A New REE-Fluorcarbonate Mineral from the Aris Phonolite (Namibia), with Descriptions of the Crystal Structures of Arisite-(La) and Arisite-(Ce)

Total Page:16

File Type:pdf, Size:1020Kb

A New REE-Fluorcarbonate Mineral from the Aris Phonolite (Namibia), with Descriptions of the Crystal Structures of Arisite-(La) and Arisite-(Ce) Mineralogical Magazine, April 2010, Vol. 74(2), pp. 257–268 Arisite-(La), a new REE-fluorcarbonate mineral from the Aris phonolite (Namibia), with descriptions of the crystal structures of arisite-(La) and arisite-(Ce) 1, 2 1 3 4 1 1 P. C. PIILONEN *, A. M. MCDONALD ,J.D.GRICE ,M.A.COOPER ,U.KOLITSCH ,R.ROWE ,R.A.GAULT 1 AND G. POIRIER 1 ResearchDivision, Canadian Museum of Nature, Ottawa, Ontario K1P 6P, Canada 2 Department of EarthSciences, Laurentian University, Sudbury, Ontario P3E 2C6, Canada 3 Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 4 Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria [Received 14 January 2010; Accepted 14 April 2010] ABSTRACT Arisite-(La), ideally NaLa2(CO3)2[F2x(CO3)1Àx]F, is a new layered REE-fluorcarbonate mineral from miarolitic cavities within the Aris phonolite, Namibia (IMA no. 2009-019). It occurs as distinct chemical zones mixed with its Ce-analogue, arisite-(Ce). Crystals are vitreous, transparent beige, beige- yellow, light lemon-yellow to pinkish, and occur as tabular prisms up to 1.5 mm. Arisite-(La) is brittle, has conchoidal fracture, poor cleavage perpendicular to (001), a Mohs hardness of ~3À3Ý, is not fluorescent in either long- or shortwave UV radiation, dissolves slowly in dilute HCl at room À3 temperature and sinks in methylene iodide, Dcalc. = 4.072 g cm . Arisite-(La) is uniaxial negative, has sharp extinction, with both o and e exhibiting a range of values within each grain: o = 1.696À1.717(4) and e = 1.594À1.611(3), a result of chemical zoning attributed to both Ce > La and Na > Ca substitutions. The crystal structure of both arisite-(Ce) and arisite-(La) were solved by direct methods and refined to R = 1.66%, wR2 = 4.31% (Ce) and R = 2.09%, wR2 = 5.26% (La), respectively. Arisite is hexagonal, P6¯m2, Z = 1, withunit-cell parameters of a = 5.1109(2) A˚ , c = 8.6713(4) A˚ , V = 196.16(6) A˚ 3 for arisite-(Ce), and a = 5.1131(7) A˚ , c = 8.6759(17) A˚ , V = 196.43(5) A˚ 3 for arisite-(La). Arisite-(Ce) and arisite-(La) are members of the layered, flat-lying REE-fluorcarbonate group which 2À have crystal structures characterized by separate layers of triangular planar CO3 groups that parallel the overall layering of the structure, F, REE and alkali or alkaline-earthelements. Overall, thearisite structure can be defined by three distinct layers which parallel (001): (1) ?[REE(CO3)2F] slabs, 2À (2) sheets of Naf9 polyhedra, and (3) ?[2F/CO3] . Based on its (M+F)/C ratio, arisite can further be described as having a dense, flat-lying fluorcarbonate structure, a classification which includes the structurally related mineral species cordylite, kukharenkoite, cebaite, lukechangite, huanghoite, and one incompletely characterized synthetic phase, NaY2(CO3)3F. KEYWORDS: fluorcarbonate, REE, Aris phonolite, structure determination, new mineral species. Introduction tions of rare-earthelements ( REE)intheir THERE are 25 known fluorcarbonate mineral structure. The majority are the product of late- species, 19 of which contain essential concentra- stage, often hydrothermal, crystallization in alka- line rock complexes including carbonatites, phonolites, nepheline syenites and their associated pegmatites, witha minor presence in granitic rocks. They are commonly associated with other * E-mail: [email protected] carbonates, bicarbonates or REE-carbonates, DOI: 10.1180/minmag.2010.074.2.257 fluorides, phosphates and silicates. Rare-earth # 2010 The Mineralogical Society P. C. PIILONEN ET AL. fluorcarbonate minerals, in particular bastna¨site, breccias. The phonolite and trachyte rocks occur provide the majority of the world’s supply of as dykes and plugs which are exposed as eroded REE. One major deposit, the Bayan Obo outcrops and caps on elevated hills and buttes. carbonatite in Inner Mongolia, north-central The Aris phonolite dyke occurs in the southern China, provides much of the world’s require- part of the province and is currently being mined ments. Rare-earthfluorcarbonate minerals havea for road and building material at the Ariskop and growing economic potential as their unusual Railroad quarries. The phonolite is fine- to optical and magnetic properties are important medium-grained, withan aphyrictexture, and is for industrial applications suchas catalysis, composed predominantly of sanidine, nepheline permanent magnets, glass and ceramic manufac- and aegirine, withaccessory hau ¨yne, leucite, ture, phosphors, lasers, bubble magnetic monazite and zircon (von Knorring and Franke, memories, and solid-oxide fuel-cell (SOFC) 1987). It also contains numerous miarolitic electrodes and electrolytes. As a result, synthesis cavities that range from 0.1 mm to 10 cm in of REE-fluorcarbonate species has become diameter, many of which are ‘wet’, containing increasingly important, bothfor industry and for residual hydrothermal formational fluids which providing suitable material for mineralogical are released when the cavities are broken open. studies of natural mineral species which do not Preliminary X-ray computed tomography at the yield suitable crystals for crystal-structure University of Texas (Austin) indicates that analysis (Mercier and Leblanc, 1993a,b,c; Grice 15À20% of the phonolite is comprised of et al., 2007). Many of these synthetic compounds miarolitic cavities. In some samples, 80% of have natural equivalents, yet many do not. these cavities are two-phase fluid + vapour-filled Synthesis studies allow us to investigate further vugs. The miarolitic cavities host a range of the conditions under which these unusual agpaitic mineral species, including abundant minerals crystallize. villiaumite, aegirine, labuntsovite-group minerals, Arisite-(La), and its Ce-analogue, arisite-(Ce) tuperssuatsiaite, natrolite, analcime, mangano- (Piilonen et al., 2010) are two naturally occurring neptunite, apophyllite-(KF), fluorite, and maka- mineral species which, as of yet, do not have a tite. The presence of ubiquitous villiaumite in the stable synthetic equivalent. Arisite-(La) was cavities suggests a H2O-poor environment. An discovered in phonolite from the Aris quarry, extensive list of the known minerals within the Namibia, and is named for its type locality. Both Aris quarries has been given by Sturla et al. the mineral and the name have been approved by (2005). A detailed study of the mineralogy and the IMA CNMMN (IMA no. 2009-019). Type paragenesis of these miarolitic cavities is on- material has been deposited at the Canadian going. Museum of Nature, Ottawa (CMNMC 86076). Physical and optical properties Occurrence Arisite-(La) is visually indistinguishable from its The Aris phonolite in Namibia is part of the late Ce analogue, arisite-(Ce) (Piilonen et al., 2010). It Tertiary (33Ô1 Ma, Fitchand Miller, 1984) Auas is brittle, has conchoidal fracture, poor cleavage alkaline volcanic province, which extends 65 km parallel to (001), a Mohs hardness of ~3À3Ý, is from Windhoek in the north to Rehoboth in the non-fluorescent under either long- or short-wave south. This volcanic province represents the most UV radiation, and dissolves slowly withefferves- recent occurrence of alkaline magmatism along cence in dilute HCl at room temperature. Arisite- the western margins of southern Africa, similar to (La) sinks in methylene iodide (i.e. D À3 À3 the Klinghardt Mountain alkaline volcanic >3.3 g cm ) and has a Dcalc. of 4.072 g cm , province further to the south (37 Ma, Kro¨ner, Z = 1. Arisite-(La) occurs as euhedral, hexagonal 1973; Marsh, 1987). The Auas alkaline volcanic plates up to 1.5 mm (average: 0.2 mm 6 1.0 mm) province intrudes metasedimentary rocks (quartz- and rare tabular, hexagonal prisms, in miarolitic feldspar gneiss, mica schist and amphibolite) of cavities. The crystals are vitreous, transparent, the Paleoproterozoic Hohewarte complex. Gevers and range in colour from beige, beige-yellow, (1934) identified over 100 occurrences of both light lemon-yellow to light pink. There is often a intrusive and extrusive alkaline rocks including heavily included zone between the core and rim trachyte, phonolite, shonkinite, alkali peridotite, which imparts a clouded appearance to the and also a variety of tuffs, agglomerates and crystals. Crystals are zoned, witharisite-(La) 258 STRUCTURE DETERMINATION OF ARISITE-(LA) AND ARISITE-(CE) cores and arisite-(Ce) rims, withadditional minor suitability of the fluorite standard. Count times for Ca > Na substitution between core and rim. all elements were 25 s, or shorter if a precision of Chemical zoning is gradational from core to rim, 0.5% had already been attained, with 25 s count withinfrequent patchy,mottled zones. Not all times for the background. Table 1 contains crystals at Aris are zoned, and arisite-(Ce) is the EMPA data for arisite-(La) and arisite-(Ce) from dominant species. Observed forms include a Aris, Namibia. dominant {001} pinacoid, witha minor {100} In order to determine the carbon content of prism. Re-entrant angles have been noted on arisite, crystals were analysed by laser-ablation thicker crystals, but the twin law is not known. inductively coupled plasma mass spectrometry Arisite-(La) is uniaxial negative, has sharp (LA-ICP-MS). Two arisite grains were analysed extinction, withboth o and e exhibiting a range for 13C (at.%) using a beam size of 80 mm, 60% of values within each grain: o = 1.696À1.717(4) power, 20.8 J cmÀ2 fluence and a 5 Hz laser and e = 1.594À1.611(3), a result of chemical pulse. A standard of natural bastna¨site-(Ce) zoning attributed to bothCe > La and Na > Ca (Madagascar) was also employed. The average substitutions. Associated minerals include number of counts (n = 5) obtained from the NAM aegirine, analcime, apatite, fluorite, mangano- crystals was 3895 sÀ1 and for the bastna¨site-(Ce) neptunite, microcline, natrolite, sphalerite, tupers- (n = 2), 4417 sÀ1. This suggests that the total C suatsiaite, the unnamed, Fe-analogue of concentration is less than that of bastna¨site-(Ce) zakharovite, and arisite-(Ce).
Recommended publications
  • Anorogenic Alkaline Granites from Northeastern Brazil: Major, Trace, and Rare Earth Elements in Magmatic and Metamorphic Biotite and Na-Ma®C Mineralsq
    Journal of Asian Earth Sciences 19 (2001) 375±397 www.elsevier.nl/locate/jseaes Anorogenic alkaline granites from northeastern Brazil: major, trace, and rare earth elements in magmatic and metamorphic biotite and Na-ma®c mineralsq J. Pla Cida,*, L.V.S. Nardia, H. ConceicËaÄob, B. Boninc aCurso de PoÂs-GraduacËaÄo em in GeocieÃncias UFRGS. Campus da Agronomia-Inst. de Geoc., Av. Bento GoncËalves, 9500, 91509-900 CEP RS Brazil bCPGG-PPPG/UFBA. Rua Caetano Moura, 123, Instituto de GeocieÃncias-UFBA, CEP- 40210-350, Salvador-BA Brazil cDepartement des Sciences de la Terre, Laboratoire de PeÂtrographie et Volcanologie-Universite Paris-Sud. Centre d'Orsay, Bat. 504, F-91504, Paris, France Accepted 29 August 2000 Abstract The anorogenic, alkaline silica-oversaturated Serra do Meio suite is located within the Riacho do Pontal fold belt, northeast Brazil. This suite, assumed to be Paleoproterozoic in age, encompasses metaluminous and peralkaline granites which have been deformed during the Neoproterozoic collisional event. Preserved late-magmatic to subsolidus amphiboles belong to the riebeckite±arfvedsonite and riebeckite± winchite solid solutions. Riebeckite±winchite is frequently rimmed by Ti±aegirine. Ti-aegirine cores are strongly enriched in Nb, Y, Hf, and REE, which signi®cantly decrease in concentrations towards the rims. REE patterns of Ti-aegirine are strikingly similar to Ti-pyroxenes from the IlõÂmaussaq peralkaline intrusion. Recrystallisation of mineral assemblages was associated with deformation although some original grains are still preserved. Magmatic annite was converted into magnetite and biotite with lower Fe/(Fe 1 Mg) ratios. Recrystallised amphibole is pure riebeckite. Magmatic Ti±Na-bearing pyroxene was converted to low-Ti aegirine 1 titanite ^ astrophyllite/aenigmatite.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • A New Mineral Ferrisanidine, K [Fe3+ Si3o8], the First Natural Feldspar
    minerals Article 3+ A New Mineral Ferrisanidine, K[Fe Si3O8], the First Natural Feldspar with Species-Defining Iron Nadezhda V. Shchipalkina 1,*, Igor V. Pekov 1, Sergey N. Britvin 2,3 , Natalia N. Koshlyakova 1, Marina F. Vigasina 1 and Evgeny G. Sidorov 4 1 Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russia; [email protected] (I.V.P.); [email protected] (N.N.K.); [email protected] (M.F.V.) 2 Department of Crystallography, St Petersburg State University, University Embankment 7/9, St Petersburg 199034, Russia; [email protected] 3 Nanomaterials Research Center, Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, Apatity 184209, Russia 4 Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, Petropavlovsk-Kamchatsky 683006, Russia; [email protected] * Correspondence: [email protected] Received: 10 November 2019; Accepted: 9 December 2019; Published: 11 December 2019 3+ Abstract: Ferrisanidine, K[Fe Si3O8], the first natural feldspar with species-defining iron, is an analogue of sanidine bearing Fe3+ instead of Al. It was found in exhalations of the active Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Fissure Tolbachik Eruption, Tolbachik volcano, Kamchatka Peninsula, Russia. The associated minerals are aegirine, cassiterite, hematite, sylvite, halite, johillerite, arsmirandite, axelite, aphthitalite. Ferrisanidine forms porous crusts composed by cavernous short prismatic crystals or irregular grains up to 10 µm 20 µm. × Ferrisanidine is transparent, colorless to white, the lustre is vitreous. D is 2.722 g cm 3. The calc · − chemical composition of ferrisanidine (wt.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Eudialyte Decomposition Minerals with New Hitherto Undescribed Phases from the Ilímaussaq Complex, South Greenland
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 18, 2017 brought to you by CORE provided by Online Research Database In Technology Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland Karup-Møller, Sven; Rose-Hansen, J.; Sørensen, H. Published in: Geological Society of Denmark. Bulletin Publication date: 2010 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Karup-Møller, S., Rose-Hansen, J., & Sørensen, H. (2010). Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland. Geological Society of Denmark. Bulletin, 58, 75-88. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland S. Karup-MøllEr, J. roSE-HanSEn & H. SørEnSEn S.
    [Show full text]
  • On the Occurrence of Aegirine-Augite in Natrolite Veins in the Dolerite from Nemuro, Hokkaidô
    Title On the Occurrence of Aegirine-Augite in Natrolite Veins in the Dolerite from Nemuro, Hokkaidô Author(s) Suzuki, Jun Citation Journal of the Faculty of Science, Hokkaido Imperial University. Ser. 4, Geology and mineralogy, 4(1-2), 183-191 Issue Date 1938 Doc URL http://hdl.handle.net/2115/35786 Type bulletin (article) File Information 4(1-2)_183-192.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP LeN rMs occwRwaNos os AncxRxNgptAwGg grE xN NA"wRozxma vmNs xN fg:ffE DoLwaEfscme waeM NwwvaO, moKKAXDO A By kxx SvzuKx With X .Pla・te anal 3 TextofZgu7'es Con£ributioR from the Department of Geology and Mineyalogy, Faculty of Scienee, ffokkaid6 Imperial Univevsity, No. I98. xNTRoDvcxnxoN In the Nemuro Peninsula, the eastern extreme of Hokkaid6, 'there is an exteiisive area of the SeRonian Fermation, whieh is geve- erally moRoclinai with a NEE tyend a]id a dip 15-- 200 to SSE. The 'forraation is leeally cut by innumerable sills and lav.as of doleritie rocl<s whieh vary in thickness from ten to tweRty meteys. Veyy pre£ty joints in platy or radial form are obsexved in.the roeks at eertain iocalities. The doleritie rocks have attracted the petrologist's attei3tion on aeeeunt o£ their eoBtaining analeime phenoerysts akct being penetrated by mimeyous zeolite veinlets. Aceording to Y. SAsA,(i) similar igneous rocl<s are extensively developed in Sikotan Is}aRd which is situated at the easterR extxemity of the frontal zone o£ the South Kurile Islands. [l]he present writer made a j'ourney with Y.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • TUGTUPITE: a GEMSTONE from GREENLAND by Aage Jensen and Ole V
    TUGTUPITE: A GEMSTONE FROM GREENLAND By Aage Jensen and Ole V. Petersen The red variety of the mineral tugtupite, a rare is derived from the locality where the mineral silicate closely related to sodalite, has been used as was first found. In 1965, the Commission on New a gemstone since 1965. This article presents the Minerals and Mineral Names of the International history of the mineral and details of its mineralogy Mineralogical Association approved both the and gemology. A recently discovered light blue mineral and the name. variety of tugtupite is also described. Thus far, Dan0 (1966) described the crystal structure of tugiupite has been found in only two localities: (1) tugtupite. A detailed description of the crystal Lovozero, Kola Peninsula, U.S.S.R., where it occurs as very small1 grains; and (2) Ilimaussaq, South habit, the pseudocubic penetration trillings, and Greenland, where it has been located at several the numerous localities where tugtupite had been places within the Ilimaussaq intrusion. Gem-quality found from the time that it was first traced at tugtupite has come almost exclusively from one Tugtup agtalzorfia until 1971 (including the only occurrence, a set of hydrothermal albite veins from one that has produced gem material of any sig- the Kvanefjeld plateau in the northwestern corner of nificance) was presented by S0rensen et al. (1971). the Ilimaussaq intrusion. Another type of twin, pseudotrigonal contact trillings, was subsequently described by Petersen (19781. The tugtupite from the type locality was The mineral that is now known as tugtupite was described as white, but Sflrensen (1960)mentions discovered in 1957 by Professor H.
    [Show full text]
  • Identification Tables for Common Minerals in Thin Section
    Identification Tables for Common Minerals in Thin Section These tables provide a concise summary of the properties of a range of common minerals. Within the tables, minerals are arranged by colour so as to help with identification. If a mineral commonly has a range of colours, it will appear once for each colour. To identify an unknown mineral, start by answering the following questions: (1) What colour is the mineral? (2) What is the relief of the mineral? (3) Do you think you are looking at an igneous, metamorphic or sedimentary rock? Go to the chart, and scan the properties. Within each colour group, minerals are arranged in order of increasing refractive index (which more or less corresponds to relief). This should at once limit you to only a few minerals. By looking at the chart, see which properties might help you distinguish between the possibilities. Then, look at the mineral again, and check these further details. Notes: (i) Name: names listed here may be strict mineral names (e.g., andalusite), or group names (e.g., chlorite), or distinctive variety names (e.g., titanian augite). These tables contain a personal selection of some of the more common minerals. Remember that there are nearly 4000 minerals, although 95% of these are rare or very rare. The minerals in here probably make up 95% of medium and coarse-grained rocks in the crust. (ii) IMS: this gives a simple assessment of whether the mineral is common in igneous (I), metamorphic (M) or sedimentary (S) rocks. These are not infallible guides - in particular many igneous and metamorphic minerals can occur occasionally in sediments.
    [Show full text]
  • Lorenzenite Na2ti2si2o9 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Orthorhombic
    Lorenzenite Na2Ti2Si2O9 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Orthorhombic. Point Group: 2=m 2=m 2=m: Crystals equant, bladed prismatic, to needlelike, to 6 cm; ¯brous, felted, lamellar aggregates. Physical Properties: Cleavage: Distinct on 010 . Fracture: Uneven. Hardness = 6 f g D(meas.) = 3.42{3.45 D(calc.) = 3.44 May °uoresce pale yellow to dull green under SW UV, with green cathodoluminescence. Optical Properties: Transparent to opaque. Color: Pale purple-brown, pale pink to mauve, brown to black. Luster: Vitreous, adamantine to submetallic, or silky, dull. Optical Class: Biaxial ({). Pleochroism: Weak; X = Y = pale reddish yellow, yellowish brown to light brown; Z = pale yellow, brownish to dark brown. Orientation: X = b; Y = a; Z = c. Dispersion: r > v; distinct. ® = 1.91{1.95 ¯ = 2.01{2.04 ° = 2.03{2.06 2V(meas.) = 38±{41± Cell Data: Space Group: P bcn: a = 8.7128(10) b = 5.2327(5) c = 14.487(2) Z = 4 X-ray Powder Pattern: Lovozero massif, Russia. (ICDD 18-1262). 2.74 (100), 3.33 (70), 1.60 (50), 5.56 (40), 2.45 (40), 1.64 (40), 3.12 (30) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 35.40 35.3 35.15 FeO 0.34 TiO2 43.16 43.7 46.72 MnO trace 0.12 ZrO2 0.07 CaO 0.19 0.14 Al2O3 0.00 0.11 SrO 0.01 Y2O3 0.02 Na2O 16.23 17.4 18.13 La2O3 0.01 F 0.38 + Ce2O3 0.04 H2O 0.42 Fe2O3 0.99 H2O¡ 0.17 Nb O 3.89 2.20 O = F 0.16 2 5 ¡ 2 Total 100.17 99.96 100.00 (1) Narss^arssuk, Greenland; traces of V, Sc, Mn.
    [Show full text]
  • Eudialyte Na4(Ca; Ce)2(Fe ; Mn )Zrsi8o22(OH; Cl)2(?) C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Hexagonal
    2+ 2+ Eudialyte Na4(Ca; Ce)2(Fe ; Mn )ZrSi8O22(OH; Cl)2(?) c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Hexagonal. Point Group: 3 2=m: Crystals short rhombohedral with 0001 f g dominant, to long prismatic, up to 10 cm. More commonly as irregular masses and vein ¯llings. Physical Properties: Cleavage: Perfect to indistinct on 0001 , imperfect on 1120 . f g f g Fracture: Uneven. Tenacity: Brittle. Hardness = 5{6 D(meas.) = 2.74{3.10 D(calc.) = n.d. Optical Properties: Translucent. Color: Brown, yellow-brown, yellow, pink, rose-red, cherry-red, red; colorless in thin section. Luster: Vitreous to dull. Optical Class: Uniaxial (+) or ({). Pleochroism: Weak; O = colorless, pink, pale yellow; E = pink to colorless. ! = 1.588{1.636 ² = 1.588{1.658 Cell Data: Space Group: R3m: a = 13.95{14.29 c = 29.89{30.49 Z = 12 X-ray Powder Pattern: Kipawa Lake, Canada; could be mistaken for alluaivite. 2.82 (100), 2.94 (90), 3.10 (80), 4.25 (50), 4.05 (40), 3.35 (40), 3.19 (40) Chemistry: (1) (2) (1) (2) SiO2 50.35 50.14 CaO 9.74 11.18 TiO2 0.38 0.46 SrO 0.11 0.47 ZrO2 11.80 11.83 Na2O 12.53 14.06 Al2O3 0.44 0.07 K2O 0.43 1.39 RE2O3 6.40 0.37 F 0.23 Fe2O3 0.19 0.50 Cl 1.47 1.82 + Nb2O5 0.69 0.11 H2O 1.64 1.07 FeO 2.41 5.32 H2O¡ 0.12 MnO 1.34 0.60 P2O5 0.03 MgO 0.13 0.24 S 0.04 O = (F; Cl) 0.43 0.41 ¡ 2 Total 99.88 99.38 2+ 2+ (1) Kipawa Lake, Canada; corresponds to Na3:85(Ca1:65RE0:19K0:17)§=2:01(Fe0:32Mn0:18 3+ Nb0:06Mg0:03)§=0:59(Zr0:91Al0:08Ti0:04Fe0:01)§=1:04Si8:02O22[(OH)1:73Cl0:39]§=2:12: (2) Khibiny 2+ 2+ massif, Russia; corresponds to Na4:29(Ca1:88K0:28RE0:02)§=2:18(Fe0:70Mn0:08Mg0:06Nb0:01)§=0:85 3+ (Zr0:98Fe0:13Ti0:05Al0:01)§=1:17Si7:90O22[(OH)1:12Cl0:43]§=1:55: Occurrence: In nepheline syenites, alkalic granites, and associated pegmatites; may be a major constituent, of both magmatic and late-stage pneumatolytic origin.
    [Show full text]
  • Mineralogy of Leucite.Bearing
    53 The Canqdian M ine raln gi st Vol.35, pp.53-78 (199) MINERALOGYOF LEUCITE.BEARINGDYKES FROM NAPOLEON BAY, BAFFINlSl-AND: MULTISTAGE PROTEROZOIC LAMPROITES DONALDD. HOGARTII Departmentof Geology,University of Oxawa Ottawa"Ontario KIN 6N5 ABsrRAcr Vertical, W- and NW-trending, post-tectonic,Proterozoic dykes at Napoleon Bay, southeasternBaffin Island, Northwest Territories, contain mineral assemblagestypical of lamproites: 1) phenocrystsof Fe-bearingleucite and sanidine' Ti-rich phlogopite,and high-Mg olivine anddiopside, and 2) a groundmassofTi-rich phlogopite,Fe-bearing sanidine and apatite. Except wherepreserved in chill zones,leucite has decomposedto a sanidine- kalsilite intergrowth or hasbeen replaced completely by sanidine.Phlogopite grains are emichedin Fe (to annite and ferri-annite)on their margins,relative to cores.Late-stage titanian potassium maguesio-arfvedsoniteappeaxs in some dykes and is also progressively emiched in Fe (o titanian potassium arfuedsonite)toward the margins of grains. In a few crystals, aegirine and aegirine-augite(some grains Tirich) overgrow diopside.Rare and very late-stage,possibly magmaticdevelopment of ninerals involves overgrowthsof potassiummagnesio- arfvedsoniteon Fe-rich amphibole,and phlogopite and 'feniphlogopite' on Fe-rich mica- With the exceptionof aegirineand aegirine-augite,all fenomagnesiansilicates are undersaturatedin Si + ryAl, with averagedeficits in the tetrahedralposition extendingfrom 15.770n aailte atdferri-annite (grain margins)to 1.57oin magnesio-arfvedsonite(overgrowths).
    [Show full text]