Durham E-Theses

Total Page:16

File Type:pdf, Size:1020Kb

Durham E-Theses Durham E-Theses The occurrence and paragenesis of the ores of titanium Welch, B. K. How to cite: Welch, B. K. (1958) The occurrence and paragenesis of the ores of titanium, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9186/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk THE OCCURRENCE MD PARAGENESIS OP THE ORES OP TITANIUM B.K., WELCH B.Sc. (Dunelm) P.G.S, VOLUME' I Thesis; sulDmitted for the Degree of Doctor of Philosophy in the University of Durham. 1 6 FEB 1959 CMOS . The Titaniian Mines of Europe:- Otanmaki Oy in central Finland (aDove) and Titania VS near Hauge I Dalane in south-west Norway. PREFACE AND ACKNO\'VLEDGEMENTS The thesis is a critical review and synthesis of the literature concerned with the ores of titanium, expanded with the author's original work on selected aspects of the subject, A new classification of titaniferous ore deposits is submitted "based on mode of occurrence, paragenesis and geochemistry. An introductory mineralogical chapter offers new and confirmatory data on optical properties and X-ray characteristics of ilmenite from primary ore deposits. Titanium ore deposits fall into two major classes, primary and secondary. The most important primary ores are genetically connected with batholithic anorthosites and the ores in this category which occur in the Egersund region of south-west Norway are described in detail for the first time. The genesis of the batholithic anorthosites and their associated titaniferous ore deposits is fully discussed and a new theory is put forward partially reconciling previously antagonistic magmatic and metasomatic theories. The economically important effedts of amphibolite facies metamorphism on titaniferous magnetite deposits, causing separation of a free ilmenite phase, is illustrated by the author's description of the Otanmaki orefield in central Finland, Iron- titanium oxide minerals in the gabbro of Carrock Pell, Cumberland are also the subject of original study. Secondary titaniimi ore deposits occur principally in ocean beach sands. The factors affecting their distribution are critically examined and attention is dravm. particularly to the effects of Pleistocene sea-level changes on heavy mineral concentration. The mineralogical changes which iron and titanium oxide minerals undergo in secondary deposits are discussed and new data is submitted to account for the TiOg variations which occur, A survey, with an economic emphasis, of world titanium mineral resoxirces is presented in 'Voliune II, Information of "both geological and economic interest is included, hased almost entirely on published material. The author wishes to make the following acknowledgements. To Professor K,C.Dunham F.R.S, for supervision, discussion, criticism and encoTiragement throughout the cotipse of study. To Mr. R, Phillips B.Sc,,P.G,S, for supervision of the polished section studies and many critical discussions of the work. To Messrs, Laporte Titanium Ltd, for the scholarship for maintenance and travelling which enabled the work to he carried out. To The Staff of the Laporte Group Central Library for devoting much time to tracing and obtaining pertinent literature and for translating certain foreign works. To Titania A/Q of Hauge I Dalane, Norway especially Messrs Brun, Raae and Dybdal and Otanmaki Oy, Otanmaki, Finland especially Messrs Paarma, Lindholm and Levanto for their hospitality and for providing facilities for field and mine studies in a most generous manner. To the Directorate of Colonial Geological Surveys for providing access to their library. To Mr W. Layton B,Sc, for information on the titanium resources of Ghana, To Dr, M,H,P, Bott for information concerning the Sierra Leone, norite complex. To Mr, E,J, Cobbing B,Sc, for many critical discussions of the subject.. To the workshop staff of the Durham Colleges Department of Geology for the preparation of thin and polished sections of ores and rocks;, and for reproducing the thesis photographs. To Mrs. W, Layton for redrawing four of the maps. To Mrs. R, Oliver for typing the thesis, and lastly To my wife for continual encouragement during the course of study and many hours of practical assistance during the final stages" of preparing the thesis. TABLE OF CONTENTS FOR VOLUME I Page No CHAPTER I INTRODUCTION 1 SOME ASPECTS OF THE GEOCHEMISTRY OP TITANIUM 1 TITANIUM ORES: A GENERAL CLASSIFICATION 7 The Primary Tltanitmi Ore Deposits 9 The Secondary Titaniimi Ore Deposits ;13 CHAPTER II THE MINERALOGY OP TITANIUM 15 SIMPLE OXIDES 16 Rutile 16 Anatase 18 Brookite 19 Pseudobrookite 19 Anosovite 20 DOUBLE OXIDES 20 Hematite 20 Ilmenite 23 Optical Properties 24 Exsolution Textures 26 Geikielite 30 Pyrophanite 30 Silicoilraenite 30 Davidite 30 MULTIPLE OXIDES 30 Hoegbomite 31 Perovskite Group 31 Magnetite (with Maghemite and Coulsonite) 32 TITAlT-rNIOBATES AND TITAN^COLUMBATBS 35 ABO. Type 35 AB o Type 35 \B 8 Type 36 TITAf-BORATES 35 TITAIT-SILICATES 37 CHAPTER III PRIMARY TITANIUM ORE DEPOSITS DEPOSITS ASSOCIATED WITH ANORTHOSITE MASSIFS 39 Page No, The Anorthosite Region of S.W, Norway The Metasediments The Igneous Rocks ^"7 The Ore Deposits 53 Genetic Problems 7° The Anorthosite-gabbros of the Bergen Arcs "''^ Anorthosites; and Anorthsite Gabbros 79 Eclogites; 79 The Ore Deposits of the Adirondack Mountains, New York °0 The Ore Deposits Genesis °^ Ore Associated with Undersaturated Metagabbros; Deposits in the Morin Anorthosite of Quebec 96 The Ore Deposits of the Lower Romaine river Anorthosite, . Quebec; 9o The Ore Deposits of the Sept-Iles Bay Area, Quebec 101 The Anorthosite Massif and Associated Ore Deposits; of the Laramie-Range, Wyoming lOU Structure 106 Genesis 107 Anorthosites in South-East em Ontario 108. Anorthosites and Ore Deposits; in Virginia HI Mineralogy 113 Genesis 115 The Ore- Deposits of St. Urbain, Charlevoix County, Quebec 121 Genesis; 125 GBEAPTES TV PRIMARY TITANIUM ORES 128 DEPOSITS IN GABBROS AND OTHER IGNEOUS COMPLEXES 188 Layered Gabbro-Norite Complexes 129 The Bushveld Complex. 129 The Colony Complex of Sierra Leone 135 Basic Alkaline and other Alkaline Plutonic Complexes 136 The Gremyakha-Vyrmes Pluton 137 The Lovozersky Complex, Kola 146 The. Khibine Complex, Kola 147 The Africanda Complex, Kola 147 The Mariupol Complex 147 Okorusu, S.W, Africa 147 Alkaline Volcanic Complexes; 148 Magnet Cove, Arkansas 148 Bukusu, Uganda 149 Carrock Pell - A Gabbro Complex rich in Ilmenite 149 The Opaque Minerals 154 Discussion 156 Other Titaniferous Gabbroic Intrusions 157 Page No. Abu Ghalqua, Egypt 157 Pervouralsk-Katchkanar, East Urals 158 Szarvasko, Bukk, Hungary 159 Azhinsk, West Siberia 159 Si-Yonpyong-do, South Korea 160 Taberg, Sweden 160 Tugela River, Natal 164 Chi-chia-tzu, Manchuria 165 Kusinsk-Kopansk 165 Liganga, Tanganyika 166 Duluth gabbro, MinnesD ta 166 Singhbhum and Mayurbhanj, India 167 Njombe District, Tanganyika 168 Otanraaki - A Metamorphosed Gabbroic Complex 168 Introduction 168 The Ore Zone 171 The Petrography of the Amphibolite 176 The Petrography of the Metagabbro 177 The Petrography of the Anorthosite 179 The Petrography of the Orebodies 180 Conclusions 187 CHAPTER V SECONDARY TITAITIUM ORE DEPOSITS 189 SECTION I BEACH SARD DEPOSITS 190 The. Beach Sand Heavy Mineral Deposits of the East Australian Seaboard 190 The Geological Background 191 The Heavy Mineral Deposits, 198 Mineralogy of the Deposits 201 The Distribution of the Heavy Minerals 202 Conclusions 204 The Beach Sand Deposits of the Brazilian Seaboard 204 The Beach and Inland Placer Deposits of Florida 208 The Beach Sand Deposits: of the South-East African Coast 212 The Beach Sand Deposits of the Senegal Coast 216 The Beach Sand Deposits of Travancore 217 Conclusions 219 SECTION II THE MINERALOGY OF THE IRON-TITANIUM OXIDE MINERALS IN SECONDARY DEPOSITS 223 Conclusions; 242 CHAPTER VI THE GENESIS OP THE BATHOLITHIC ANORTHOSITES AND THEIR RELATED ORE DEPOSITS . xiM^ 244 1. CHAPTER I INTRODUCTION SOME ASPECTS OP THE GEOCHEMISTRY OP TITANIUM Titanium is the ninth most abundant element in the earth's crust. It is, therefore, the most common of the 'rare' elements, those elements which do not play an important part in the major petrogenetic process;es. It is a strongly lithophilic element forming principally titanates, oxides, titanosilicates and titano- niobates. The average magmatic rock contains 0,64% Ti and the average sediment 0,445^ Ti, Order of Abundance of Elements in the Earth's Crust (in p,p,m, after Mason) 0 466,000 Na^ 28,300 Mn 1,000 Si 275^,200 K 25,900 Gr 200 Al 8i,300 Mg 20,900 V 150 Pe 50,000 Ti 4,400 Ni 80 Ca 36,300 Co 23 Titanium lies in the first long period of the Periodic Table in Group IVB, The elements which follow it in the long period are vanadium, chromium, manganese, iron, cobalt nickel and copper. Zirconiiim is foundwith it in Group IVB. Vanadiiom and iron are closely associated with the primary magmatic ores of titaniimi, as are chromium and manganese though in accessory amount. Zirconium often occurs with titaniiam in secondary ore deposits on account of the similar physical characteristics and chemical stability of the two elements' commonly occurring compounds in the environment of erosion, sedimentation and diagenesis.
Recommended publications
  • Some Aspects of the Geochemistry of Fluorine
    SOME ASPECTS OF THE GEOCHEMISTRY OF FLUORINE by ROBERT HENRY SERAPHIM B.App.Sci., Univ. of British Columbia 1947 M.App.Sci., Univ. of British Columbia 1948 SUBMITTED IN PARTIAL FULFILLAMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNIOLOGY 1951 Signature of Author. -. -. .*p7,- - .-. --.---.. ,Mepartment of Geology, May 11, 1951 Certified by. .. .. .. - - - - -- - -- -*--.. - - - -- A - Thesis Supervisor 0 0D C i o GS Chairman, Departmental Committee on Graduate Students I1 SOME ASPECTS OF THE GEOCHEMISTRY OF FLUORINE ROBERT HENRY SERAPHIM Submitted for the degree of Doctor of Philosophy in the Department of Geology on May 11, 1951 Abstract A spectrochemical method has been developed to determine fluorine in minerals, rocks, and soils containing .005 to 1 percent fluorine. Samples are mixed with calcium carbonate and carbon, and arced in helium atmosphere. The intensity of a Cao band which masks the very sensitive B2 group of CaF bands is thereby effectively reduced. A B2 group head at 6036 A can be used to determine as little as .005 percent fluorine, provided three identical samples are superimposed in one spectrum. A method modified after one developed previously by Ahrens (1942) has been used to determine fluorine in rocks and minerals containing more than .03 percent fluorine. Samples are arced in air, with one exposure per spectrum, so the method is more rapid and economical, though less sensitive, than the one described above. Fluorine has been determined in about three hundred specimens and samples. Averages have been calculated for the fluorine content of apatite, amphibole, biotite, muscovite, and titanite.
    [Show full text]
  • Minerals Named After Scientists
    Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 1 MINERALS NAMED AFTER PEOPLE AND PLACES © Dr. John Andraos, 2003-2011 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ PEOPLE MINERAL PERSON OR PLACE DESCRIPTION Abelsonite ABELSON, Philip Hauge (1913 - ?) geochemist Abenakiite ABENAKI people, Quebec, Canada Abernathyite ABERNATHY, Jess Mine operator American, b. ? Abswurmbachite ABS-WURMBACH, IRMGARD (1938 - ) mineralogist German, b. ? Adamite ADAM, Gilbert Joseph Zn3(AsO3)2 H2O (1795 - 1881) mineralogist French, b. ? Aegirine AEGIR, Scandinavian god of the sea Afwillite WILLIAMS, Alpheus Fuller (1874 - ?) mine operator DeBeers Consolidated Mines, Kimberley, South Africa Agrellite AGRELL, Stuart O. (? - 1996) mineralogist British, b. ? Agrinierite AGRINIER, Henri (1928 - 1971) mineralogist French, b. ? Aguilarite AGUILAR, P. Superintendent of San Carlos mine, Guanajuato, Mexico Mexican, b. ? Aikenite 2 PbS Cu2S Bi2S5 Andersonite ANDERSON, Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 2 Andradite ANDRADA e Silva, Jose B. Ca3Fe2(SiO4)3 de (? - 1838) geologist Brazilian, b. ? Arfvedsonite ARFVEDSON, Johann August (1792 - 1841) Swedish, b. Skagerholms- Bruk, Skaraborgs-Län, Sweden Arrhenite ARRHENIUS, Svante Silico-tantalate of Y, Ce, Zr, (1859 - 1927) Al, Fe, Ca, Be Swedish, b. Wijk, near Uppsala, Sweden Avogardrite AVOGADRO, Lorenzo KBF4, CsBF4 Romano Amedeo Carlo (1776 - 1856) Italian, b. Turin, Italy Babingtonite (Ca, Fe, Mn)SiO3 Fe2(SiO3)3 Becquerelite BECQUEREL, Antoine 4 UO3 7 H2O Henri César (1852 - 1908) French b. Paris, France Berzelianite BERZELIUS, Jöns Jakob Cu2Se (1779 - 1848) Swedish, b.
    [Show full text]
  • Revision #1 the Atomic Arrangement and Electronic Interactions In
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7851. http://www.minsocam.org/ 1 Revision #1 2 3 The atomic arrangement and electronic interactions in vonsenite at 4 295, 100, and 90 K 5 1, 1, 2 3 4 6 MARC MADERAZZO , JOHN M. HUGHES , M. DARBY DYAR , GEORGE R. ROSSMAN , 5 3 6 7 BRANDON J. ACKLEY , ELIZABETH C. SKLUTE , MARIAN V. LUPULESCU , AND 7 8 JEFFREY CHIARENZELLI 9 10 1Department of Geology, University of Vermont, Burlington, Vermont, 05405, U.S.A. 11 2Department of Geology and Environmental Earth Sciences, Miami University, Oxford, Ohio 45056, U.S.A. 12 3Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A. 13 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125- 14 2500, U.S.A. 15 5Department of Chemistry, University of Vermont, Burlington, Vermont, 05405, U.S.A. 16 6New York State Museum, Research and Collections, 3140 CEC, Albany, New York 12230, U.S.A. 17 7Department of Geology, St. Lawrence University, Canton, New York 13617, U.S.A. 18 19 ABSTRACT 2+ 3+ 20 Vonsenite, Fe 2Fe O2BO3, has been the subject of many studies in the materials-science and 21 condensed-matter-physics communities due to interest in the electronic and magnetic properties 22 and ordering behavior of the phase. One such study, undertaken on synthetic material of 23 endmember composition, reports X-ray diffraction structure refinements that indicate a phase 24 transition from Pbam to Pbnm at or just below approximately 283 K, determined subsequently to 25 arise from a Peierls-like instability.
    [Show full text]
  • SUBJECT TNDEX, VOLUME 76, L99l
    American Mineralogist, Volume 76, pages2040-2055, l99I SUBJECT TNDEX, VOLUME 76, l99l AgrsBis.sSg,665 Amphibole, tremolitic (synthetic), Analysis, chemical (mineral), cozt. Agr.sBiz.sSira,665 l8l I clinopyroxene,756, 1061, 1141, AgeSbTezS+,665 Amphibolile,956, 1184 1306. 1328 AgroFeTezSr665 Anaglyphic filters, 557 clinozoisite,589, 1061 27A,1,309 Analcime, lE9 clintonite, 1061 AlzSiOs,677 Analcimechannel HrO, 189 columbite, 1261, 1897 AuPbzBiTezS* 1434 Analcime phenocryst,189 cordierite,942 Aug(Ag,Pb)As2Te3,1434 Analcime phonolite, 189 corrensite, 628 o-spodumene,42 Analysis,chemical (mineral) crocidolite, 1467 Actinolite. 1184 actinolite, ll84 cummingtonite, 956, 97| Actinolite and hornblende. akagan€ite,272 diopside, 904 coexisting, 11E4 alkali feldspar,218, 913 dissakisite-(Ce),1990 Actinolite and hornblende, allanite, 589 dolomite,713 exsolution between, 1184 amesite,647 edenite,Mn-rich, 1431 Activity model amphibole,548,755, 1002, 1305, elbaite, cuprian, 1479 staurolite,1910 l&6, t920 epidote, 528 AFM analcime,189 Fe-Ti oxide, 548 hematite, 1442 anandite.1583 fayalite, manganoan,288 Akagangite,2T2 andradite,1249 feldspar, 1646 Alaska anorthite(synthetic), 1110 fergusonite, 1261 dacite. 1662 anthophyllite, 942, 956 fluocerite. 1261 Alberta apatite,83,574,6E1, 1857, 1990 fumarole, 1552 analcime, 189 apatite,rare-earth bearing, 1165 garnet,138, 756, 956, 1061, analcime phonolite, 189 arsenopyrite,1964 1153,1431, 1950 blairmorite, 189 ashburtonite,1701 garnet, grossular-andradite,1319 sanidine, 189 augite,956 garnet, zone4 1781 trachyte, 189 barite, 1964 gedrite,942,956 Albite, 1328, 1646, L773 beusite,1985 gillulyite, 653 Albite, Ga analogue,92 biotite,138, 218, 548,574,713, glaucophane,971 Albite, Ga-bearing,92 956, rt74, l26t graftonite, 1985 Albite, Ge analogue,92 biotite, Ba-rich, 1683 grossular,1153 Albite, Ge-bearing,92 biotite.
    [Show full text]
  • Borate Minerals. Ii. a Hierarchy of Structures
    731 The Canadian Mineralogist Vol 37, pp 731-'162(1999) BORATEMINERALS. II. A HIERARCHYOF STRUCTURES BASEDUPON THE BORATE FUNDAMENTAL BUILDING BLOCK JOEL D. GRICE Research Division, Canadian Museum of Nature, p O. Box 3443, Station D, Ottawa, Ontario Klp 6p4, Canada PETERC. BURNS Department of Civil Engineering and Geological Sciences,(Jniversity of Notre Dame, Notre Dame, Indiana 46556, U.S.A. FRANK C. HAWTHORNES Department of Geological Sciences,University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada AesrRAcr A hierarchical structural classification is developed for borate minerals, based on the linkage of (BQ) triangles and (BO+) tetrahedra to form FBBs (fundamental building blocks) that polymerize to form the structural unit, a tightly bonded anionic polyhedral array whose excesscharge is baianced by the presenceof large low-valence interstitial cations. Thirty-one minerals, with nineteen distinct structure-types,contain isolated borate polyhedra. Twenty-seven minerals, with twenty-five distinct struc- ture-types, contain finite clusters of borate polyhedra. Ten minerals, with ten distinct structue-types, contain chains of borate polyhedra. Fifteen minerals, with thirteen distinct structue-types, contain sheets of borate polyhedra. Fifteen minerals, with thirteen distinct sEucture-types,contain frameworks of borate polyhedra. It is only the close-packed structures of the isolated- polyhedra class that show significant isotypism Kelwords: borate minerals, crystal sffuctures, structural hierarchy. Sowenn Nous ddvelopponsici un sch6made classification structurale des mindraux du groupe des borates,fond6 sur I'articulation des ffiangles (BO:) et des t6trabdres(BOa), qui forment des modules structuraux fondamentaux. Ceux-ci, polym6ris6s, constituent l'unitd structuralede la maille, un agencementcompact d'anions fait de ces polyddres dont I'excddent de charge est neutralis6par des cations interstitiels h rayon relativement gros et d valence relativement faible.
    [Show full text]
  • Comportamiento Magneto-Dieléctrico Del Compuesto La0.67Ca0.33Mno3
    UNIVERSIDAD DE A CORUÑA FACULTAD DE CIENCIAS DEPARTAMENTO DE QUÍMICA FUNDAMENTAL Área de Química Inorgánica ORDEN DE CARGA Y SEGREGACIÓN DE FASES: PROPIEDADES MAGNETO- DIELÉCTRICAS Beatriz Rivas Murias A Coruña, Julio 2006 Memoria presentada en la Facultad de Ciencias de la Universidad de A Coruña por Dña. Beatriz Rivas Murias para obtener el Grado de Doctor en Química por la Universidad de A Coruña Julio 2006 UNIVERSIDADE DA CORUÑA DEPARTAMENTO QUÍMICA FUNDAMENTAL Facultade de Ciencias Campus da Zapateira, s/n 15071 A Coruña Teléfono 34-981-167000 Fax 34-981-167065 D. JESÚS JOSÉ FERNÁNDEZ SÁNCHEZ, Profesor Titular de Universidad y Director del Departamento de Química Fundamental de la Universidad de A Coruña, CERTIFICA: Que la presente memoria titulada “ORDEN DE CARGA Y SEGREGACIÓN DE FASES: PROPIEDADES MAGNETO- DIELÉCTRICAS”, fue realizada por la Graduada en Química Dña. BEATRIZ RIVAS MURIAS bajo la dirección de la Profesora Dra. Dña. MARÍA ANTONIA SEÑARÍS RODRÍGUEZ de la UDC y el Catedrático Dr. D. JOSÉ RIVAS REY de la USC y constituye su Tesis Doctoral. Para que así conste, expide y firma la presente certificación. En A Coruña, a 24 de marzo de 2006. Jesús José Fernández Sánchez UNIVERSIDADE DA CORUÑA DEPARTAMENTO QUÍMICA FUNDAMENTAL Facultade de Ciencias Campus da Zapateira, s/n 15071 A Coruña Teléfono 34-981-167000 Fax 34-981-167065 Dña. MARÍA ANTONIA SEÑARÍS RODRÍGUEZ, Profesora Titular de Universidad del Área de Química Inorgánica de la Facultad de Ciencias de la Universidad de A Coruña y D. JOSÉ RIVAS REY, Catedrático de Física Aplicada del Departamento de Física Aplicada de la Universidad de Santiago de Compostela, CERTIFICAN: Que el trabajo descrito en la presente memoria, titulado “ORDEN DE CARGA Y SEGREGACIÓN DE FASES: PROPIEDADES MAGNETO- DIELÉCTRICAS”, fue realizado bajo nuestra dirección por Dña.
    [Show full text]
  • A Glossary of Uranium- and Thorium-Bearing Minerals
    GEOLOGICAL SURVEY CIRCULAR 74 April 1950 A GLOSSARY OF URANIUM­ AND THORIUM-BEARING MINERALS By Judith Weiss Frondel and Michael F1eischer UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director WASHINGTON. D. C. Free on application to the Director, Geological Survey, Washington 25, D. C. A GLOSSAR-Y OF URANIUM- AND THORIUM-BEARING MINERALS By Judith Weiss Fronde! and Michael Fleischer CONTENTS Introduction ••oooooooooo••••••oo•-•oo•••oo••••••••••oooo•oo••oooooo••oo•oo•oo•oooo••oooooooo•oo• 1 .A. Uranium and thorium minerals oooo oo oo ......................... oo .... oo oo oo oo oo oooooo oo 2 B. Minerals with minor amounts of uranium and thorium 000000000000000000000000.... 10 C. Minerals that should be tested for uranium and thorium ...... 00 .. 00000000000000 14 D. Minerals that are non-uranium- or non-thorium­ bearing, but that have been reported to contain impurities or intergrowths of uranium, thorium, or rare-earth minerals oooooo•oo ............ oo ... oo .. oooooo'""""oo" .. 0000 16 Index oo ...... oooooo•oo••••oo•oooo•oo•oooo•·~· .. •oooo•oooooooooooo•oooooo•oooooo•oooo••oo•••oooo••• 18 INTRODUCTION The U. S. ·Geological Survey has for some time been making a systematic survey of da~ pertaining to uranium and thorium minerals and to those minerals that contain trace1 or more of uranium and thorium. This survey consists of collecting authoritative chemical, optical, and X-ray diffraction data from the literature and of adding to these data, where inadequate, by work in the laboratory. The results will he reported from time to time, and the authors welcome in- formation on additional data and names.
    [Show full text]
  • Warwickite (Mg, Ti, Al)2O(BO3) C 2001-2005 Mineral Data Publishing, Version 1
    Warwickite (Mg, Ti, Al)2O(BO3) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals are prismatic, {010}, {100}, {110}, {130}, {310}, with rounded terminations, to 5 mm; anhedral granular. Physical Properties: Cleavage: On {100}, good. Fracture: Uneven. Tenacity: Brittle. Hardness = 3.5–4 D(meas.) = 3.34–3.36 D(calc.) = 3.40 Optical Properties: Opaque, transparent in thinnest edges. Color: Dark brown to black; deep yellow, pale brown, reddish brown in thin section. Streak: Bluish black. Luster: Subvitreous to pearly, submetallic on cleavages, commonly dull if altered. Optical Class: Biaxial (+). Pleochroism: Slight; X = yellow-brown; Y = reddish brown; Z = cinnamon-brown. Orientation: X = c; Y = b; Z = a. Absorption: X > Y > Z. α = 1.806(5) β = 1.809(5) γ = 1.830(5) 2V(meas.) = Small, variable. Cell Data: Space Group: P nam. a = 9.037–9.255 b = 9.358–9.450 c = 3.01–3.116 Z=4 X-ray Powder Pattern: Edenville, New York, USA. 2.57 (10), 2.75 (5), 6.55 (4), 4.20 (4), 2.97 (3), 1.979 (3), 1.721 (3) Chemistry: (1) (2) (1) (2) B2O3 21.29 [25.8] FeO 9.15 SiO2 1.39 MgO 35.71 39.3 TiO2 24.86 20.4 CaO 0.3 Al2O3 2.91 7.7 Total 100.07 [100.6] Fe2O3 4.76 7.1 2+ (1) Edenville, New York, USA; average of two analyses; corresponds to (Mg1.28Ti0.45Fe0.18Al0.08 3+ Fe0.09)Σ=2.08O(B0.88O3).
    [Show full text]
  • K2sbb3o8: a Novel Boroantimonate with Isolated [B3O8] Groups No
    35 卷 8 期 结 构 化 学 (JIEGOU HUAXUE) Vol. 35, No. 8 2016. 8 Chinese J. Struct. Chem. 1269─1276 K2SbB3O8: A Novel Boroantimonate 7- ① with Isolated [B3O8] Groups SHEN Yao-Guoa ZHAO San-Genb LUO Jun-Huab② a (Department of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China) b (Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China) ABSTRACT A new boroantimonate K2SbB3O8 has been synthesized by high-temperature solid- state reactions, and its crystals have been obtained by the flux method. The crystal structure has been determined from single-crystal X-ray diffraction analysis. The compound crystallizes in the monoclinic space group P21/c with a = 5.8890(2), b = 11.0512(4), c = 10.8951(4) Å, β = 3 3 103.200(4)°, V = 690.32(4) Å , Z = 4, F(000) = 672, ρc = 3.467 g/cm , Mr = 360.38 and μ = 5.215 -1 mm . Its structure feature is a three-dimensional framework composed of SbO6 octahedra and 7- + isolated [B3O8] groups with K cations residing in the one-dimensional tunnels along the a-axis. 7- 7- Interestingly, the isolated [B3O8] groups are distinct from the known [B3O8] groups, which always connect to each other. The UV-vis-NIR absorption, thermal stability and infrared spectrum are also discussed in this paper. Keywords: borate, crystal structure, isolated group, infrared spectrum; DOI: 10.14102/j.cnki.0254-5861.2011-1143 [5] [6] 1 INTRODUCTION optical materials, such as β-BaB2O4 , LiB3O5 , [7] and CsB3O5 .
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Zircon, Monazite and Other Minerals Used in the Production of Chemical Com- Pounds Employed in the Manufac- Ture of Lighting Apparatus
    North Carolina State Library GIFT OF \*J.^. M «v* Digitized by the Internet Archive in 2013 http://archive.org/details/zirconmonaziteot25prat V C*> ttonh Carolina Stat© ^vtef <^ Raleigh NORTH CAROLINA GEOLOGICAL AND ECONOMIC SURVEY JOSEPH HYDE PRATT, State Geologist BULLETIN No. 25 Zircon, Monazite and Other Minerals Used in the Production of Chemical Com- pounds Employed in the Manufac- ture of Lighting Apparatus BY JOSEPH HYDE PRATT, Ph.D. Raleigh, N. 0. Edwards & Broughton Printing Co. State Printers and Binders 1916 GEOLOGICAL BOARD Governor Locke Craig, ex officio chairman Raleigh Frank R. Hewitt Asheville Hugh MacRae Wilmington Henry E. Fries ". Winston-Salem John Sprunt Hill Durham Joseph Hyde Pratt, State Geologist Chapel Hill ^5 LETTER OF TRANSMITTAL Chapel Hill, M". C, October 1, 1915. To His Excellency , Honorable Locke Craig, Governor of North Carolina. Sir :—I have the honor to submit herewith for publication as Bulletin 25 a report on Zircon, Monazite and other Minerals Used in the Pro- duction of Chemical Compounds Employed in the Manufacture of Light- ing Apparatus. There is a renewed interest in the deposits of these min- erals in North Carolina, and the present report takes up not only a description of the localities in which these minerals are found, but is a technical review of the development of the lighting industry. Very truly yours, Joseph Hyde Pratt, State Geologist. ±o 5 ,3 3 2 7 CONTENTS PAGE Introduction 7 Zircon 7 Sources of Zirconia 10 Zircon 10 Baddeleyite 10 Other Zirconia-bearing Minerals 11 Occurrences and localities of Zircon 13 Zircon from Henderson County, N.
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]