Chrysophtharta Weise, and also erected the sub-tribe Collection records for C. agricola indicate a host range of over Paropsina to which Chrysophtharta belongs (Kelly and Reid 20 eucalypt species and a geographic distribution from northern 1999). The type species for the genus was designated Paropsis New South Wales to southern Tasmania. This paper provides nobilitata Erichson by Kelly and Reid (1999). A taxonomic key estimates of foliage consumption by larvae and reviews the biology to species was produced by de Little (1979), which describes the of C.
    [Show full text]
  • Aleurodiscus Bicornis and A. Formosanus Spp. Nov. (Basidiomycota) with Smooth Basidiospores, and Description of A
    Aleurodiscus Bicornis and A. Formosanus Spp. Nov. (Basidiomycota) With Smooth Basidiospores, and Description of A. Parvisporus From NE China Sheng-Hua Wu ( [email protected] ) National Museum of Natural Science https://orcid.org/0000-0002-9873-5595 Chia-Ling Wei National Museum of Natural Science, ROC Chiung-Chih Chang Biodiversity Research Institute Research Article Keywords: China, corticioid fungi, Taiwan, taxonomy, wood-decaying fungi Posted Date: March 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-306327/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Three species of Aleurodiscus s.l. characterized in having effused basidiomata, clamped generative hyphae and quasi-binding hyphae, sulphuric positive reaction of gloeocystidia, hyphidia, acanthophyses and smooth basidiospores, are described. They are A. bicornis sp. nov., A. formosanus sp. nov. and A. parvisporus. Aleurodiscus bicornis was found from high mountains of NW Yunnan Province of SW China, grew on branch of Picea sp. Aleurodiscus formosanus was found from high mountains of central Taiwan, grew on branch of gymnosperm. Aleurodiscus parvisporus was previously reported only once from Japan and Sichuan Province of China respectively, and is reported in this study from Jilin Province of China. Phylogenetic relationships of these three species were inferred from analyses of a combined dataset consisting of three genetic markers, viz. 28S, nuc rDNA ITS1-5.8S-ITS2 (ITS), and a portion of the translation elongation factor 1-alpha gene, TEF1. The studied three species are phylogenetically closely related with signicant support, corresponds with resemblance of their morphological features.
    [Show full text]
  • In China: Phylogeny, Host Range, and Pathogenicity
    Persoonia 45, 2020: 101–131 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.04 Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity W. Wang1,2, G.Q. Li1, Q.L. Liu1, S.F. Chen1,2 Key words Abstract Plantation-grown Eucalyptus (Myrtaceae) and other trees residing in the Myrtales have been widely planted in southern China. These fungal pathogens include species of Cryphonectriaceae that are well-known to cause stem Eucalyptus and branch canker disease on Myrtales trees. During recent disease surveys in southern China, sporocarps with fungal pathogen typical characteristics of Cryphonectriaceae were observed on the surfaces of cankers on the stems and branches host jump of Myrtales trees. In this study, a total of 164 Cryphonectriaceae isolates were identified based on comparisons of Myrtaceae DNA sequences of the partial conserved nuclear large subunit (LSU) ribosomal DNA, internal transcribed spacer new taxa (ITS) regions including the 5.8S gene of the ribosomal DNA operon, two regions of the β-tubulin (tub2/tub1) gene, plantation forestry and the translation elongation factor 1-alpha (tef1) gene region, as well as their morphological characteristics. The results showed that eight species reside in four genera of Cryphonectriaceae occurring on the genera Eucalyptus, Melastoma (Melastomataceae), Psidium (Myrtaceae), Syzygium (Myrtaceae), and Terminalia (Combretaceae) in Myrtales. These fungal species include Chrysoporthe deuterocubensis, Celoporthe syzygii, Cel. eucalypti, Cel. guang­ dongensis, Cel. cerciana, a new genus and two new species, as well as one new species of Aurifilum. These new taxa are hereby described as Parvosmorbus gen.
    [Show full text]
  • The Entomofauna on Eucalyptus in Israel: a Review
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 116: 450–460, 2019 http://www.eje.cz doi: 10.14411/eje.2019.046 REVIEW The entomofauna on Eucalyptus in Israel: A review ZVI MENDEL and ALEX PROTASOV Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeTzion 7528809, Israel; e-mails: [email protected], [email protected] Key words. Eucalyptus, Israel, invasive species, native species, insect pests, natural enemies Abstract. The fi rst successful Eucalyptus stands were planted in Israel in 1884. This tree genus, particularly E. camaldulensis, now covers approximately 11,000 ha and constitutes nearly 4% of all planted ornamental trees. Here we review and discuss the information available about indigenous and invasive species of insects that develop on Eucalyptus trees in Israel and the natural enemies of specifi c exotic insects of this tree. Sixty-two phytophagous species are recorded on this tree of which approximately 60% are indigenous. The largest group are the sap feeders, including both indigenous and invasive species, which are mostly found on irrigated trees, or in wetlands. The second largest group are wood feeders, polyphagous Coleoptera that form the dominant native group, developing in dying or dead wood. Most of the seventeen parasitoids associated with the ten invasive Eucalyptus-specifi c species were introduced as biocontrol agents in classical biological control projects. None of the polyphagous species recorded on Eucalyptus pose any threat to this tree. The most noxious invasive specifi c pests, the gall wasps (Eulophidae) and bronze bug (Thaumastocoris peregrinus), are well controlled by introduced parasitoids.
    [Show full text]
  • Journal of Hymenoptera Research on Chamelaucium Unciatum (Myrtaceae), It Petiole, Phragma Generally Projecting Into Is Apparent That Phytophagous Species Are Gaster
    J. HYM. RES. Vol. 9(1), 2000, pp. 176-181 An Introduced Species of Epichrysocharis (Hymenoptera: Eulophidae) Producing Galls on Eucalyptus in California with Notes on the Described Species and Placement of the Genus M. E. SCHAUFF AND R. GARRISON (MES) Systematic Entomology Laboratory, USDA, PSI, Agricultural Research Service, c/o National Museum of Natural History, Washington, D.C. 20560-0168, USA; (RG) Department of Agricultural Commissioner, Weights and Measures, County of Los Angeles, 3400 La Madera Ave., El Monte, CA 91732, USA Abstract. —Epichrysocharis burzvelli Schauff, new species (Hymenoptera: Eulophidae) is de- scribed from specimens collected in southern California. Epichrysocharis burzvelli forms small blis- of ter-like galls on the leaves of Eucalyptus citriodora. The previously described species Epichryso- charis are reviewed and separated from E. burwelli. Evidence suggests that this species was acci- dentally introduced into the United States from Australia. In early 1999, specimens of a small chal- had been unknown, although it was stated cidoid wasp were submitted to the Sys- that they had been "associated with small tematic Entomology Laboratory, USDA, galls on Eucalypt leaves" (Boucek 1988). by the California Department of Food and The specimens recorded from California Agriculture (CDFA) for identification, were reared from small blister-like galls These tiny wasps were found emerging on the leaves of Eucalyptus citriodora and from galls on the leaves of Eucalyptus ci- unemerged specimens have been dissect- triodora in the Los Angeles area. Recently, ed from inside galls on the leaves. We can their occurrence has been noted in several find no evidence that E. burwelli is para- nurseries, and they are becoming wide- sitizing some other insect in or associated spread in the Los Angeles area.
    [Show full text]
  • Aleurodiscus Disciformis (DC.) Pat., Bull
    Aleurodiscus disciformis (DC.) Pat., Bull. Soc. mycol. Fr. 10(2): 80 (1894) COROLOGíA Registro/Herbario Fecha Lugar Hábitat MAR 280407 36 24/08/2007 Monte de Revenga, Canicosa Bosque mixto de rebollo Leg.: José Cuesta; Nino Santamaría; de la Sierra (Burgos) (Quercus pyrenaica) y Santiago Serrano; Miguel Á. Ribes 1101 m. 30T VM9945 pino albar (Pinus Det.: Miguel Á. Ribes sylvestris) TAXONOMíA • Basiónimo: Thelephora disciformis DC., in de Candolle & Lamarck 1815 • Posición en la clasificación: Stereaceae, Russulales, Incertae sedis, Agaricomycetes, Basidiomycota, Fungi • Sinónimos: o Aleurocystidiellum disciforme (DC.) Tellería, Biblthca Mycol. 135: 25 (1990) o Aleurocystidiellum disciforme (DC.) Boidin, Terra & Lanq., Bull. trimest. Soc. mycol. Fr. 84: 63 (1968) o Helvella disciformis Vill., Hist. pl. Dauphiné 3(2): 1046 (1789) o Hymenochaete disciformis (Vill.) W.G. Sm., Syn. Brit. Basidiomyc.: 409 (1908) o Peniophora disciformis (DC.) Cooke, Grevillea 8(no. 45): 20 (1879) o Stereum disciforme (DC.) Fr., Epicr. syst. mycol. (Upsaliae): 551 (1838) DESCRIPCIÓN MACRO Carpóforo discoideo a resupinado e incluso efuso-reflejo, de 2-4 cm de ancho por aproximadamente 1 mm de espesor, que acomoda su forma a las grietas de la corteza de los árboles en los que vive, borde diferenciado no adherido al sustrato y en ocasiones bastante levantado. Himenio liso, a veces con pequeños bultos, de color blanquecino amarillento grisáceo, que se agrieta con la edad. Superficie externa cremosa-marrón, ligeramente zonada. Consistencia tenaz y suberosa. Aleurodiscus disciformis 280407 36 Página 1 de 4 DESCRIPCIÓN MICRO 1. Esporas anchamente elipsoides, ligeramente verrugosas y fuertemente amiloides Medidas esporales (400x, material fresco) 12.8 [15.8 ; 17.1] 20.1 x 8.8 [11.5 ; 12.7] 15.5 Q = 1 [1.3 ; 1.4] 1.7 ; N = 29 ; C = 95% Me = 16.43 x 12.13 ; Qe = 1.37 Aleurodiscus disciformis 280407 36 Página 2 de 4 2.
    [Show full text]
  • Biological Inventory and Assessment Report, Fall 2018 Caltech Submillimeter Observatory, Maunakea, Hawai‘I
    Biological Inventory and Assessment Report, Fall 2018 Caltech Submillimeter Observatory, Maunakea, Hawai‘i Action BoardApril 2019 Prepared for: Sustainable Resources Group Intn’l, Inc. Prepared by: Matthew J Medeiros, PhD [email protected] mattjmedeiros.comFor All photographs in this report are copyrighted by Matthew J Medeiros. TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................................................ 1 1.1 Caltech Submillimeter Observatory Decommissioning ................................................................ 1 1.2 Physical Setting ............................................................................................................................. 1 2 METHODS ........................................................................................................................................... 3 2.1 Permit and Personnel .................................................................................................................... 3 2.2 Schedule ........................................................................................................................................ 3 2.3 Nomenclature ................................................................................................................................ 3 2.4 Methodology for Inventorying Plants, Lichens, Non-arthropod Animals, and Abiotic Features . 3 2.4.1 Transects: Floral and Abiotic Features ................................................................................
    [Show full text]
  • The Jumping Plant-Lice (Hemiptera: Psylloidea) of the Maltese Islands
    BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2020) Vol. 11 : 103–117 DOI: 10.17387/BULLENTSOCMALTA.2020.18 The jumping plant-lice (Hemiptera: Psylloidea) of the Maltese Islands David MIFSUD* ABSTRACT. Twenty-one species of jumping plant-lice accommodated in five different families are here recorded from the Maltese Islands in an annotated checklist. The Aphalaridae is represented by four species (Agonoscena targionii (Lichtenstein), Blastopsylla occidentalis Taylor, Colposcenia aliena (Löw) and Glycaspis brimblecombei Moore), of which two (B. occidentalis and G. brimblecombei) are alien species originating from Australia. The Homotomidae is represented by Homotoma ficus (Linnaeus) and Macrohomotoma gladiata Kuwayama, the latter being an alien species originating from the Far East. The Liviidae is represented by Euphyllura olivina (Costa), Diaphorina lycii Loginova and Psyllopsis fraxinicola (Foerster). The Psyllidae is represented by Acizzia uncatoides (Ferris & Klyver), Cacopsylla myrthi (Puton) and C. pyri (Linnaeus), of which Acizzia uncatoides is an alien species originating from Australia. Finally, the most species-rich family is the Triozidae, represented by nine species (Bactericera albiventris (Foerster), B. crithmi (Löw), B. trigonica Hodkinson, Heterotrioza chenopodii (Reuter), Lauritrioza alacris (Flor), Trioza centranthi (Vallot), T. galii Foerster, T. kiefferi Giard and T. urticae (Linnaeus)). For each of the above species, collection data, distribution, host- plant data and other relevant information is provided. Lycium intricatum Boiss. is a new host-plant record for Diaphorina lycii, and Rhamnus lycioides subsp. oleoides (L.) Jahand. & Maire is a new host-plant record for Cacopsylla myrthi. A host- plant shift is documented for Bactericera crithmi, which alternates between Ferula melitensis Brullo et al. in winter and Crithmum maritimum L.
    [Show full text]
  • Genetic Diversity and Adaptation in Eucalyptus Pauciflora
    Genetic diversity and adaptation in Eucalyptus pauciflora Archana Gauli (M.Sc.) A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Biological Sciences, University of Tasmania June, 2014 Declarations This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Archana Gauli Date Authority of access This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Archana Gauli Date Statement regarding published work contained in thesis The publishers of the paper comprising Chapter 2 and Chapter 3 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Archana Gauli Date i Statement of publication Chapter 2 has been published as: Gauli A, Vaillancourt RE, Steane DA, Bailey TG, Potts BM (2014) The effect of forest fragmentation and altitude on the mating system of Eucalyptus pauciflora (Myrtaceae). Australian Journal of Botany 61, 622-632. Chapter 3 has been accepted for publication as: Gauli A, Steane DA, Vaillancourt RE, Potts BM (in press) Molecular genetic diversity and population structure in Eucalyptus pauciflora subsp.
    [Show full text]
  • A New Species of Quadrastichus (Hymenoptera: Eulophidae): a Gall-Inducing Pest on Erythrina (Fabaceae)
    J. HYM. RES. Vol. 13(2), 2004, pp. 243–249 A New Species of Quadrastichus (Hymenoptera: Eulophidae): A Gall-inducing Pest on Erythrina (Fabaceae) IL-KWON KIM, GERARD DELVARE, AND JOHN LA SALLE (IKK, JLS) CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia; email: [email protected] (GD) CIRAD TA 40L, Campus International de Baillarguet-Csiro, 34398 Montpellier Cedex 5, France; email: [email protected] Abstract.—Quadrastichus erythrinae Kim sp.n. is described from Singapore, Mauritius and Re´- union. This species forms galls on the leaves, stems, petioles and young shoots of Erythrina var- iegata and E. fusca in Singapore, on the leaves of E. indica in Mauritius, and on Erythrina sp. in Re´union. It can cause extensive damage to the trees. Key words.—Hymenoptera, Eulophidae, Quadrastichus, phytophagous, gall inducer, Singapore, Mauritius, Erythrina, Fabaceae Species of Eulophidae are mainly para- 1988; Redak and Bethke 1995; Headrick et sitoids, but secondary phytophagy in the al. 1995); Epichrysocharis burwelli Schauff form of gall induction has arisen on many (Schauff and Garrison 2000); and Leptocybe occasions (Boucˇek 1988; La Salle 1994; invasa Fisher & La Salle (Mendel et al. Headrick et al. 1995; Mendel et al. 2004; 2004). Quadrastichus erythrinae Kim sp.n. La Salle 2004). Gall-inducing Eulophidae has recently achieved pest status in Sin- generally belong to two groups: Opheli- gapore, Mauritius and Re´union. Erythrina mini is an Australian lineage which con- trees have been grown in these areas for sists mainly of gall inducers on eucalypts, decades, and this species has never been but perhaps also on some other myrta- recorded from them.
    [Show full text]