<<

Bipolar Junction HBTs, Circuits, and (Ch. 11: pp. 407 – 432 Ch. 12 443-449)

Professor Mark Lundstrom Electrical and Engineering Purdue University, West Lafayette, IN USA [email protected]

12/10/14 1

BJT doping profiles

FB RB

IEn n+ p n n+ emitter base collector

IEp

++ N D N DE N AB

log10 {N D (N A )} N DC

Lundstrom 12.10.14 2 2 doping

I B I B

n+

n-collector n+ light collector doping increases the breakdown voltage high base doping lowers the base resistance high sub-collector doping lowers the collector series 3 resistance

about the collector doping

FB RB

IEn n+ p n n+ emitter base coll

IEp

+ ρ = qN D

Dn ICn = qAE Δn(0) WB

IC = qAW nυsat n ≈ N D “base push out” Kirk effect 4 emitter-base doping

FB RB n2 I ∝ i I En N En AB n+ p n n+ emitter base collector n2 i I IEp ∝ Ep N DE

1 Emitter must be γ = F N DE >> N AB doped more DpE WB N AB 1+ heavily than the DnB WE N DE base. Lundstrom 12.10.14 5 5

HBT (wide gap emitter)

FB RB

IEn n+ p n n+ emitter base collector

IEp

EGE EGB EGC

n2 iB 1 IEn ∝ γ F = 2 2 −EG kBT N AB ni ∝ e DpE WB N AB niE 1+ 2 2 DnB WE N DE niB niE IEp ∝ N DE

6 Freedom to dope the base heavily 6 “inverted” base doping

FB RB

IEn Wide gap p n n+ emitter base collector

IEp

++ N AB N D

log10 {N D (N A )} N DC N DE

Lundstrom 12.10.14 7 7

SiGe HBTs

Martin Claus

8 TU-Dresden 8 SiGe HBTs

FB RB

Si SiGe Si n+

EG (Si) = 1.12 eV EG (Si) = 1.12 eV

EG (Ge) = 0.66 eV

Lundstrom 12.10.14 9 9

outline

1) HBTs 2) MOSFETs vs. BJTs

Lundstrom 12.10.14 10 transconductance

terminal 1

I12 I12 +δi

black I12 + gmδv V32 +δv V32 box δi control g = m δv

∂I12 A gm ≡ (S) terminal 2 ∂V12 V

Lundstrom 12.10.14 11

transconductance

VGS = 1.2 V

VGS = 1.1V

ΔI D A gm = = S ΔVGS V VDS

gm = 1000 µS µm (1180 −1080) ×10−6 g = = 0.001S µm gm = 1000 mS mm m 0.1 12 Lundstrom 12.10.14 gm = 1000 S m MOSFETs vs. BJTs

MOS (saturated) Bipolar (active)

gm = ∂I D ∂VGS gm = ∂IC ∂VBE VDS VCE

I WC 0 V V qVBE /kBT D = ox υ( ) ( GS − T ) IC = α F IF0e

gm = WCox υ(0) gm = IC (kBT / q)

gm I D = 1 (VGS − VT ) gm IC = 1 (kBT / q)

-1 -1 gm I D = 1 (1.0 − 0.2) ≈ 1.25 V gm IC = 1 (0.026) ≈ 40 V

13

MOSFETs vs. BJTs

I D IC

D C I 0 G ≈ I B

G VDS B VCE E V BE VBE siliconS IE

• simple to make • more complex to make • no gate current • base current • moderate gm • large gm • low capacitance • high capacitance 14 course outline

Course objectives: To introduce students to the fundamentals of semiconductors and semiconductor devices.

Part 1: Semiconductor Fundamentals: 5 weeks

Part 2: PN diodes, MS diodes, and devices 5 weeks

Part 3: Transistors 5 weeks

15

transistors

"The transistor was probably the most important invention of the 20th Century, and the story behind the invention is one of clashing egos and top secret research.”

- Ira Flatow, Transistorized!

http://www.pbs.org/transistor/

16 the invention of the

“The most important moment since humankind emerged as a life form.”

Isaac Asimov

(speaking about the “planar process” used to manufacture ICs -- invented by Jean Hoerni, , 1959). 17 IEEE Spectrum Dec. 2007

modern electronics

CMOS transistors for logic BJTs for RF A/D and D/A convertors Digital Signal processor Microprocessor ROM and FLASH memory

CMOS imager Gyroscope MEMS devices www.apple.com Magnetometer Microphone, speaker LCD display and touch screen MOSFETs vs. BJTs

19