MOSFET - Wikipedia, the Free Encyclopedia
Total Page:16
File Type:pdf, Size:1020Kb
MOSFET - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/MOSFET MOSFET From Wikipedia, the free encyclopedia The metal-oxide-semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), is by far the most common field-effect transistor in both digital and analog circuits. The MOSFET is composed of a channel of n-type or p-type semiconductor material (see article on semiconductor devices), and is accordingly called an NMOSFET or a PMOSFET (also commonly nMOSFET, pMOSFET, NMOS FET, PMOS FET, nMOS FET, pMOS FET). The 'metal' in the name (for transistors upto the 65 nanometer technology node) is an anachronism from early chips in which the gates were metal; They use polysilicon gates. IGFET is a related, more general term meaning insulated-gate field-effect transistor, and is almost synonymous with "MOSFET", though it can refer to FETs with a gate insulator that is not oxide. Some prefer to use "IGFET" when referring to devices with polysilicon gates, but most still call them MOSFETs. With the new generation of high-k technology that Intel and IBM have announced [1] (http://www.intel.com/technology/silicon/45nm_technology.htm) , metal gates in conjunction with the a high-k dielectric material replacing the silicon dioxide are making a comeback replacing the polysilicon. Usually the semiconductor of choice is silicon, but some chip manufacturers, most notably IBM, have begun to use a mixture of silicon and germanium (SiGe) in MOSFET channels. Unfortunately, many semiconductors with better electrical properties than silicon, such as gallium arsenide, do not form good gate oxides and thus are not suitable for MOSFETs. The gate terminal in the current generation (65 nanometer node) of MOSFETs is a layer of polysilicon (polycrystalline silicon; why polysilicon is used will be explained below) placed over the channel, but separated from the channel by a thin insulating layer of what was traditionally silicon dioxide, but more advanced technologies used silicon oxynitride. The next generation (45 nanometer and beyond) uses a high-k + metal gate combination. When a voltage is applied between the gate and source terminals, the electric field generated penetrates through the oxide and creates a so-called "inversion channel" in the channel underneath. The inversion channel is of the same type — P-type or N-type — as the source and drain, so it provides a conduit through which current can pass. Varying the voltage between the gate and body modulates the conductivity of this layer and makes it possible to control the current flow between drain and source. Contents 1 Circuit symbols 2 MOSFET operation 2.1 Metal-oxide-semiconductor structure 2.2 MOSFET structure 2.3 Modes of operation 2.4 Body effect 3 The primacy of MOSFETs 3.1 Digital 3.2 Analog 4 MOSFET scaling Photomicrograph of two MOSFETs in a test pattern. 4.1 Reasons for MOSFET scaling Probe pads for two gates and three source/drain 4.2 Difficulties arising due to MOSFET scaling nodes are labeled. 4.2.1 Subthreshold conduction 4.2.2 Interconnect capacitance 4.2.3 Heat production 4.2.4 Gate oxide leakage 4.2.5 Process variations 5 MOSFET construction 5.1 Gate material 6 Other MOSFET types 6.1 Dual gate MOSFET 6.2 Depletion mode MOSFETs 6.3 NMOS logic 6.4 Power MOSFET 6.5 DMOS 7 MOSFET analog switch 7.1 Single-type MOSFET switch 7.2 Dual-type (CMOS) MOSFET switch 8 References and Notes 9 External links Circuit symbols A variety of symbols are used for the MOSFET. The basic design is generally a line for the channel with the source and drain leaving it at right angles and then bending back into the same direction as the channel. Sometimes a broken line is used for enhancement mode and a solid one for depletion mode, but the awkwardness of drawing broken lines means this distinction is often ignored. Another line is drawn parallel to the channel for the gate. The bulk connection, if shown, is shown connected to the back of the channel with an arrow indicating PMOS or NMOS. Arrows always point from P to 1 of 8 2/2/07 10:42 AM MOSFET - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/MOSFET N, so an NMOS (N-channel in P-well or P-substrate) has the arrow pointing in. If the bulk is connected to the source (as is generally the case with discrete devices) it is angled to meet up with the source leaving the transistor. If the bulk is not shown (as is often the case in IC design as they are generally common bulk) an inversion symbol is sometimes used to indicate PMOS. Comparison of enhancement and depletion mode symbols, along with JFET symbols: P-channel N-channel JFET MOSFET enh MOSFET dep For the symbols in which the bulk, or body, terminal is shown, it is here shown internally connected to the source. This is a typical configuration, but by no means the only important configuration. In general, the MOSFET is a four-terminal device, and in integrated circuits many of the MOSFETs share a body connection, not necessarily connected to the source terminals of all the transistors. MOSFET operation Metal-oxide-semiconductor structure A traditional metal-oxide-semiconductor (MOS) structure is obtained by depositing a layer of silicon dioxide (SiO2) and a layer of metal (polycrystalline silicon is actually used instead of metal) on top of a semiconductor die. As the silicon dioxide is a dielectric material its structure is equivalent to a plane capacitor, with one of the electrodes replaced by a semiconductor. When a voltage is applied across a MOS structure, it modifies the distribution of charges in the semiconductor. If we consider a P-type semiconductor (with NA the density of holes), a positive VGB (see figure) tends to reduce the concentration of holes and increase the concentration of electrons. If VGB is high enough, the concentration of Metal-oxide-semiconductor negative charge carriers near the gate is more than that of positive charges, in what is known as an inversion layer. structure This structure with P-type body is the basis of the N-type MOSFET, which requires the addition of an N-type source and drain regions. MOSFET structure A metal-oxide-semiconductor field-effect transistor (MOSFET) is based on the modulation of charge concentration caused by a MOS capacitance. It includes two terminals (source and drain) each connected to separate highly doped regions. These regions can be either P or N type, but they must both be of the same type. The highly doped regions are typically denoted by a '+' following the type of doping (see the image at the right). These two regions are separated by a doped region of opposite type, known as the body. This region is not highly doped, denoted by the lack of a '+' sign. The active region constitutes a MOS capacitance with a third electrode, the gate, which is located above the body and insulated from all of the other regions by an oxide. Cross Section of an NMOS If the MOSFET is an N-Channel or nMOS FET, then the source and drain are 'N+' regions and the body is a 'P' region. When a positive gate-source voltage is applied, it creates an N-channel at the surface of the P region, just under the oxide, by depleting this region of holes. This channel extends between the source and the drain, but current is conducted through it only when the gate potential is high enough to attract electrons from the source into the channel. When zero or negative voltage is applied between gate and source, the channel disappears and no current can flow between the source and the drain. If the MOSFET is an P-Channel or pMOS FET, then the source and drain are 'P+' regions and the body is a 'N' region. When a negative gate-source voltage (positive source-gate) is applied, it creates a P-channel at the surface of the N region, just under the oxide, by depleting this region of electrons. This channel extends between the source and the drain, but current is conducted only when the gate potential is low enough to attract holes from the source into the channel. When a near-zero or positive voltage is applied between gate and body, the channel disappears and no current can flow between the source and the drain. The source is so named because it is the source of the charge carriers (electrons for N-channel, holes for P-channel) that flow through the channel; similarly, the drain is where the charge carriers leave the channel. 2 of 8 2/2/07 10:42 AM MOSFET - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/MOSFET Modes of operation The operation of a MOSFET can be separated into three different modes, depending on the voltages at the terminals. For an enhancement mode, n-channel MOSFET the modes are: Cut-off or sub-threshold mode When VGS < Vth where Vth is the threshold voltage of the device. According to the threshold model, the transistor is turned off, and there is no conduction between drain and source. In reality, the Boltzmann distribution of electron energies allows some of the more energetic electrons at the source to enter the channel and flow to the drain, resulting in a subthreshold current that is an exponential function of gate–source voltage. While the current between drain and source should ideally be zero when the transistor is being used as a turned-off switch, there is a weak-inversion current, sometimes called subthreshold leakage.