From Bell Labs to Silicon Valley
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Semiconductor Industry Social Media Review
Revealed SOCIAL SUCCESS White Paper Who’s winning the social media battle in the semiconductor industry? Issue 2, September 3, 2014 The contents of this White Paper are protected by copyright and must not be reproduced without permission © 2014 Publitek Ltd. All rights reserved Who’s winning the social media battle in the semiconductor industry? Issue 2 SOCIAL SUCCESS Who’s winning the social media battle in the semiconductor industry? Report title OVERVIEW This time, in the interest of We’ve combined quantitative balance, we have decided to and qualitative measures to This report is an update to our include these companies - Intel, reach a ranking for each original white paper from channel. Cross-channel ranking Samsung, Sony, Toshiba, Nvidia led us to the overall index. September 2013. - as well as others, to again analyse the following channels: As before, we took a company’s Last time, we took the top individual “number semiconductor companies 1. Blogs score” (quantitative measure) (according to gross turnover - 2. Facebook for a channel, and multiplied main source: Wikipedia), of this by its “good practice score” 3. Google+ which five were ruled out due (qualitative measure). 4. LinkedIn to the diversity of their offering 5. Twitter The companies were ranked by and the difficulty of segmenting performance in each channel. 6. YouTube activity relating to An average was then taken of semiconductors. ! their positions in each to create the final table. !2 Who’s winning the social media battle in the semiconductor industry? Issue 2 Due to the instantaneous nature of social media, this time we decided to analyse a narrower time frame, and picked a single month - August 2014. -
What Made Bell Labs Special? Ley in Recent Years, the High Pay and Excellent Working Conditions at Bell Labs Attracted Many Who Might Look Elsewhere Today
physicsworld.com Christmas books Andrew Gelman What made Bell Labs special? ley in recent years, the high pay and excellent working conditions at Bell Labs attracted many who might look elsewhere today. Second, there was nothing to do at the labs all day but work. I have known lots of middle-aged profes- sors who don’t spend much time teaching but don’t do any research either. At Bell Labs it was harder to be deadwood. Located as it was in the middle of nowhere, the Murray Hill campus was not a place to relax, and if you were going into the lab every weekday anyhow, you might as well work – there was nothing better to do. Several researchers, including Shannon and Shockley, had sharp mid-career productivity declines – but after they left Murray Hill. In my own experience working at Bell Labs for three summers during Bell Laboratories/Alcatel-Lucent USA/AIP Emilio Segrè Visual Archives, Hecht Collection the 1980s, I vividly recall a general feeling of comfort and well-being, Innovation central Bell Labs was a legendary place, an Idea Factory. I say this not at all as a along with the low-level intensity Ali Javan (left) and industrial lab in the outer suburbs of criticism of its author, the journalist that comes from working eight-hour Donald R Herriott New York where thousands of scien- Jon Gertner; rather, there was just so days, week after week after week. work with a helium- tists, working nine to five, changed much going on at Bell that it cannot I did the research underlying my neon optical gas the world’s technological history. -
Silicon Valley Then and Now: to Invent the Future, You Must Understand the Past
Silicon Valley Then and Now: To Invent The Future, You Must Understand The Past https://medium.com/backchannel/why-silicon-valley-will-continue-to-rule-c0cbb441e22f “You can’t really understand what is going on now without understanding what came before.” Steve Jobs is explaining why, as a young man, he spent so much time with the Silicon Valley entrepreneurs a generation older, men like Robert Noyce, Andy Grove, and Regis McKenna. It’s a beautiful Saturday morning in May, 2003, and I’m sitting next to Jobs on his living room sofa, interviewing him for a book I’m writing. I ask him to tell me more about why he wanted, as he put it, “to smell that second wonderful era of the valley, the semiconductor companies leading into the computer.” Why, I want to know, is it not enough to stand on the shoulders of giants? Why does he want to pick their brains? “It’s like that Schopenhauer quote about the conjurer,” he says. When I look blank, he tells me to wait and then dashes upstairs. He comes down a minute later holding a book and reading aloud: Page | 1 Steve Jobs and Robert Noyce. Courtesy Leslie Berlin. He who lives to see two or three generations is like a man who sits some time in the conjurer’s booth at a fair, and witnesses the performance twice or thrice in succession. The tricks were meant to be seen only once, and when they are no longer a novelty and cease to deceive, their effect is gone. -
ECE Illinois WINTER2005.Indd
Electrical and Computer Engineering Alumni News ECE Alumni Association newsletter University of Illinois at Urbana-Champaign Winter 2005-2006 Jack Kilby, 1923–2005 Volume XL Cancer claims Nobel laureate, ECE alumnus By Laura Schmitt and Jamie Hutchinson Inside this issue Microchip inventor and Nobel physics laureate DEPARTMENT HEAD’S Jack Kilby (BSEE ’47) died from cancer on MESSAGE June 22, 2005. He was 81. Kilby received the 2000 Nobel Prize in 2 Physics on December 10, 2001, in an award ceremony in Stockholm, Sweden. Kilby was ROOM-TEMPERATURE LASER recognized for his part in the invention and 4 development of the integrated circuit, which he first demonstrated on September 12, 1958, while at Texas Instruments. At the Nobel awards ceremony, Royal Swedish Academy member Tord Claesen called that date “one of the most important birth dates in the history of technology.” A measure of Kilby’s importance can be seen in the praise that was lavished on him in death. Lengthy obituaries appeared in engi- Jack Kilby neering and science trade publications as well FEATURED ALUMNI CAREERS as in major newspapers worldwide, including where his interest in electricity and electron- the New York Times, Financial Times, and The ics blossomed at an early age. His father ran a 29 Economist. On June 24, ABC News honored power company that served a wide area in rural Kilby by naming him its Person of the Week. Kansas, and he used amateur radio to keep in Reporter Elizabeth Vargas introduced the contact with customers during emergencies. segment by noting that Kilby’s invention During an ice storm, the teenage Kilby saw “had a direct effect on billions of people in the firsthand how electronic technology could world,” despite his relative anonymity among positively impact people’s lives. -
G.W.A.T.T. (Global 'What If' Analyzer of Network Energy Consumption)
G.W.A.T.T. New Bell Labs application able to measure the impact of technologies like SDN & NFV on network energy consumption WHITE PAPER Increased energy consumption is a key challenge for the Information and Communications Technologies (ICT) industry. Network energy bills represent more than 10 percent of operators’ operational expenses. With the advent of the Internet of Things era, and the inexorable consumption of video and cloud services promising to drive massively increased traffic across networks, it is even more important for operators to have a complete view of the energy impact of different technology and architectural evolution options. G.W.A.T.T. (Global “What if” Analyzer of NeTwork Energy ConsumpTion) has been built to allow operators and industry stakeholders to better understand these challenges. This application visualizes the current and future communication networks and forecasts key trends in energy consumption, energy efficiency, cost and carbon emissions based on a wide variety of traffic growth scenarios and technology evolution choices. It is intended as a mind-sharing tool to grasp the importance of the energy challenge and how innovation and new technologies can help address these issues in the future. EXECUTIVE SUMMARY The explosion of the Internet traffic volume resulting from both the worldwide broadband subscriber base extension and the increasing number and diversity of available applications and services require a relentless deployment of new technologies and infrastructures to deliver the expected user-experience. At the same time, it also raises the issue of the energy consumption and energy cost of the Internet and more generally of the Information and Communication Technologies (ICT). -
How Venture Capital Works by Bob Zider
Accounting How Venture Capital Works by Bob Zider From the Magazine (November-December 1998) Invention and innovation drive the U.S. economy. What’s more, they have a powerful grip on the nation’s collective imagination. The popular press is filled with against-all-odds success stories of Silicon Valley entrepreneurs. In these sagas, the entrepreneur is the modern- day cowboy, roaming new industrial frontiers much the same way that earlier Americans explored the West. At his side stands the venture capitalist, a trail-wise sidekick ready to help the hero through all the tight spots—in exchange, of course, for a piece of the action. As with most myths, there’s some truth to this story. Arthur Rock, Tommy Davis, Tom Perkins, Eugene Kleiner, and other early venture capitalists are legendary for the parts they played in creating the modern computer industry. Their investing knowledge and operating experience were as valuable as their capital. But as the venture capital business has evolved over the past 30 years, the image of a cowboy with his sidekick has become increasingly outdated. Today’s venture capitalists look more like bankers, and the entrepreneurs they fund look more like M.B.A.’s. The U.S. venture-capital industry is envied throughout the world as an engine of economic growth. Although the collective imagination romanticizes the industry, separating the popular myths from the / current realities is crucial to understanding how this important piece of the U.S. economy operates. For entrepreneurs (and would-be entrepreneurs), such an analysis may prove especially beneficial. Profile of the Ideal Entrepreneur Venture Capital Fills a Void Contrary to popular perception, venture capital plays only a minor role in funding basic innovation. -
MOSFET - Wikipedia, the Free Encyclopedia
MOSFET - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/MOSFET MOSFET From Wikipedia, the free encyclopedia The metal-oxide-semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), is by far the most common field-effect transistor in both digital and analog circuits. The MOSFET is composed of a channel of n-type or p-type semiconductor material (see article on semiconductor devices), and is accordingly called an NMOSFET or a PMOSFET (also commonly nMOSFET, pMOSFET, NMOS FET, PMOS FET, nMOS FET, pMOS FET). The 'metal' in the name (for transistors upto the 65 nanometer technology node) is an anachronism from early chips in which the gates were metal; They use polysilicon gates. IGFET is a related, more general term meaning insulated-gate field-effect transistor, and is almost synonymous with "MOSFET", though it can refer to FETs with a gate insulator that is not oxide. Some prefer to use "IGFET" when referring to devices with polysilicon gates, but most still call them MOSFETs. With the new generation of high-k technology that Intel and IBM have announced [1] (http://www.intel.com/technology/silicon/45nm_technology.htm) , metal gates in conjunction with the a high-k dielectric material replacing the silicon dioxide are making a comeback replacing the polysilicon. Usually the semiconductor of choice is silicon, but some chip manufacturers, most notably IBM, have begun to use a mixture of silicon and germanium (SiGe) in MOSFET channels. Unfortunately, many semiconductors with better electrical properties than silicon, such as gallium arsenide, do not form good gate oxides and thus are not suitable for MOSFETs. -
Timeline of the Semiconductor Industry in South Portland
Timeline of the Semiconductor Industry in South Portland Note: Thank you to Kathy DiPhilippo, Executive Director/Curator of the South Portland Historical Society and Judith Borelli, Governmental Relations of Texas Inc. for providing some of the information for this timeline below. Fairchild Semiconductor 1962 Fairchild Semiconductor (a subsidiary of Fairchild Camera and Instrument Corp.) opened in the former Boland's auto building (present day Back in Motion) at 185 Ocean Street in June of 1962. They were there only temporarily, as the Western Avenue building was still being constructed. 1963 Fairchild Semiconductor moves to Western Avenue in February 1963. 1979 Fairchild Camera and Instrument Corp. is acquired/merged with Schlumberger, Ltd. (New York) for $363 million. 1987 Schlumberger, Ltd. sells its Fairchild Semiconductor Corp. subsidiary to National Semiconductor Corp. for $122 million. 1997 National Semiconductor sells the majority ownership interest in Fairchild Semiconductor to an investment group (made up of Fairchild managers, including Kirk Pond, and Citcorp Venture Capital Ltd.) for $550 million. Added Corporate Campus on Running Hill Road. 1999 In an initial public offering in August 1999, Fairchild Semiconductor International, Inc. becomes a publicly traded corporation on the New York Stock Exchange. 2016 Fairchild Semiconductor International, Inc. is acquired by ON Semiconductor for $2.4 billion. National Semiconductor 1987 National Semiconductor acquires Fairchild Semiconductor Corp. from Schlumberger, Ltd. for $122 million. 1995 National Semiconductor breaks ground on new 200mm factory in December 1995. 1996 National Semiconductor announces plans for a $600 million expansion of its facilities in South Portland; construction of a new wafer fabrication plant begins. 1997 Plant construction for 200mm factory completed and production starts. -
Readingsample
Springer Series in Materials Science 106 Into The Nano Era Moore's Law Beyond Planar Silicon CMOS Bearbeitet von Howard Huff 1. Auflage 2008. Buch. xxviii, 348 S. Hardcover ISBN 978 3 540 74558 7 Format (B x L): 15,5 x 23,5 cm Gewicht: 725 g Weitere Fachgebiete > Technik > Elektronik > Mikroprozessoren Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 2 The Economic Implications of Moore’s Law G.D. Hutcheson 2.1 Introduction One hundred nanometers is a fundamental technology landmark. It is the demarca- tion point between microtechnology and nanotechnology. The semiconductor indus- try crossed it just after the second millennium had finished. In less than 50 years, it had come from transistors made in mils (one-thousandth of an inch or 25.4 mi- crons); to integrated circuits which were popularized as microchips; and then as the third millennium dawned, nanochips. At this writing, nanochips are the largest single sector of nanotechnology. This, in spite of many a nanotechnology expert’s predic- tion that semiconductors would be dispatched to the dustbin of science – where tubes and core memory lie long dead. Classical nanotechnologists should not feel any dis- grace, as pundits making bad predictions about the end of technology progression go back to the 1960s. Indeed, even Gordon Moore wondered as he wrote his clas- sic paper in 1965 if his observation would hold into the 1970s. -
Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical
SURF Research Talk, June 16, 2015 Along for the Ride – reflections on the past, present, and future of nanoelectronics Mark Lundstrom [email protected] Electrical and Computer Engineering Birck Nanotechnology Center Purdue University, West Lafayette, Indiana USA Lundstrom June 2015 what nanotransistors have enabled “If someone from the 1950’s suddenly appeared today, what would be the most difficult thing to explain to them about today?” “I possess a device in my pocket that is capable of assessing the entirety of information known to humankind.” “I use it to look at pictures of cats and get into arguments with strangers.” Curious, by Ian Leslie, 2014. transistors The basic components of electronic systems. >100 billion transistors Lundstrom June 2015 transistors "The transistor was probably the most important invention of the 20th Century, and the story behind the invention is one of clashing egos and top secret research.” -- Ira Flatow, Transistorized! http://www.pbs.org/transistor/ Lundstrom June 2015 “The most important moment since mankind emerged as a life form.” Isaac Asimov (speaking about the “planar process” used to manufacture ICs - - invented by Jean Hoerni, Fairchild Semiconductor, 1959). IEEE Spectrum Dec. 2007 Lundstrom June 2015 Integrated circuits "In 1957, decades before Steve Jobs dreamed up Apple or Mark Zuckerberg created Facebook, a group of eight brilliant young men defected from the Shockley Semiconductor Company in order to start their own transistor business…” Silicon Valley: http://www.pbs.org/wgbh/americanexperience/films/silicon/ -
INDUSTRIAL STRENGTH by MICHAEL RIORDAN
THE INDUSTRIAL STRENGTH by MICHAEL RIORDAN ORE THAN A DECADE before J. J. Thomson discovered the elec- tron, Thomas Edison stumbled across a curious effect, patented Mit, and quickly forgot about it. Testing various carbon filaments for electric light bulbs in 1883, he noticed a tiny current trickling in a single di- rection across a partially evacuated tube into which he had inserted a metal plate. Two decades later, British entrepreneur John Ambrose Fleming applied this effect to invent the “oscillation valve,” or vacuum diode—a two-termi- nal device that converts alternating current into direct. In the early 1900s such rectifiers served as critical elements in radio receivers, converting radio waves into the direct current signals needed to drive earphones. In 1906 the American inventor Lee de Forest happened to insert another elec- trode into one of these valves. To his delight, he discovered he could influ- ence the current flowing through this contraption by changing the voltage on this third electrode. The first vacuum-tube amplifier, it served initially as an improved rectifier. De Forest promptly dubbed his triode the audion and ap- plied for a patent. Much of the rest of his life would be spent in forming a se- ries of shaky companies to exploit this invention—and in an endless series of legal disputes over the rights to its use. These pioneers of electronics understood only vaguely—if at all—that individual subatomic particles were streaming through their devices. For them, electricity was still the fluid (or fluids) that the classical electrodynamicists of the nineteenth century thought to be related to stresses and disturbances in the luminiferous æther. -
Intuitive Analog Circuit Design
Chapter 1 Introduction MTThMarc T. Thompson, PhDPh.D. Thompson Consulting, Inc. 9 Jacob Gates Road Harvard, MA 01451 Phone: (978) 456-7722 Fax: (240) 414-2655 Email: [email protected] Web: http://www.thompsonrd.com Slides to accomppyany Intuitive Analoggg Circuit Design byyp Marc T. Thompson © 2006-2008, M. Thompson Analog Design is Not Dead • The world is analog •…(well, until we talk about Schrodinger) Introduction 2 Partial Shopping List of Analog Design • Analogg,,p filters: Discrete or ladder filters, active filters, switched capacitor filters. • Audio amplifiers: Power op-amps, output (speaker driver) stages • Oscillators: Oscillators, phase-locked loops, video demodulation • Device fabrication and device physics: MOSFETS, bipolar transistors, diodes, IGBTs,,,, SCRs, MCTs, etc. • IC fabrication: Operational amplifiers, comparators, voltage references, PLLs, etc • Analog to digital interface: A/D and D/A, voltage references • Radio frequency circuits: RF amplifiers, filters, mixers and transmission lines; cable TV • Controls: Control system design and compensation, servomechanisms, speed controls • Power electronics: This field requires knowledge of MOSFET drivers, control syyg,y,stem design, PC board layout, and thermal and magg;netic issues; motor drivers; device fabrication of transistors, MOSFETs (metal oxide semiconductor field effect transistors), IGBTs (insulated gate bipolar transistors), SCRs (silicon- controlled rectifiers) • Medical electronics: instrumentation (EKG, NMR), defibrillators, implanted medical devices • Simulation: SPICE and other circuit simulators • PC board layout: This requires knowledge of inductance and capacitive effects, grounding, shielding and PC board design rules. Introduction 3 Lilienfeld Patent (c. 1930) 4 Introduction 1st Bipolar Transistor (c. 1948) • Point contact transistor , demonstrated December 23, 1947 at Bell Labs (Shockley, Bardeen and Brattain) Reference: Probir K.