Anorogenic Alkaline Granites from Northeastern Brazil: Major, Trace, and Rare Earth Elements in Magmatic and Metamorphic Biotite and Na-Ma®C Mineralsq

Total Page:16

File Type:pdf, Size:1020Kb

Anorogenic Alkaline Granites from Northeastern Brazil: Major, Trace, and Rare Earth Elements in Magmatic and Metamorphic Biotite and Na-Ma®C Mineralsq Journal of Asian Earth Sciences 19 (2001) 375±397 www.elsevier.nl/locate/jseaes Anorogenic alkaline granites from northeastern Brazil: major, trace, and rare earth elements in magmatic and metamorphic biotite and Na-ma®c mineralsq J. Pla Cida,*, L.V.S. Nardia, H. ConceicËaÄob, B. Boninc aCurso de PoÂs-GraduacËaÄo em in GeocieÃncias UFRGS. Campus da Agronomia-Inst. de Geoc., Av. Bento GoncËalves, 9500, 91509-900 CEP RS Brazil bCPGG-PPPG/UFBA. Rua Caetano Moura, 123, Instituto de GeocieÃncias-UFBA, CEP- 40210-350, Salvador-BA Brazil cDepartement des Sciences de la Terre, Laboratoire de PeÂtrographie et Volcanologie-Universite Paris-Sud. Centre d'Orsay, Bat. 504, F-91504, Paris, France Accepted 29 August 2000 Abstract The anorogenic, alkaline silica-oversaturated Serra do Meio suite is located within the Riacho do Pontal fold belt, northeast Brazil. This suite, assumed to be Paleoproterozoic in age, encompasses metaluminous and peralkaline granites which have been deformed during the Neoproterozoic collisional event. Preserved late-magmatic to subsolidus amphiboles belong to the riebeckite±arfvedsonite and riebeckite± winchite solid solutions. Riebeckite±winchite is frequently rimmed by Ti±aegirine. Ti-aegirine cores are strongly enriched in Nb, Y, Hf, and REE, which signi®cantly decrease in concentrations towards the rims. REE patterns of Ti-aegirine are strikingly similar to Ti-pyroxenes from the IlõÂmaussaq peralkaline intrusion. Recrystallisation of mineral assemblages was associated with deformation although some original grains are still preserved. Magmatic annite was converted into magnetite and biotite with lower Fe/(Fe 1 Mg) ratios. Recrystallised amphibole is pure riebeckite. Magmatic Ti±Na-bearing pyroxene was converted to low-Ti aegirine 1 titanite ^ astrophyllite/aenigmatite. The reaction riebeckite 1 quartz ! aegirine 1 magnetite 1 quartz 1 ¯uid is also observed. Biotite and Na-ma®c minerals recrystallised under metamorphic oxidising conditions corresponding to temperatures of 6008C between the NiNiO and HM buffers. q 2001 Elsevier Science Ltd. All rights reserved. Keywords: Anorogenic alkaline granites; Earth elements; Northeastern Brazil 1. Introduction genic alkaline suites, Rogers and Greenberg (1990) showed that post-orogenic suites are slightly richer in Granites related to the alkaline series are common in CaO and MgO with lower amounts of alkalis. Peralkaline within-plate, anorogenic (Murthy and Venkatenaman, types are more abundant in anorogenic suites while meta- 1964; Martin and Piwinskii, 1972), or post orogenic luminous types are largely dominant in post-orogenic asso- settings (Nardi and Bonin, 1991). Classical alkaline anoro- ciations (Nardi and Bonin, 1991). genic suites are exempli®ed by the Younger Granite In this paper, major, trace and rare earth elements data on province of Niger Ð Nigeria (Jacobson et al., 1958), the ma®c minerals from a Paleoproterozoic anorogenic alkaline Proterozoic Gardar province, South Greenland (Upton, suite are presented and discussed. Trace and rare earth 1974), and the Finnish rapakivi magmatism (Vorma, element data in sodic amphibole and pyroxene were 1976). Examples of post-orogenic alkaline suites are the obtained by ion microprobe, through the SIMS technical Permian±Triassic Western Mediterranean Province Bonin approach, showing the variation of these elements between (1980), Neoproterozoic Saibro Intrusive Suite, south magmatic and metamorphic grains. Brazil (Nardi and Bonin, 1991), and the Pan-African Arabian Shield. Comparing both post-orogenic and anoro- 2. Geological setting q This paper is part of the Special Issue: Alkaline and Carbonatitic Paleoproterozoic alkaline magmatism with potassic af®- Magmatism and Associated Mineralization±Part II. Guest Editors: L.G. nities have been described in the SaÄo Francisco Craton by Gwalani, J.L. Lytwyn. * Corresponding author. ConceicËaÄo (1990), ConceicËaÄo (1994), Rosa (1994), Rios E-mail address: [email protected] (J. Pla Cid). (1997) and Paim (1998). This potassic alkaline character 1367-9120/00/$ - see front matter q 2001 Elsevier Science Ltd. All rights reserved. PII: S1367-9120(00)00051-1 376 J. Pla Cid et al. / Journal of Asian Earth Sciences 19 (2001) 375±397 is ascribed to the peculiar composition of the Paleoproter- preserved structures (Couto, 1989) and associated alkaline ozoic mantle in northeastern Brazil, which has produced granites. alkaline magmas with compositions suggesting metasoma- The Neoproterozoic event at Campo Alegre de Lourdes tized mantle sources. region was characterised by frontal collision of continental The Serra do Meio Suite (SMS, Leite, 1997) is located blocks, with extensive thrust tectonics along ENE±WSW in the Riacho do Pontal Fold Belt (RPFB, Brito Neves, striking surfaces (Leite et al., 1993; Pla Cid, 1994 1975), in the Borborema Province of northeastern region Fig. 1C). NS-striking sub-vertical transcurrent zones were of Brazil (Fig. 1). The RPFB, located in the northwestern identi®ed in the northeastern part of this region (Fig. 1C), border of the SaÄo Francisco Craton (SFC), is one of the and interpreted as lateral ramps active during the frontal several Brasiliano (1.0±0.45 Ga, Wernick, 1981; Barbosa event (Leite, 1997). All geological units were affected by and Dominguez, 1996) fold belts surrounding this craton. this tectonic event which produced ductile shear structures AccordingtoJardimdeSa (1994), the Neoproterozoic along thrust planes and lateral ramps. Such a framework fold belts in northeastern Brazil were generated during follows Pla Cid (1994) in that lithological contacts in the intracontinental collisional events, with no evidence of Serra do Meio Suite result from strong superimposition of coeval subduction. tectonic regimes during the Neoproterozoic event and do not The Serra do Meio Suite is an alkaline granitic magma- represent the igneous geometry. tism, which is part of the Campo Alegre de Lourdes Alka- line Province (ConceicËaÄo, 1990). These alkaline granites have been studied by Leite (1987, 1997), ConceicËaÄo 3. Geology and petrography (1990), Pla Cid (1994) and Pla Cid et al., (2000). Isotopic determinations at Campo Alegre de Lourdes Alkaline The oldest rocks are represented by the late Archean Province point to magmatic ages related with the Transa- Gneissic±Migmatitic Complex which yields a whole-rock mazoÃnico Event (2.0 ^ 0.2 Ga, Wernick, 1981), as Rb±Sr age of 2.6 Ga as determined by whole-rock Rb±Sr evidenced by U±Pb data in zircon/baddeleyite grains of isotopic dating (Dalton de Souza et al., 1979). These the Angico dos Dias Carbonatite (2.01 Ga, Silva et al., gneisses have granite and trondhjemite±tonalite composi- 1988). In this area, the end of TransamazoÃnico Event tions with development of migmatitic structures and were was marked by crustal extension in a continental rift metamorphosed within the amphibolite facies. Metasedi- setting (Leite et al., 1993; Pla Cid, 1994), emplacement mentary rocks are represented by quartz±mica schist and of the Angico do Dias carbonatite complex, outpouring calcareous schist belonging to Paleoproterozoic Serra da of tholeitic to transitional basalts with cumulative Boa EsperancËa Unit (Silva et al., 1988) and by metapelitic A Brazil Bahia Pernambuco B Piaui 1 RPFB BAHIA a c Salvador South America b a - Phanerozoic Covers b - Brasiliano Covers c - São Francisco Craton Fig. 1. (A) Location of studied area in South America. (B) The SaÄo Francisco Craton is within the state of Bahia. The Serra do Meio suite is located between Bahia and Piauõ states, inside the RPFB terrain. (C) Geological map of the Serra do Meio suite, modi®ed after Leite (1997). RPFB (c) SMS Bahia Salvador 433 0' w 430 0' w N J. Pla  PIAUI Cid et al. / Journal of Asian Earth Sciences 19 (2001) 375±397 Sao Francisco Craton BAHIA Peixe Pedra Comprida 09˚ 30's Campo Alegre de Lourdes 04 8km Tra nscurrent Serra do Meio Suite State Limit Cenozoic Covers Zone Meta-Carbonate/Qtz-mica Schist Biotite Granite Roads and Thrust Fault Parnaiba Basin - Paleozoic Serra da Boa Esperanca Unity Biotite Magnetite Granite Tra ils Faults Toleithic Basic-Ultrabasic Complex/ Aegirine Biotite Magnetite Granite Inferred Contact Foliation Ultrabasic rocks with Fe-Ti-V Miner. Gneissic-Migmatitic Complex Riebeckite Aegirine Granite Geological Fold Axis Carbonatite Complex (2.01 Ga) Contact Undefined Alkaline Granite Fig. 1. (continued) 377 378 J. Pla Cid et al. / Journal of Asian Earth Sciences 19 (2001) 375±397 21(wt.%) 1.2 Biotite granites (NE) NaO+KO2 2 Agp. Index Riebeckite aegirine gr. Aegirine granites Biotite magnetite granites Alkaline Foid Syenite Granites 14 1.0 Foid Syenite Monzosyenite Granite Quartz Monzonite Monzonite Monzo- FeO/(FeO+MgO) 7 diorite 0.8 50 60SiO 70 80(wt.%) 0.7 0.8 0.9 1.0 2 (A) (B) 2 9 15 Al O CaO FeOt 23 Peralkaline trend Metaluminous trend 1 5 12 SiO SiO SiO 0 2 1 2 9 2 60 65 70 75 80 60 65 70 75 80 60 65 70 75 80 6 1.0 Na O 2 TiO2 Riebeckite-aegirine gr. Peralkaline Aegirine granites Biotite-magnetite granites Metaluminous Biotite granites (NE) 3.5 0.5 SiO SiO 1 2 0 2 60 65 70 75 80 60 65 70 75 80 (C) Fig. 2. (A) Total alkalis vs. silica (TAS) diagram, in wt.%, after Le Maitre et al. (1989), with chemical classi®cation and nomenclature of plutonic rocks, according to Middlemost (1994). (B) Agpaitic index vs. FeOt/(FeOt 1 MgO) diagram (Nardi, 1991), showing the usual ®eld for alkaline granites. (C) Harker diagrams of the Serra do Meio Suite. and metapsamitic rocks included in the Mesoproterozoic xenoliths are abundant within the alkaline granites. The Santo Onofre Group (Leite, 1997), both metamorphosed granites were deformed by the Brasiliano collision that to greenschist facies. produced gneissic structures with a marked foliation The Serra do Meio Suite includes several intrusions dipping to the SE or NW (Pla Cid et al., 2000). The pre- oriented along ENE±WSW trends (Fig. 1C) that intrude Brasiliano age of alkaline granites is suggested by whole- the Serra da Boa EsperancËa Unit. Quartz±mica schist rock Rb±Sr errorchrons yielding an age of ca.
Recommended publications
  • Ultra-High Pressure Aluminous Titanites in Carbonate-Bearing Eclogites at Shuanghe in Dabieshan, Central China
    Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China D. A. CARSWELL Department of Earth Sciences, University of Sheffield, Sheffield $3 7HF, UK R. N. WILSON Department of Geology, University of Leicester, Leicester LE1 7RH, UK AND M. ZtIAI Institute of Geology, Academia Sinica, P.O. Box 634, Beijing 100029, China Abstract Petrographic features and compositions of titanites in eclogites within the ultra-high pressure metamorphic terrane in central Dabieshan are documented and phase equilibria and thermobarometric implications discussed. Carbonate-bearing eclogite pods in marble at Shuanghe contain primary metamorphic aluminous titanites, with up to 39 mol.% Ca(AI,Fe3+)FSiO4 component. These titanites formed as part of a coesite- bearing eclogite assemblage and thus provide the first direct petrographic evidence that AIFTi_IO_j substitution extends the stability of titanite, relative to futile plus carbonate, to pressures within the coesite stability field. However, it is emphasised that A1 and F contents of such titanites do not provide a simple thermobarometric index of P-T conditions but are constrained by the activity of fluorine, relative to CO2, in metamorphic fluids - as signalled by observations of zoning features in these titanites. These ultra-high pressure titanites show unusual breakdown features developed under more H20-rich amphibolite-facies conditions during exhumation of these rocks. In some samples aluminous titanites have been replaced by ilmenite plus amphibole symplectites, in others by symplectitic intergrowths of secondary, lower AI and F, titanite plus plagioclase. Most other coesite-bearing eclogite samples in the central Dabieshan terrane contain peak assemblage rutile often partly replaced by grain clusters of secondary titanites with customary low AI and F contents.
    [Show full text]
  • Occurrence, Alteration Patterns and Compositional Variation of Perovskite in Kimberlites
    975 The Canadian Mineralogist Vol. 38, pp. 975-994 (2000) OCCURRENCE, ALTERATION PATTERNS AND COMPOSITIONAL VARIATION OF PEROVSKITE IN KIMBERLITES ANTON R. CHAKHMOURADIAN§ AND ROGER H. MITCHELL Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada ABSTRACT The present work summarizes a detailed investigation of perovskite from a representative collection of kimberlites, including samples from over forty localities worldwide. The most common modes of occurrence of perovskite in archetypal kimberlites are discrete crystals set in a serpentine–calcite mesostasis, and reaction-induced rims on earlier-crystallized oxide minerals (typically ferroan geikielite or magnesian ilmenite). Perovskite precipitates later than macrocrystal spinel (aluminous magnesian chromite), and nearly simultaneously with “reaction” Fe-rich spinel (sensu stricto), and groundmass spinels belonging to the magnesian ulvöspinel – magnetite series. In most cases, perovskite crystallization ceases prior to the resorption of groundmass spinels and formation of the atoll rim. During the final evolutionary stages, perovskite commonly becomes unstable and reacts with a CO2- rich fluid. Alteration of perovskite in kimberlites involves resorption, cation leaching and replacement by late-stage minerals, typically TiO2, ilmenite, titanite and calcite. Replacement reactions are believed to take place at temperatures below 350°C, 2+ P < 2 kbar, and over a wide range of a(Mg ) values. Perovskite from kimberlites approaches the ideal formula CaTiO3, and normally contains less than 7 mol.% of other end-members, primarily lueshite (NaNbO3), loparite (Na0.5Ce0.5TiO3), and CeFeO3. Evolutionary trends exhibited by perovskite from most localities are relatively insignificant and typically involve a decrease in REE and Th contents toward the rim (normal pattern of zonation).
    [Show full text]
  • Perovskite Catio3 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic, Pseudocubic
    Perovskite CaTiO3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic, pseudocubic. Point Group: 2/m 2/m 2/m. Commonly resemble distorted cubes, to 12 cm, striated k [001] and [110], rarely cubo-octahedra or octahedra, with additional forms, skeletal, dendritic; reniform, granular massive. Twinning: 90◦and 180◦ about [101], rarely 180◦ about [121], giving complex penetration twins; lamellar and sectored. Physical Properties: Cleavage: {001}, imperfect. Fracture: Uneven to subconchoidal. Tenacity: Brittle. Hardness = 5.5 D(meas.) = 3.98–4.26 D(calc.) = 4.02 (synthetic). Optical Properties: Opaque, transparent in thin fragments. Color: Iron-black, brown, reddish brown to yellow; colorless to dark brown in transmitted light; dark bluish gray in reflected light. Streak: White to grayish white. Luster: Adamantine to metallic; may be dull. Optical Class: Biaxial (+); commonly isotropic. Pleochroism: Weak; Z > X. Orientation: X = a; Y = c; Z = b. Dispersion: r> v. n= 2.34–2.37 2V(meas.) = 90◦ R: (400) 19.2, (420) 18.8, (440) 18.4, (460) 18.0, (480) 17.6, (500) 17.3, (520) 17.0, (540) 16.8, (560) 16.6, (580) 16.4, (600) 16.2, (620) 16.1, (640) 16.0, (660) 16.0, (680) 15.9, (700) 15.9 Cell Data: Space Group: P nma (synthetic). a = 5.447(1) b = 7.654(1) c = 5.388(1) Z=4 X-ray Powder Pattern: Synthetic. 2.701 (100), 1.911 (50), 2.719 (40), 1.557 (25), 1.563 (16), 3.824 (14), 1.567 (14) Chemistry: (1) (2) (3) (1) (2) (3) Nb2O5 25.99 FeO 5.69 SiO2 0.33 MgO trace TiO2 58.67 38.70 58.75 CaO 40.69 23.51 41.25 Al2O3 0.82 Na2O 1.72 RE2O3 3.08 K2O 0.44 Total 99.36 100.28 100.00 2+ (1) Val d’Aosta, Italy.
    [Show full text]
  • Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
    MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages.
    [Show full text]
  • Titanite Ores of the Khibiny Apatite-Nepheline- Deposits: Selective Mining, Processing and Application for Titanosilicate Synthesis
    minerals Article Titanite Ores of the Khibiny Apatite-Nepheline- Deposits: Selective Mining, Processing and Application for Titanosilicate Synthesis Lidia G. Gerasimova 1,2, Anatoly I. Nikolaev 1,2,*, Marina V. Maslova 1,2, Ekaterina S. Shchukina 1,2, Gleb O. Samburov 2, Victor N. Yakovenchuk 1 and Gregory Yu. Ivanyuk 1 1 Nanomaterials Research Centre of Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity 184209, Russia; [email protected] (L.G.G.); [email protected] (M.V.M.); [email protected] (E.S.S.); [email protected] (V.N.Y.); [email protected] (G.Y.I.) 2 Tananaev Institute of Chemistry of Kola Science Centre, Russian Academy of Sciences, 26a Fersman Street, Apatity 184209, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-815-557-9231 Received: 4 September 2018; Accepted: 10 October 2018; Published: 12 October 2018 Abstract: Geological setting and mineral composition of (apatite)-nepheline-titanite ore from the Khibiny massif enable selective mining of titanite ore, and its processing with sulfuric-acid method, without preliminary concentration in flotation cells. In this process flow diagram, titanite losses are reduced by an order of magnitude in comparison with a conventional flotation technology. Further, dissolution of titanite in concentrated sulfuric acid produces titanyl sulfate, which, in turn, is a precursor for titanosilicate synthesis. In particular, synthetic analogues of the ivanyukite group minerals, SIV, was synthesized with hydrothermal method from the composition based on titanyl-sulfate, and assayed as a selective cation-exchanger for Cs and Sr.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Astrophyllite–Alkali Amphibole Rhyolite, an Evidence of Early Permian A-Type Alkaline Volcanism in the Western Mongolian Altai
    Journal of Geosciences, 61 (2016), 93–103 DOI: 10.3190/jgeosci.205 Original paper Astrophyllite–alkali amphibole rhyolite, an evidence of early Permian A-type alkaline volcanism in the western Mongolian Altai Vladimír Žáček1*, David BurIánek1, Zoltán Pécskay2, radek ŠkODa1 1 Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic; [email protected] 2 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Bem tér 18/c, Debrecen, Hungary * Corresponding author A dyke of alkali rhyolite intrudes the Tsetseg and Zuun Nuruu volcanosedimentary sequence of Ordovician–Silurian age (Hovd Zone, Central Asian Orogenic Belt) at the Botgon bag, Mankhan Soum, Hovd District in Western Mongolia. The rock consists of quartz and K-feldspar phenocrysts set in fine-grained groundmass composed of quartz, K-feldspar, albite, blue alkali amphibole (riebeckite–arfvedsonite containing up to 1.94 wt. % ZrO2), tiny brown radial astrophyllite, annite and accessory zircon, ilmenite, fluorite, monazite, hematite, chevkinite and bastnäsite. Astrophyllite has unusual, highly ferroan composition and occurs as two sharply bound zones of astrophyllite I and II with the average empirical formulae: 2+ (K1.71 Na0.01Rb0.08Cs0.01) (Na0.93Ca0.07) (Fe 6.52Mn0.31Zn0.06) (Ti0.84Zr0.50Nb0.55) Si7.68Al0.32 O26 (OH)3.78 F0.66 (astrophyllite I, 2+ Zr–Nb-rich); (K1.52Rb0.07) (Na0.81Ca0.19) (Fe 6.31 Mn0.28Zn0.06) (Ti1.28Nb0.30Zr0.28) Si7.68Al0.32 O26 (OH)2.85 F0.67 (astrophyllite II). Geochemically, the rhyolite corresponds to strongly fractionated silicic alkaline A-type (ferroan) magmatic rock with t 75.5–75.9 wt.
    [Show full text]
  • A New Mineral Ferrisanidine, K [Fe3+ Si3o8], the First Natural Feldspar
    minerals Article 3+ A New Mineral Ferrisanidine, K[Fe Si3O8], the First Natural Feldspar with Species-Defining Iron Nadezhda V. Shchipalkina 1,*, Igor V. Pekov 1, Sergey N. Britvin 2,3 , Natalia N. Koshlyakova 1, Marina F. Vigasina 1 and Evgeny G. Sidorov 4 1 Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russia; [email protected] (I.V.P.); [email protected] (N.N.K.); [email protected] (M.F.V.) 2 Department of Crystallography, St Petersburg State University, University Embankment 7/9, St Petersburg 199034, Russia; [email protected] 3 Nanomaterials Research Center, Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, Apatity 184209, Russia 4 Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, Petropavlovsk-Kamchatsky 683006, Russia; [email protected] * Correspondence: [email protected] Received: 10 November 2019; Accepted: 9 December 2019; Published: 11 December 2019 3+ Abstract: Ferrisanidine, K[Fe Si3O8], the first natural feldspar with species-defining iron, is an analogue of sanidine bearing Fe3+ instead of Al. It was found in exhalations of the active Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Fissure Tolbachik Eruption, Tolbachik volcano, Kamchatka Peninsula, Russia. The associated minerals are aegirine, cassiterite, hematite, sylvite, halite, johillerite, arsmirandite, axelite, aphthitalite. Ferrisanidine forms porous crusts composed by cavernous short prismatic crystals or irregular grains up to 10 µm 20 µm. × Ferrisanidine is transparent, colorless to white, the lustre is vitreous. D is 2.722 g cm 3. The calc · − chemical composition of ferrisanidine (wt.
    [Show full text]
  • A New REE-Fluorcarbonate Mineral from the Aris Phonolite (Namibia), with Descriptions of the Crystal Structures of Arisite-(La) and Arisite-(Ce)
    Mineralogical Magazine, April 2010, Vol. 74(2), pp. 257–268 Arisite-(La), a new REE-fluorcarbonate mineral from the Aris phonolite (Namibia), with descriptions of the crystal structures of arisite-(La) and arisite-(Ce) 1, 2 1 3 4 1 1 P. C. PIILONEN *, A. M. MCDONALD ,J.D.GRICE ,M.A.COOPER ,U.KOLITSCH ,R.ROWE ,R.A.GAULT 1 AND G. POIRIER 1 ResearchDivision, Canadian Museum of Nature, Ottawa, Ontario K1P 6P, Canada 2 Department of EarthSciences, Laurentian University, Sudbury, Ontario P3E 2C6, Canada 3 Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 4 Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria [Received 14 January 2010; Accepted 14 April 2010] ABSTRACT Arisite-(La), ideally NaLa2(CO3)2[F2x(CO3)1Àx]F, is a new layered REE-fluorcarbonate mineral from miarolitic cavities within the Aris phonolite, Namibia (IMA no. 2009-019). It occurs as distinct chemical zones mixed with its Ce-analogue, arisite-(Ce). Crystals are vitreous, transparent beige, beige- yellow, light lemon-yellow to pinkish, and occur as tabular prisms up to 1.5 mm. Arisite-(La) is brittle, has conchoidal fracture, poor cleavage perpendicular to (001), a Mohs hardness of ~3À3Ý, is not fluorescent in either long- or shortwave UV radiation, dissolves slowly in dilute HCl at room À3 temperature and sinks in methylene iodide, Dcalc. = 4.072 g cm . Arisite-(La) is uniaxial negative, has sharp extinction, with both o and e exhibiting a range of values within each grain: o = 1.696À1.717(4) and e = 1.594À1.611(3), a result of chemical zoning attributed to both Ce > La and Na > Ca substitutions.
    [Show full text]
  • Natural Titanite Reference Materials for in Situ U‐Pb and Sm‐Nd Isotopic Measurements by LA‐(MC)‐ICP‐MS
    Vol. 43 — N° 3 09 p.355– 384 19 Natural Titanite Reference Materials for In Situ U-Pb and Sm-Nd Isotopic Measurements by LA-(MC)-ICP-MS Qian Ma (1, 2),NoreenJ.Evans (3), Xiao-Xiao Ling (2, 4),Jin-HuiYang (2, 4),Fu-YuanWu (2, 4), Zhi-Dan Zhao (1)* and Yue-Heng Yang (2, 4)* (1) State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China (2) State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China (3) School of Earth and Planetary Science, John de Laeter Centre, Curtin University, Perth, WA, Australia (4) Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China * Corresponding authors. e-mails: [email protected] and [email protected] Titanite is a common accessory mineral that preferentially incorporates considerable amounts of U and light rare earth elements in its structure, making it a versatile mineral for in situ U-Pb dating and Sm-Nd isotopic measurement. Here, we present in situ U-Pb ages and Sm-Nd isotope measurement results for four well-known titanite reference materials (Khan, BLR-1, OLT1 and MKED1) and eight titanite crystals that could be considered potential reference material candidates (Ontario, YQ-82, T3, T4, TLS-36, NW-IOA, Pakistan and C253), with ages ranging from ~ 20 Ma to ~ 1840 Ma. Results indicate that BLR-1, OLT1, Ontario, MKED1 and T3 titanite have relatively homogeneous Sm-Nd isotopes and low common Pb and thus can serve as primary reference materials for U-Pb and Sm-Nd microanalysis.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Eudialyte Decomposition Minerals with New Hitherto Undescribed Phases from the Ilímaussaq Complex, South Greenland
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 18, 2017 brought to you by CORE provided by Online Research Database In Technology Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland Karup-Møller, Sven; Rose-Hansen, J.; Sørensen, H. Published in: Geological Society of Denmark. Bulletin Publication date: 2010 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Karup-Møller, S., Rose-Hansen, J., & Sørensen, H. (2010). Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland. Geological Society of Denmark. Bulletin, 58, 75-88. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland S. Karup-MøllEr, J. roSE-HanSEn & H. SørEnSEn S.
    [Show full text]