Geochemistry of Niobium and Tantalum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Serpentine–Hisingerite Solid Solution in Altered Ferroan Peridotite and Olivine Gabbro
minerals Article Serpentine–Hisingerite Solid Solution in Altered Ferroan Peridotite and Olivine Gabbro Benjamin M. Tutolo 1,* , Bernard W. Evans 2 and Scott M. Kuehner 2 1 Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada 2 Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195-1310, USA; [email protected] (B.W.E.); [email protected] (S.M.K.) * Correspondence: [email protected] Received: 20 November 2018; Accepted: 11 January 2019; Published: 15 January 2019 Abstract: We present microanalyses of secondary phyllosilicates in altered ferroan metaperidotite, 2+ containing approximately equal amounts of end-members serpentine ((Mg,Fe )3Si2O5(OH)4) and 3+ hisingerite (Fe 2Si2O5(OH)4·nH2O). These analyses suggest that all intermediate compositions can exist stably, a proposal that was heretofore impossible because phyllosilicate with the compositions reported here have not been previously observed. In samples from the Duluth Complex (Minnesota, USA) containing igneous olivine Fa36–44, a continuous range in phyllosilicate compositions is associated with hydrothermal Mg extraction from the system and consequent relative enrichments in Fe2+, Fe3+ (hisingerite), Si, and Mn. Altered ferroan–olivine-bearing samples from the Laramie Complex (Wyoming, USA) show a compositional variability of secondary FeMg–phyllosilicate (e.g., Mg–hisingerite) that is discontinuous and likely the result of differing igneous olivine compositions and local equilibration during alteration. Together, these examples demonstrate that the products of serpentinization of ferroan peridotite include phyllosilicate with iron contents proportionally larger than the reactant olivine, in contrast to the common observation of Mg-enriched serpentine in “traditional” alpine and seafloor serpentinites To augment and contextualize our analyses, we additionally compiled greenalite and hisingerite analyses from the literature. -
Tundrite-(Ce) Na3(Ce; La)4(Ti; Nb)2(Sio4)2(CO3)3O4(OH) ² 2H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Triclinic
Tundrite-(Ce) Na3(Ce; La)4(Ti; Nb)2(SiO4)2(CO3)3O4(OH) ² 2H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Triclinic. Point Group: 1: Crystals acicular along [001] and °attened on 010 , to 3 cm; as stellate groups and spherulitic masses. Twinning: On 010 , producing f g f g pseudorhombohedra. Physical Properties: Cleavage: Pronounced on 010 . Fracture: Splintery. f g Tenacity: Brittle. Hardness = 3 D(meas.) = 3.70{4.12 D(calc.) = 4.06 » Optical Properties: Transparent. Color: Brownish yellow, greenish yellow to bright light green. Streak: Yellowish gray. Luster: Vitreous to adamantine. Optical Class: Biaxial (+). Pleochroism: Weak; X = pale yellow; Z = greenish yellow. Orientation: Z c = 4 {14 . ® = 1.743 ¯ = 1.80 ° = 1.88 2V(meas.) = 76 ^ ± ± ± Cell Data: Space Group: P 1: a = 7.533(4) b = 13.924(6) c = 5.010(2) ® = 99±52(2)0 ¯ = 70±50(3)0 ° = 100± 59(2)0 Z = 1 X-ray Powder Pattern: Il¶³maussaq intrusion, Greenland. 13.49 (100), 2.505 (100), 3.448 (90), 2.766 (90), 3.535 (80), 6.784 (70), 1.914 (70) Chemistry: (1) SiO2 10.03 TiO2 12.20 La2O3 8.57 Ce2O3 24.38 Nd2O3 10.25 RE2O3 5.80 Nb2O5 3.44 CaO 0.75 Na2O 8.20 CO3 16.38 Total [100.00] (1) Il¶³maussaq intrusion, Greenland; by electron microprobe, C con¯rmed by loss on ignition; original analysis given as elements, here recalculated to oxides, corresponding to Na3:17(Ce1:78Nd0:73La0:63RE0:41Ca0:16)§=3:71(Ti1:83Nb0:31)§=2:14(SiO4)2:00(CO3)3:27O4:25: Occurrence: In pegmatite veins associated with nepheline syenites. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Tetrahedral Boron in Naturally Occurring Tourmaline LETTERS
American Mineralogist, Volume 84, pages 1451–1455, 1999 LETTERS Tetrahedral boron in naturally occurring tourmaline S.L. TAGG,1,* HERMAN CHO,1,† M. DARBY DYAR,2 AND EDWARD S. GREW3 1Environmental Molecular Sciences Laboratory MS K8-98, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, U.S.A. 2Department of Geology and Geography, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A. 3Department of Geological Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Evidence for boron in both trigonal and tetrahedral coordination has been found in 11B magic- angle-spinning (MAS) nuclear magnetic resonance (NMR) spectra of natural, inclusion-free speci- mens of aluminum-rich lithian tourmaline from granitic pegmatites. INTRODUCTION tent with some substitution of silicon by boron (Hawthorne Minerals of the tourmaline group are by far the most wide- 1996). Wodara and Schreyer (1997; 1998) synthesized olenites spread borosilicate phases and the dominant carriers of boron in with an even greater amount of excess boron and boron substi- 11 crustal metamorphic and igneous rocks. The amount of boron tution for silicon, and cited B magic-angle-spinning (MAS) and its crystallographic position in tourmaline are of interest not nuclear magnetic resonance (NMR) evidence for the presence only to mineralogists, but also to geochemists studying the be- of both trigonal and tetrahedral boron. In summary, the coor- havior of boron and its isotopes in natural systems. Previous dination and partitioning of boron in tourmaline have not yet studies of boron contents in tourmaline have yielded variable been definitively characterized. In part, this results from in- results. -
And Ta-Bearing Oxide Minerals in the Greer Lake Pegmatitic Granite and Its Pegmatiteaureole, Southeasternmanitoba
American Mineralogist, Volume 71, pages 501-517, 1986 Fractionation trends of the Nb- and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatiteaureole, southeasternManitoba Pnrn ennmi, Bnucn E. Golo,r FuNx C. H,lwruronNr, RoN CrHplr,lN Department of Earth Sciences,University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Arsrucr The Greer Lake pegmatitic granite and related exterior rare-element pegmatites of the beryl-columbite type intrude metabasalt and tonalite gneiss in the Archean English River Subprovince of southeasternManitoba. Columbite-tantalite is the predominant Nb- and Ta-bearingmineral, associatedwith subordinateixiolite, microlite, niobian-tantalian rutile, and rare tantalian cassiterite, wodginite, and ilmenite. In coexisting mineral pairs, Tal(Ta + Nb) of microlite exceedsthat of columbite-tantalite, ixiolite, rutile, and cassiterite;in cassiteriteand rutile, Tal(Ta + Nb) is higher and Mn/(Mn * Fe) lower than in columbite- tantalite and ixiolite. In Li-, Rb-, Cs-, and F-poor environments, limited Mn enrichment accompaniesthe fractionation of Ta, which culminates in ixiolite and subordinate microlite. In Li-, Rb-, Cs-, and F-rich parageneses,extensive Mn enrichment precedesthe main Ta fractionation, which subsequentlygenerates near-end-member manganotantalite, wodginite, and mi- crolite. The Greer Lake and other fractionation trends indicate that a late-stageF-rich environment promotes extreme Fe/Mn fractionation prior to the main stage of Nb-Ta separation. The abundancesof Sn, Ti, and Sc are not related to fluorine or rare-alkali enrichment, but increasefrom pegmatitic granite to pegnatites. The relative accumulation of Ti and Sc in the pegmatite aureole seemsto be due to internal fractionation rather than assimilation. Columbite-tantalite in the pegmatitic granite shows an intermediate to near-ordered structural state, but is highly disordered in the pegmatite veins. -
Anorogenic Alkaline Granites from Northeastern Brazil: Major, Trace, and Rare Earth Elements in Magmatic and Metamorphic Biotite and Na-Ma®C Mineralsq
Journal of Asian Earth Sciences 19 (2001) 375±397 www.elsevier.nl/locate/jseaes Anorogenic alkaline granites from northeastern Brazil: major, trace, and rare earth elements in magmatic and metamorphic biotite and Na-ma®c mineralsq J. Pla Cida,*, L.V.S. Nardia, H. ConceicËaÄob, B. Boninc aCurso de PoÂs-GraduacËaÄo em in GeocieÃncias UFRGS. Campus da Agronomia-Inst. de Geoc., Av. Bento GoncËalves, 9500, 91509-900 CEP RS Brazil bCPGG-PPPG/UFBA. Rua Caetano Moura, 123, Instituto de GeocieÃncias-UFBA, CEP- 40210-350, Salvador-BA Brazil cDepartement des Sciences de la Terre, Laboratoire de PeÂtrographie et Volcanologie-Universite Paris-Sud. Centre d'Orsay, Bat. 504, F-91504, Paris, France Accepted 29 August 2000 Abstract The anorogenic, alkaline silica-oversaturated Serra do Meio suite is located within the Riacho do Pontal fold belt, northeast Brazil. This suite, assumed to be Paleoproterozoic in age, encompasses metaluminous and peralkaline granites which have been deformed during the Neoproterozoic collisional event. Preserved late-magmatic to subsolidus amphiboles belong to the riebeckite±arfvedsonite and riebeckite± winchite solid solutions. Riebeckite±winchite is frequently rimmed by Ti±aegirine. Ti-aegirine cores are strongly enriched in Nb, Y, Hf, and REE, which signi®cantly decrease in concentrations towards the rims. REE patterns of Ti-aegirine are strikingly similar to Ti-pyroxenes from the IlõÂmaussaq peralkaline intrusion. Recrystallisation of mineral assemblages was associated with deformation although some original grains are still preserved. Magmatic annite was converted into magnetite and biotite with lower Fe/(Fe 1 Mg) ratios. Recrystallised amphibole is pure riebeckite. Magmatic Ti±Na-bearing pyroxene was converted to low-Ti aegirine 1 titanite ^ astrophyllite/aenigmatite. -
Some Aspects of the Geochemistry of Fluorine
SOME ASPECTS OF THE GEOCHEMISTRY OF FLUORINE by ROBERT HENRY SERAPHIM B.App.Sci., Univ. of British Columbia 1947 M.App.Sci., Univ. of British Columbia 1948 SUBMITTED IN PARTIAL FULFILLAMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNIOLOGY 1951 Signature of Author. -. -. .*p7,- - .-. --.---.. ,Mepartment of Geology, May 11, 1951 Certified by. .. .. .. - - - - -- - -- -*--.. - - - -- A - Thesis Supervisor 0 0D C i o GS Chairman, Departmental Committee on Graduate Students I1 SOME ASPECTS OF THE GEOCHEMISTRY OF FLUORINE ROBERT HENRY SERAPHIM Submitted for the degree of Doctor of Philosophy in the Department of Geology on May 11, 1951 Abstract A spectrochemical method has been developed to determine fluorine in minerals, rocks, and soils containing .005 to 1 percent fluorine. Samples are mixed with calcium carbonate and carbon, and arced in helium atmosphere. The intensity of a Cao band which masks the very sensitive B2 group of CaF bands is thereby effectively reduced. A B2 group head at 6036 A can be used to determine as little as .005 percent fluorine, provided three identical samples are superimposed in one spectrum. A method modified after one developed previously by Ahrens (1942) has been used to determine fluorine in rocks and minerals containing more than .03 percent fluorine. Samples are arced in air, with one exposure per spectrum, so the method is more rapid and economical, though less sensitive, than the one described above. Fluorine has been determined in about three hundred specimens and samples. Averages have been calculated for the fluorine content of apatite, amphibole, biotite, muscovite, and titanite. -
Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages. -
Ocean Drilling Program Scientific Results Volume
9. GEOCHEMICAL EXPRESSION OF EARLY DIAGENESIS IN MIDDLE EOCENE-LOWER OLIGOCENE PELAGIC SEDIMENTS IN THE SOUTHERN LABRADOR SEA, SITE 647, ODP LEG 1051 M. A. Arthur,2 W. E. Dean,3 J. C. Zachos,2 M. Kaminski,4 S. Hagerty Rieg,2 and K. Elmstrom2 ABSTRACT Geochemical analyses of the middle Eocene through lower Oligocene lithologic Unit IIIC (260-518 meters below seafloor [mbsf]) indicate a relatively constant geochemical composition of the detrital fraction throughout this deposi tional interval at Ocean Drilling Program (ODP) Site 647 in the southern Labrador Sea. The main variability occurs in redox-sensitive elements (e.g., iron, manganese, and phosphorus), which may be related to early diagenetic mobility in anaerobic pore waters during bacterial decomposition of organic matter. Initial preservation of organic matter was me diated by high sedimentation rates (36 m/m.y.). High iron (Fe) and manganese (Mn) contents are associated with car bonate concretions of siderite, manganosiderite, and rhodochrosite. These concretions probably formed in response to elevated pore-water alkalinity and total dissolved carbon dioxide (C02) concentrations resulting from bacterial sulfate reduction, as indicated by nodule stable-isotope compositions and pore-water geochemistry. These nodules differ from those found in upper Cenozoic hemipelagic sequences in that they are not associated with methanogenesis. Phosphate minerals (carbonate-fluorapatite) precipitated in some intervals, probably as the result of desorption of phosphorus from iron and manganese during reduction. The bulk chemical composition of the sediments differs little from that of North Atlantic Quaternary abyssal red clays, but may contain a minor hydrothermal component. The silicon/ aluminum (Si/Al) ratio, however, is high and variable and probably reflects original variations in biogenic opal, much of which is now altered to smectite and/or opal CT. -
Titanite Ores of the Khibiny Apatite-Nepheline- Deposits: Selective Mining, Processing and Application for Titanosilicate Synthesis
minerals Article Titanite Ores of the Khibiny Apatite-Nepheline- Deposits: Selective Mining, Processing and Application for Titanosilicate Synthesis Lidia G. Gerasimova 1,2, Anatoly I. Nikolaev 1,2,*, Marina V. Maslova 1,2, Ekaterina S. Shchukina 1,2, Gleb O. Samburov 2, Victor N. Yakovenchuk 1 and Gregory Yu. Ivanyuk 1 1 Nanomaterials Research Centre of Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity 184209, Russia; [email protected] (L.G.G.); [email protected] (M.V.M.); [email protected] (E.S.S.); [email protected] (V.N.Y.); [email protected] (G.Y.I.) 2 Tananaev Institute of Chemistry of Kola Science Centre, Russian Academy of Sciences, 26a Fersman Street, Apatity 184209, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-815-557-9231 Received: 4 September 2018; Accepted: 10 October 2018; Published: 12 October 2018 Abstract: Geological setting and mineral composition of (apatite)-nepheline-titanite ore from the Khibiny massif enable selective mining of titanite ore, and its processing with sulfuric-acid method, without preliminary concentration in flotation cells. In this process flow diagram, titanite losses are reduced by an order of magnitude in comparison with a conventional flotation technology. Further, dissolution of titanite in concentrated sulfuric acid produces titanyl sulfate, which, in turn, is a precursor for titanosilicate synthesis. In particular, synthetic analogues of the ivanyukite group minerals, SIV, was synthesized with hydrothermal method from the composition based on titanyl-sulfate, and assayed as a selective cation-exchanger for Cs and Sr. -
4Utpo3so UM-P-88/125
4utpo3So UM-P-88/125 The Incorporation of Transuranic Elements in Titanatc Nuclear Waste Ceramics by Hj. Matzke1, B.W. Seatonberry2, I.L.F. Ray1, H. Thiele1, H. Trisoglio1, C.T. Walker1, and T.J. White3'4'5 1 Commission of the European Communities, Joint Research Centre, i Karlsruhe Establishment, ' \ 'I European Institute for Transuranium Elements, Postfach 2340, D-7500 Karlsruhe, Federal Republic of Germany. 2 Advanced Materials Program, Australian Nuclear Science and Technology Organization, Private Mail Bag No. 1, Menai, N.S.W., 2234, Australia. 3 National Advanced Materials Analytical Centre, School of Physics, The University of Melbourne, Parkville, Vic, 3052, Australia. Supported by the Australian Natio-al Energy Research, Development and Demonstration Programme. 4 Member, The American Ceramic Society 5 Author to whom correspondence whould oe addressed 2 The incorporation of actinide elements and their rare earth element analogues in titanatc nuclear waste forms are reviewed. New partitioning data are presented for three waste forms contining Purex waste simulant in combination with either NpC^, PuC>2 or An^Oo. The greater proportion of transuranics partition between perovskitc and ztrconoiite, while some americium may enter loveringite. Autoradiography revealed clusters of plutonium atoms which have been interpreted as unrcacted dioxide or scsquioxide. It is concluded that the solid state behavior of transaranic elements in titanate waste forms is poorly understood; certainly inadequate to tailor a ceramic for the incorporation of fast breeder reactor wastes. A number of experiments are proposed that will provide an adequate, data base for the formulation and fabrication of transuranic-bearing jj [i waste forms. ' ' 1 ~> I.