Aleurodiscus Bicornis and A. Formosanus Spp. Nov. (Basidiomycota) with Smooth Basidiospores, and Description of A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methods and Work Profile
REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services ....................................... -
Four Interesting Aphyllophoroid Species in the Tropical Northern Region of Veracruz, Mexico
MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2018 January–March 2018—Volume 133, pp. 153–163 https://doi.org/10.5248/133.153 Four interesting aphyllophoroid species in the tropical northern region of Veracruz, Mexico Santiago Chacón1*, Fidel Tapia2, Daniel Jarvio3 1 Instituto de Ecología, A.C. Apartado Postal 63, Xalapa, Veracruz 91000, México 2 Montevideo 11, Col. Montevideo, Xalapa, Veracruz 91028, México 3 Fundación Pedro y Elena Hernández, A.C. 5 de Mayo s/n, Estero de Milpas, Tamiahua, Veracruz 92560, México * Correspondence to: [email protected] Abstract—The taxonomic study presents four aphyllophoroid fungi from the Tamiahua region of Veracruz in a tropical deciduous forest dominated by Quercus oleoides. Gloeodontia discolor, Hydnochaete paucisetigera, and Thelephora dentosa are recorded for the first time for Mexican mycobiota, and Gloiothele lactescens is reported for a new location. Key words—Basidiomycota, clavarioid, corticioid, new records, taxonomy Introduction The 1260 ha of land known as Ejido Estero de Milpas (21°14′52″N 97°28′29″W) in the municipality of Tamiahua lies within the Tamiahua Lagoon region in northern Veracruz State, Mexico. The climate is tropical and the area is covered primarily by halophytic vegetation, cattle ranches, tall semi-evergreen forests, and an ecosystem in which tropical oaks are well represented, especially Quercus oleoides and Q. glaucescens (Registro Agrario Nacional 2016). Aphyllophoroid fungi are an unofficial basidiomycete assemblage representing such diverse fungi as corticioids, polypores, and clavarioids (Kunttu & al. 2014); they are widely distributed in temperate and tropical forests and play an important role in the degradation of organic matter. -
Xylobolus Frustulatus (Stereaceae): Developmental Observations, Morphology, and Ecology Bob O’Kennon, Denis Benjamin, and Harold W
Xylobolus frustulatus (Stereaceae): Developmental Observations, Morphology, and Ecology Bob O’Kennon, Denis Benjamin, and Harold W. Keller Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, Texas 76107-3400 Corresponding author: Harold W. Keller, Email: [email protected] Abstract—Xylobolus frustulatus, Introduction 1900’s (see www. MyCoPortal.org). At a wood-rotting fungus known as Xylobolus frustulatus is a well that time, many classified it in the genus the ceramic or parchment fungus described crust fungus, widely known Stereum, another crust basidiomycete in the Stereaceae, was observed as the ceramic or parchment fungus fungus (Boidin, 1958). It currently is continually over a twelve-month because of its striking appearance classified in the family Stereaceae with period in the Fort Worth Nature when mature (Persoon, 1801; Boidin, other corticioid, perennial, effused, Center and Refuge near the city of 1958; Kuo, 2008). The crust breaks into wood-rotting fungi such as Stereum. Fort Worth, Texas. The distribution, irregular ivory colored plates “frustules” Review of Guttation Droplets habitat, and morphology of this separated by a dark sepia “grout.” Its Liquid droplets (guttation) form on fungus is described. The moist preferred host is mature, dead, decaying, the young, developing fruiting bodies of young stages in early development of decorticate, oak trees of a variety of taxa. Xylobolus frustulatus. The mechanism of this fungus produce clear to amber- Most of the records are in the eastern guttation in fungi is poorly understood, colored liquid droplets (guttation) USA as well as in Europe and Asia, although it is widespread in some and look morphologically different perhaps because of its host association, wood-rotting genera, especially in the from the fruiting bodies when fully although there is one record from Polyporaceae. -
Phylogeny, Morphology, and Ecology Resurrect Previously Synonymized Species of North American Stereum Sarah G
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342840; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny, morphology, and ecology resurrect previously synonymized species of North American Stereum Sarah G. Delong-Duhon and Robin K. Bagley Department of Biology, University of Iowa, Iowa City, IA 52242 [email protected] Abstract Stereum is a globally widespread genus of basidiomycete fungi with conspicuous shelf-like fruiting bodies. Several species have been extensively studied due to their economic importance, but broader Stereum taxonomy has been stymied by pervasive morphological crypsis in the genus. Here, we provide a preliminary investigation into species boundaries among some North American Stereum. The nominal species Stereum ostrea has been referenced in field guides, textbooks, and scientific papers as a common fungus with a wide geographic range and even wider morphological variability. We use ITS sequence data of specimens from midwestern and eastern North America, alongside morphological and ecological characters, to show that Stereum ostrea is a complex of at least three reproductively isolated species. Preliminary morphological analyses show that these three species correspond to three historical taxa that were previously synonymized with S. ostrea: Stereum fasciatum, Stereum lobatum, and Stereum subtomentosum. Stereum hirsutum ITS sequences taken from GenBank suggest that other Stereum species may actually be species complexes. Future work should apply a multilocus approach and global sampling strategy to better resolve the taxonomy and evolutionary history of this important fungal genus. -
Aleurodiscus Disciformis (DC.) Pat., Bull
Aleurodiscus disciformis (DC.) Pat., Bull. Soc. mycol. Fr. 10(2): 80 (1894) COROLOGíA Registro/Herbario Fecha Lugar Hábitat MAR 280407 36 24/08/2007 Monte de Revenga, Canicosa Bosque mixto de rebollo Leg.: José Cuesta; Nino Santamaría; de la Sierra (Burgos) (Quercus pyrenaica) y Santiago Serrano; Miguel Á. Ribes 1101 m. 30T VM9945 pino albar (Pinus Det.: Miguel Á. Ribes sylvestris) TAXONOMíA • Basiónimo: Thelephora disciformis DC., in de Candolle & Lamarck 1815 • Posición en la clasificación: Stereaceae, Russulales, Incertae sedis, Agaricomycetes, Basidiomycota, Fungi • Sinónimos: o Aleurocystidiellum disciforme (DC.) Tellería, Biblthca Mycol. 135: 25 (1990) o Aleurocystidiellum disciforme (DC.) Boidin, Terra & Lanq., Bull. trimest. Soc. mycol. Fr. 84: 63 (1968) o Helvella disciformis Vill., Hist. pl. Dauphiné 3(2): 1046 (1789) o Hymenochaete disciformis (Vill.) W.G. Sm., Syn. Brit. Basidiomyc.: 409 (1908) o Peniophora disciformis (DC.) Cooke, Grevillea 8(no. 45): 20 (1879) o Stereum disciforme (DC.) Fr., Epicr. syst. mycol. (Upsaliae): 551 (1838) DESCRIPCIÓN MACRO Carpóforo discoideo a resupinado e incluso efuso-reflejo, de 2-4 cm de ancho por aproximadamente 1 mm de espesor, que acomoda su forma a las grietas de la corteza de los árboles en los que vive, borde diferenciado no adherido al sustrato y en ocasiones bastante levantado. Himenio liso, a veces con pequeños bultos, de color blanquecino amarillento grisáceo, que se agrieta con la edad. Superficie externa cremosa-marrón, ligeramente zonada. Consistencia tenaz y suberosa. Aleurodiscus disciformis 280407 36 Página 1 de 4 DESCRIPCIÓN MICRO 1. Esporas anchamente elipsoides, ligeramente verrugosas y fuertemente amiloides Medidas esporales (400x, material fresco) 12.8 [15.8 ; 17.1] 20.1 x 8.8 [11.5 ; 12.7] 15.5 Q = 1 [1.3 ; 1.4] 1.7 ; N = 29 ; C = 95% Me = 16.43 x 12.13 ; Qe = 1.37 Aleurodiscus disciformis 280407 36 Página 2 de 4 2. -
A Review of the Genus Amylostereum and Its Association with Woodwasps
70 South African Journal of Science 99, January/February 2003 Review Article A review of the genus Amylostereum and its association with woodwasps B. Slippers , T.A. Coutinho , B.D. Wingfield and M.J. Wingfield Amylostereum.5–7 Today A. chailletii, A. areolatum and A. laevigatum are known to be symbionts of a variety of woodwasp species.7–9 A fascinating symbiosis exists between the fungi, Amylostereum The relationship between Amylostereum species and wood- chailletii, A. areolatum and A. laevigatum, and various species of wasps is highly evolved and has been shown to be obligatory siricid woodwasps. These intrinsic symbioses and their importance species-specific.7–10 The principal advantage of the relationship to forestry have stimulated much research in the past. The fungi for the fungus is that it is spread and effectively inoculated into have, however, often been confused or misidentified. Similarly, the new wood, during wasp oviposition.11,12 In turn the fungus rots phylogenetic relationships of the Amylostereum species with each and dries the wood, providing a suitable environment, nutrients other, as well as with other Basidiomycetes, have long been unclear. and enzymes that are important for the survival and develop- Recent studies based on molecular data have given new insight ment of the insect larvae (Fig. 1).13–17 into the taxonomy and phylogeny of the genus Amylostereum. The burrowing activity of the siricid larvae and rotting of the Molecular sequence data show that A. areolatum is most distantly wood by Amylostereum species makes this insect–fungus symbio- related to other Amylostereum species. Among the three other sis potentially harmful to host trees, which include important known Amylostereum species, A. -
Septal Pore Caps in Basidiomycetes Composition and Ultrastructure
Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septumporie-kappen in Basidiomyceten Samenstelling en Ultrastructuur (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 17 december 2007 des middags te 16.15 uur door Kenneth Gregory Anthony van Driel geboren op 31 oktober 1975 te Terneuzen Promotoren: Prof. dr. A.J. Verkleij Prof. dr. H.A.B. Wösten Co-promotoren: Dr. T. Boekhout Dr. W.H. Müller voor mijn ouders Cover design by Danny Nooren. Scanning electron micrographs of septal pore caps of Rhizoctonia solani made by Wally Müller. Printed at Ponsen & Looijen b.v., Wageningen, The Netherlands. ISBN 978-90-6464-191-6 CONTENTS Chapter 1 General Introduction 9 Chapter 2 Septal Pore Complex Morphology in the Agaricomycotina 27 (Basidiomycota) with Emphasis on the Cantharellales and Hymenochaetales Chapter 3 Laser Microdissection of Fungal Septa as Visualized by 63 Scanning Electron Microscopy Chapter 4 Enrichment of Perforate Septal Pore Caps from the 79 Basidiomycetous Fungus Rhizoctonia solani by Combined Use of French Press, Isopycnic Centrifugation, and Triton X-100 Chapter 5 SPC18, a Novel Septal Pore Cap Protein of Rhizoctonia 95 solani Residing in Septal Pore Caps and Pore-plugs Chapter 6 Summary and General Discussion 113 Samenvatting 123 Nawoord 129 List of Publications 131 Curriculum vitae 133 Chapter 1 General Introduction Kenneth G.A. van Driel*, Arend F. -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
Sp. Nov. from Northeast China
ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/124.269 Volume 124, pp. 269–278 April–June 2013 Russula changbaiensis sp. nov. from northeast China Guo-Jie Li1,2, Dong Zhao1, Sai-Fei Li1, Huai-Jun Yang3, Hua-An Wen1a*& Xing-Zhong Liu1b* 1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st Beichen West Road, Chaoyang District, Beijing 100101, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3 Shanxi Institute of Medicine and Life Science, No 61 Pingyang Road, Xiaodian District, Taiyuan 030006, China Correspondence to *: [email protected], [email protected] Abstract —Russula changbaiensis (subg. Tenellula sect. Rhodellinae) from the Changbai Mountains, northeast China, is described as a new species. It is characterized by the red tinged pileus, slightly yellowing context, small basidia, short pleurocystidia, septate dermatocystidia with crystal contents, and a coniferous habitat. The phylogenetic trees based on ITS1-5.8S- ITS2 rDNA sequences fully support the establishment of the new species. Key words —Russulales, Russulaceae, taxonomy, morphology, Basidiomycota Introduction The worldwide genus ofRussula Pers. (Russulaceae, Russulales) is characterized by colorful fragile pileus, amyloid warty spores, abundant sphaerocysts in a heteromerous trama, and absence of latex (Romagnesi 1967, 1985; Singer 1986; Sarnari 1998, 2005). As a group of ectomycorrhizal fungi, it includes a large number of edible and medicinal species (Li et al. 2010). The genus has been extensively investigated with a long, rich and intensive taxonomic history in Europe (Miller & Buyck 2002). Although Russula species have been consumed in China as edible and medicinal use for a long time, their taxonomy has been overlooked (Li & Wen 2009, Li 2013). -
Notes, Outline and Divergence Times of Basidiomycota
Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G. -
The Taxonomy and Ecology of Wood Decay Fungi in Eucalyptus Obliqua Trees and Logs in the Wet Sclerophyll Forests of Southern Tasmania
The taxonomy and ecology of wood decay fungi in Eucalyptus obliqua trees and logs in the wet sclerophyll forests of southern Tasmania by Anna J. M. Hopkins B.Sc. (Hons.) School of Agricultural Science, University of Tasmania Cooperative Research Centre for Forestry A research thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy January, 2007 Declarations This thesis contains no material which has been accepted for a degree or diploma in any university or other institution. To the best of my knowledge, this thesis contains no material previously published or written by another person, except where due acknowledgment is made in the text. Anna J. M. Hopkins This thesis may be made available for loan and limited copying in accordance with the Copyright Act of 1968. Anna J. M. Hopkins ii Abstract The wet sclerophyll forests in southern Tasmania are dominated by Eucalyptus obliqua and are managed on a notional silvicultural rotation length of 80 to 100 years. Over time, this will lead to a simplified stand structure with a truncated forest age and thus reduce the proportion of coarse woody debris (CWD), such as old living trees and large diameter logs, within the production forest landscape. Course woody debris is regarded as a critical habitat for biodiversity management in forest ecosystems. Fungi, as one of the most important wood decay agents, are key to understanding and managing biodiversity associated with decaying wood. In Australia, wood-inhabiting fungi are poorly known and the biodiversity associated with CWD has not been well studied. This thesis describes two studies that were undertaken to examine the importance of CWD as habitat for wood-inhabiting fungi in the wet sclerophyll forests of Tasmania. -
Fungal Endophytes in a Seed-Free Host: New Species That Demonstrate Unique Community Dynamics
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 5-23-2018 Fungal Endophytes in a Seed-Free Host: New Species that Demonstrate Unique Community Dynamics Brett Steven Younginger Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons, and the Fungi Commons Let us know how access to this document benefits ou.y Recommended Citation Younginger, Brett Steven, "Fungal Endophytes in a Seed-Free Host: New Species that Demonstrate Unique Community Dynamics" (2018). Dissertations and Theses. Paper 4387. https://doi.org/10.15760/etd.6271 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Fungal Endophytes in a Seed-Free Host: New Species That Demonstrate Unique Community Dynamics by Brett Steven Younginger A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Dissertation Committee: Daniel J. Ballhorn, Chair Mitchell B. Cruzan Todd N. Rosenstiel John G. Bishop Catherine E. de Rivera Portland State University 2018 © 2018 Brett Steven Younginger Abstract Fungal endophytes are highly diverse, cryptic plant endosymbionts that form asymptomatic infections within host tissue. They represent a large fraction of the millions of undescribed fungal taxa on our planet with some demonstrating mutualistic benefits to their hosts including herbivore and pathogen defense and abiotic stress tolerance. Other endophytes are latent saprotrophs or pathogens, awaiting host plant senescence to begin alternative stages of their life cycles.