MOSFET - Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

MOSFET - Wikipedia, the Free Encyclopedia MOSFET - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/MOSFET MOSFET From Wikipedia, the free encyclopedia The metal-oxide-semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), is by far the most common field-effect transistor in both digital and analog circuits. The MOSFET is composed of a channel of n-type or p-type semiconductor material (see article on semiconductor devices), and is accordingly called an NMOSFET or a PMOSFET (also commonly nMOSFET, pMOSFET, NMOS FET, PMOS FET, nMOS FET, pMOS FET). The 'metal' in the name (for transistors upto the 65 nanometer technology node) is an anachronism from early chips in which the gates were metal; They use polysilicon gates. IGFET is a related, more general term meaning insulated-gate field-effect transistor, and is almost synonymous with "MOSFET", though it can refer to FETs with a gate insulator that is not oxide. Some prefer to use "IGFET" when referring to devices with polysilicon gates, but most still call them MOSFETs. With the new generation of high-k technology that Intel and IBM have announced [1] (http://www.intel.com/technology/silicon/45nm_technology.htm) , metal gates in conjunction with the a high-k dielectric material replacing the silicon dioxide are making a comeback replacing the polysilicon. Usually the semiconductor of choice is silicon, but some chip manufacturers, most notably IBM, have begun to use a mixture of silicon and germanium (SiGe) in MOSFET channels. Unfortunately, many semiconductors with better electrical properties than silicon, such as gallium arsenide, do not form good gate oxides and thus are not suitable for MOSFETs. The gate terminal in the current generation (65 nanometer node) of MOSFETs is a layer of polysilicon (polycrystalline silicon; why polysilicon is used will be explained below) placed over the channel, but separated from the channel by a thin insulating layer of what was traditionally silicon dioxide, but more advanced technologies used silicon oxynitride. The next generation (45 nanometer and beyond) uses a high-k + metal gate combination. When a voltage is applied between the gate and source terminals, the electric field generated penetrates through the oxide and creates a so-called "inversion channel" in the channel underneath. The inversion channel is of the same type — P-type or N-type — as the source and drain, so it provides a conduit through which current can pass. Varying the voltage between the gate and body modulates the conductivity of this layer and makes it possible to control the current flow between drain and source. Contents 1 Circuit symbols 2 MOSFET operation 2.1 Metal-oxide-semiconductor structure 2.2 MOSFET structure 2.3 Modes of operation 2.4 Body effect 3 The primacy of MOSFETs 3.1 Digital 3.2 Analog 4 MOSFET scaling Photomicrograph of two MOSFETs in a test pattern. 4.1 Reasons for MOSFET scaling Probe pads for two gates and three source/drain 4.2 Difficulties arising due to MOSFET scaling nodes are labeled. 4.2.1 Subthreshold conduction 4.2.2 Interconnect capacitance 4.2.3 Heat production 4.2.4 Gate oxide leakage 4.2.5 Process variations 5 MOSFET construction 5.1 Gate material 6 Other MOSFET types 6.1 Dual gate MOSFET 6.2 Depletion mode MOSFETs 6.3 NMOS logic 6.4 Power MOSFET 6.5 DMOS 7 MOSFET analog switch 7.1 Single-type MOSFET switch 7.2 Dual-type (CMOS) MOSFET switch 8 References and Notes 9 External links Circuit symbols A variety of symbols are used for the MOSFET. The basic design is generally a line for the channel with the source and drain leaving it at right angles and then bending back into the same direction as the channel. Sometimes a broken line is used for enhancement mode and a solid one for depletion mode, but the awkwardness of drawing broken lines means this distinction is often ignored. Another line is drawn parallel to the channel for the gate. The bulk connection, if shown, is shown connected to the back of the channel with an arrow indicating PMOS or NMOS. Arrows always point from P to 1 of 8 2/2/07 10:42 AM MOSFET - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/MOSFET N, so an NMOS (N-channel in P-well or P-substrate) has the arrow pointing in. If the bulk is connected to the source (as is generally the case with discrete devices) it is angled to meet up with the source leaving the transistor. If the bulk is not shown (as is often the case in IC design as they are generally common bulk) an inversion symbol is sometimes used to indicate PMOS. Comparison of enhancement and depletion mode symbols, along with JFET symbols: P-channel N-channel JFET MOSFET enh MOSFET dep For the symbols in which the bulk, or body, terminal is shown, it is here shown internally connected to the source. This is a typical configuration, but by no means the only important configuration. In general, the MOSFET is a four-terminal device, and in integrated circuits many of the MOSFETs share a body connection, not necessarily connected to the source terminals of all the transistors. MOSFET operation Metal-oxide-semiconductor structure A traditional metal-oxide-semiconductor (MOS) structure is obtained by depositing a layer of silicon dioxide (SiO2) and a layer of metal (polycrystalline silicon is actually used instead of metal) on top of a semiconductor die. As the silicon dioxide is a dielectric material its structure is equivalent to a plane capacitor, with one of the electrodes replaced by a semiconductor. When a voltage is applied across a MOS structure, it modifies the distribution of charges in the semiconductor. If we consider a P-type semiconductor (with NA the density of holes), a positive VGB (see figure) tends to reduce the concentration of holes and increase the concentration of electrons. If VGB is high enough, the concentration of Metal-oxide-semiconductor negative charge carriers near the gate is more than that of positive charges, in what is known as an inversion layer. structure This structure with P-type body is the basis of the N-type MOSFET, which requires the addition of an N-type source and drain regions. MOSFET structure A metal-oxide-semiconductor field-effect transistor (MOSFET) is based on the modulation of charge concentration caused by a MOS capacitance. It includes two terminals (source and drain) each connected to separate highly doped regions. These regions can be either P or N type, but they must both be of the same type. The highly doped regions are typically denoted by a '+' following the type of doping (see the image at the right). These two regions are separated by a doped region of opposite type, known as the body. This region is not highly doped, denoted by the lack of a '+' sign. The active region constitutes a MOS capacitance with a third electrode, the gate, which is located above the body and insulated from all of the other regions by an oxide. Cross Section of an NMOS If the MOSFET is an N-Channel or nMOS FET, then the source and drain are 'N+' regions and the body is a 'P' region. When a positive gate-source voltage is applied, it creates an N-channel at the surface of the P region, just under the oxide, by depleting this region of holes. This channel extends between the source and the drain, but current is conducted through it only when the gate potential is high enough to attract electrons from the source into the channel. When zero or negative voltage is applied between gate and source, the channel disappears and no current can flow between the source and the drain. If the MOSFET is an P-Channel or pMOS FET, then the source and drain are 'P+' regions and the body is a 'N' region. When a negative gate-source voltage (positive source-gate) is applied, it creates a P-channel at the surface of the N region, just under the oxide, by depleting this region of electrons. This channel extends between the source and the drain, but current is conducted only when the gate potential is low enough to attract holes from the source into the channel. When a near-zero or positive voltage is applied between gate and body, the channel disappears and no current can flow between the source and the drain. The source is so named because it is the source of the charge carriers (electrons for N-channel, holes for P-channel) that flow through the channel; similarly, the drain is where the charge carriers leave the channel. 2 of 8 2/2/07 10:42 AM MOSFET - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/MOSFET Modes of operation The operation of a MOSFET can be separated into three different modes, depending on the voltages at the terminals. For an enhancement mode, n-channel MOSFET the modes are: Cut-off or sub-threshold mode When VGS < Vth where Vth is the threshold voltage of the device. According to the threshold model, the transistor is turned off, and there is no conduction between drain and source. In reality, the Boltzmann distribution of electron energies allows some of the more energetic electrons at the source to enter the channel and flow to the drain, resulting in a subthreshold current that is an exponential function of gate–source voltage. While the current between drain and source should ideally be zero when the transistor is being used as a turned-off switch, there is a weak-inversion current, sometimes called subthreshold leakage.
Recommended publications
  • Role of Mosfets Transconductance Parameters and Threshold Voltage in CMOS Inverter Behavior in DC Mode
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 July 2017 doi:10.20944/preprints201707.0084.v1 Article Role of MOSFETs Transconductance Parameters and Threshold Voltage in CMOS Inverter Behavior in DC Mode Milaim Zabeli1, Nebi Caka2, Myzafere Limani2 and Qamil Kabashi1,* 1 Department of Engineering Informatics, Faculty of Mechanical and Computer Engineering ([email protected]) 2 Department of Electronics, Faculty of Electrical and Computer Engineering ([email protected], [email protected]) * Correspondence: [email protected]; Tel.: +377-44-244-630 Abstract: The objective of this paper is to research the impact of electrical and physical parameters that characterize the complementary MOSFET transistors (NMOS and PMOS transistors) in the CMOS inverter for static mode of operation. In addition to this, the paper also aims at exploring the directives that are to be followed during the design phase of the CMOS inverters that enable designers to design the CMOS inverters with the best possible performance, depending on operation conditions. The CMOS inverter designed with the best possible features also enables the designing of the CMOS logic circuits with the best possible performance, according to the operation conditions and designers’ requirements. Keywords: CMOS inverter; NMOS transistor; PMOS transistor; voltage transfer characteristic (VTC), threshold voltage; voltage critical value; noise margins; NMOS transconductance parameter; PMOS transconductance parameter 1. Introduction CMOS logic circuits represent the family of logic circuits which are the most popular technology for the implementation of digital circuits, or digital systems. The small dimensions, low power of dissipation and ease of fabrication enable extremely high levels of integration (or circuits packing densities) in digital systems [1-5].
    [Show full text]
  • High Performance Power Distribution Networks with On-Chip Decoupling Capacitors for Nanoscale Integrated Circuits
    High Performance Power Distribution Networks with On-Chip Decoupling Capacitors for Nanoscale Integrated Circuits by Mikhail Popovich Submitted in Partial Ful¯llment of the Requirements for the Degree Doctor of Philosophy Supervised by Professor Eby G. Friedman Department of Electrical and Computer Engineering The College School of Engineering and Applied Sciences University of Rochester Rochester, New York 2007 ii It has become appallingly obvious that our technology has exceeded our humanity. | Albert Einstein iii Dedication This work is dedicated to my parents, Mr. Evgeniy Antonovich and Mrs. Lyud- mila Mikhailovna, my wife Oksana, and my daughter Elizabeth Michelle. iv Curriculum Vitae Mikhail Popovich was born in Izhevsk, Russia in 1975. He received the B.S. degree in electrical engineering from Izhevsk State Technical University, Izhevsk, Russia in 1998, and the M.S. degree in electrical and computer engineering from the University of Rochester, Rochester, NY in 2002, where he is completing the Ph.D. degree in electrical engineering. He was an intern at Freescale Semiconductor Corporation, Tempe, AZ, in the summer 2005, where he worked on signal integrity in RF and mixed-signal ICs and developed design techniques and methodologies for placing distributed on-chip de- coupling capacitors. His professional experience also includes characterization of sub- strate and interconnect crosstalk noise in CMOS imaging circuits for the Eastman Kodak Company, Rochester, NY. He has authored a book and several conference and journal papers in the areas of power distribution networks in CMOS VLSI circuits, placement of on-chip decoupling capacitors, and the inductive properties of on-chip v interconnect. His research interests are in the areas of on-chip noise, signal integrity, and interconnect design including on-chip inductive e®ects, optimization of power distribution networks, and the design of on-chip decoupling capacitors.
    [Show full text]
  • Logic Styles with Mosfets
    Logic Styles with MOSFETs NMOS Logic One way of using MOSFET transistors to produce logic circuits uses only n-type (n-p-n) transistors, and this style is called NMOS logic (N for n-type transistors). An inverter circuit in NMOS is shown in the figure with n-p-n transistors replacing both the switch and the resistor of the inverter circuit examined earlier. The lower transistor in the circuit operates as a switch exactly as the idealised switch in the original circuit: with 5V on the Gate input, the conducting channel is created in the transistor and the “switch” is closed; with 0V on the Gate there is no channel and the transistor is non-conducting - the “switch” is open. The depletion mode transistor is produced by adding a small amount of donor material to the The upper transistor, called a depletion mode channel region of a n-p-n transistor, so that there are a small number of free electrons in the channel transistor, operates as a resistor to limit current even when there is no electric field across the flow when the “switch” is closed. This transistor is insulator. This provides a connection through the a modified n-p-n transistor that always has a transistor for all Gate voltages. The conductivity of channel present and is always conducting, although the channel is lowest (Resistance is highest) when the conductivity is low when there is 0V on the the Gate is at 0V. When the Gate is at 5V and more Gate and higher when 5V is on the Gate: see Box.
    [Show full text]
  • Introduction to the Course. in This Lecture I Would Try to Set the Course in Perspective
    Introduction to the course. In this lecture I would try to set the course in perspective. Before we embark on learning something, it is good to ponder why it would be interesting, besides the fact that it can fetch useful course credits. What do you understand by VLSI? In retrospect, integrated circuits having 10s of devices were called small scale integrated circuits (SSI), a few hundreds were called medium scale few thousands large scale. The game stopped with VLSI as people lost the count (not really). What does the word VLSI bring to your mind? Discussion to follow. What do you understand by technology? Discussion to follow. Technology is the application of scientific knowledge for practical purposes. For example, why you may not call VLSI circuit design as VLSI technology? This is by convention in the semiconductor business research and business community. The convention is to treat fabrication technology as the “technology”. In this course we would discuss and try to learn how Silicon Integrated Circuits are fabricated. Integrated circuits are fabricated by a sequence of fabrication steps called unit processes. A unit process would add to or subtract from a substrate. Examples of unit processes can be cleaning of a wafer, deposition of a thin film of a material and so on. The unit processes are not uniquely applied to VLSI fabrication only. I can combine several of these unit processes to make solar cells. I can do same for making MEMS devices. So the unit processes can be thought of as pieces in a jigsaw puzzles. The outcome would depend on how you sequence the unit processes.
    [Show full text]
  • Failure Precursors for Insulated Gate Bipolar Transistors (Igbts) Nishad Patil1, Diganta Das1, Kai Goebel2 and Michael Pecht1
    Failure Precursors for Insulated Gate Bipolar Transistors (IGBTs) 1 1 2 1 Nishad Patil , Diganta Das , Kai Goebel and Michael Pecht 1Center for Advanced Life Cycle Engineering (CALCE) University of Maryland College Park, MD 20742, USA 2NASA Ames Research Center Moffett Field, CA 94035, USA Abstract Failure precursors indicate changes in a measured variable that can be associated with impending failure. By identifying precursors to failure and by monitoring them, system failures can be predicted and actions can be taken to mitigate their effects. In this study, three potential failure precursor candidates, threshold voltage, transconductance, and collector-emitter ON voltage, are evaluated for insulated gate bipolar transistors (IGBTs). Based on the failure causes determined by the failure modes, mechanisms and effects analysis (FMMEA), IGBTs are aged using electrical-thermal stresses. The three failure precursor candidates of aged IGBTs are compared with new IGBTs under a temperature range of 25-200oC. The trends in the three electrical parameters with changes in temperature are correlated to device degradation. A methodology is presented for validating these precursors for IGBT prognostics using a hybrid approach. Keywords: Failure precursors, IGBTs, prognostics Failure precursors indicate changes in a measured variable structure of an IGBT is similar to that of a vertical that can be associated with impending failure [1]. A diffusion power MOSFET (VDMOS) [3] except for an systematic method for failure precursor selection is additional p+ layer above the collector as seen in Figure 1. through the use of the failure modes, mechanisms, and The main characteristic of the vertical configuration is that effects analysis (FMMEA) [2].
    [Show full text]
  • Ionizing Radiation Effects on CMOS Imagers Manufactured in Deep Submicron Process
    Ionizing Radiation Effects on CMOS Imagers Manufactured in Deep Submicron Process Vincent Goiffona, Pierre Magnana, Fr´ed´eric Bernardb, Guy Rollandb, Olivier Saint-P´ec, Nicolas Hugera and Franck Corbi`erea aUniversit´ede Toulouse, ISAE, 10 avenue E. Belin, 31055, Toulouse, France; bCNES, 18 avenue E. Belin, 31401, Toulouse, France; cEADS Astrium, 31 avenue des cosmonautes, 31402, Toulouse, France ABSTRACT We present here a study on both CMOS sensors and elementary structures (photodiodes and in-pixel MOSFETs) manufactured in a deep submicron process dedicated to imaging. We designed a test chip made of one 128×128- 3T-pixel array with 10 µm pitch and more than 120 isolated test structures including photodiodes and MOSFETs with various implants and different sizes. All these devices were exposed to ionizing radiation up to 100 krad and their responses were correlated to identify the CMOS sensor weaknesses. Characterizations in darkness and under illumination demonstrated that dark current increase is the major sensor degradation. Shallow trench isolation was identified to be responsible for this degradation as it increases the number of generation centers in photodiode depletion regions. Consequences on hardness assurance and hardening-by-design are discussed. Keywords: CMOS image sensor, CIS, APS, deep submicron technology, ionizing radiation, total dose, dark current, STI, hardening by design, RHDB 1. INTRODUCTION Ionizing radiation effects on CMOS image sensors for space and scientific applications have been studied1–6 for several years. However, the use of deep submicron technologies (DSM) has brought new behaviors7 such as enhanced gate oxide hardness or radiation induced narrow channel effect.8 These effects have been initially observed and explained on deep submicron low voltage MOS transistors dedicated to digital logic applications.
    [Show full text]
  • AN5252 Low-Voltage Power MOSFET Switching Behavior And
    AN5252 Application note Low-voltage Power MOSFET switching behavior and performance evaluation in motor control application topologies Introduction During the last years, some applications based on electrical power conversion are gaining more and more space in the civil and industrial fields. The constant development of microprocessors and the improvement of modulation techniques, which are useful for the control of power devices, have led to a more accurate control of the converted power as well as of the power dissipation, thus increasing the efficiency of the motor control applications. Nowdays, frequency modulation techniques are used to control the torque and the speed of brushless motors in several high- and low-voltage applications and in different circuit topologies using power switches in different technologies such as MOSFETs and IGBTs. Therefore, the devices have to guarantee the best electrical efficiency and the least possible impact in terms of emissions. The aim of this application note is to provide a description of the most important parameters which are useful for choosing a low- voltage Power MOSFET device for a motor control application. Three different motor control applications and topology cases are deeply analyzed to offer to motor drive designers the guidelines required for an efficient and reliable design when using the MOSFET technology in hard-switch applications: • BLDC motor in a 3-phase inverter topology • DC motor in H-bridge configuration • DC motor in single-switch configuration AN5252 - Rev 1 - November 2018 - By C. Mistretta and F. Scrimizzi www.st.com For further information contact your local STMicroelectronics sales office. AN5252 Control techniques and brushless DC (BLDC) motors 1 Control techniques and brushless DC (BLDC) motors During the last years, servomotors have evolved from mostly brush to brushless type.
    [Show full text]
  • Vlsi Design Lecture Notes B.Tech (Iv Year – I Sem) (2018-19)
    VLSI DESIGN LECTURE NOTES B.TECH (IV YEAR – I SEM) (2018-19) Prepared by Dr. V.M. Senthilkumar, Professor/ECE & Ms.M.Anusha, AP/ECE Department of Electronics and Communication Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India Unit -1 IC Technologies, MOS & Bi CMOS Circuits Unit -1 IC Technologies, MOS & Bi CMOS Circuits UNIT-I IC Technologies Introduction Basic Electrical Properties of MOS and BiCMOS Circuits MOS I - V relationships DS DS PMOS MOS transistor Threshold Voltage - VT figure of NMOS merit-ω0 Transconductance-g , g ; CMOS m ds Pass transistor & NMOS Inverter, Various BiCMOS pull ups, CMOS Inverter Technologies analysis and design Bi-CMOS Inverters Unit -1 IC Technologies, MOS & Bi CMOS Circuits INTRODUCTION TO IC TECHNOLOGY The development of electronics endless with invention of vaccum tubes and associated electronic circuits. This activity termed as vaccum tube electronics, afterward the evolution of solid state devices and consequent development of integrated circuits are responsible for the present status of communication, computing and instrumentation. • The first vaccum tube diode was invented by john ambrase Fleming in 1904. • The vaccum triode was invented by lee de forest in 1906. Early developments of the Integrated Circuit (IC) go back to 1949. German engineer Werner Jacobi filed a patent for an IC like semiconductor amplifying device showing five transistors on a common substrate in a 2-stage amplifier arrangement.
    [Show full text]
  • Transistors to Integrated Circuits
    resistanc collectod ean r capacit foune yar o t d commercial silicon controlled rectifier, today's necessarye b relative .Th e advantage lineaf so r thyristor. This later wor alss kowa r baseou n do and circular structures are considered both for 1956 research [19]. base resistanc r collectofo d an er capacity. Parameters, which are expected to affect the In the process of diffusing the p-type substrate frequency behavior considerede ar , , including wafer into an n-p-n configuration for the first emitter depletion layer capacity, collector stage of p-n-p-n construction, particularly in the depletion layer capacit diffusiod yan n transit redistribution "drive-in" e donophasth f ro e time. Finall parametere yth s which mighe b t diffusion at higher temperature in a dry gas obtainabl comparee ear d with those needer dfo ambient (typically > 1100°C in H2), Frosch a few typical switching applications." would seriously damag r waferseou wafee Th . r surface woul e erodedb pittedd an d r eveo , n The Planar Process totally destroyed. Every time this happenee dth s e apparenlosexpressiowa th s y b tn o n The development of oxide masking by Frosch Frosch' smentiono t face t no , ourn o , s (N.H.). and Derick [9,10] on silicon deserves special We would make some adjustments, get more attention inasmuch as they anticipated planar, oxide- silicon wafers ready, and try again. protected device processing. Silicon is the key ingredien oxids MOSFEr it fo d ey an tpave wa Te dth In the early Spring of 1955, Frosch commented integrated electronics [22].
    [Show full text]
  • Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power Mosfets
    Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power MOSFETs by Abraham Yoo A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Materials Science and Engineering University of Toronto © Copyright by Abraham Yoo 2010 Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power MOSFETs Abraham Yoo Doctor of Philosophy Department of Materials Science and Engineering University of Toronto 2010 Abstract In this thesis, next generation low-voltage integrated power semiconductor devices are proposed and analyzed in terms of device structure and layout optimization techniques. Both approaches strive to minimize the power consumption of the output stage in DC-DC converters. In the first part of this thesis, we present a low-voltage CMOS power transistor layout technique, implemented in a 0.25µm, 5 metal layer standard CMOS process. The hybrid waffle (HW) layout was designed to provide an effective trade-off between the width of diagonal source/drain metal and the active device area, allowing more effective optimization between switching and conduction losses. In comparison with conventional layout schemes, the HW layout exhibited a 30% reduction in overall on-resistance with 3.6 times smaller total gate charge for CMOS devices with a current rating of 1A. Integrated DC-DC buck converters using HW output stages were found to have higher efficiencies at switching frequencies beyond multi-MHz. ii In the second part of the thesis, we present a CMOS-compatible lateral superjunction FINFET (SJ-FINFET) on a SOI platform. One drawback associated with low-voltage SJ devices is that the on-resistance is not only strongly dependent on the drift doping concentration but also on the channel resistance as well.
    [Show full text]
  • Class 08: NMOS, Pseudo-NMOS
    Class 08: NMOS, Pseudo-NMOS Topics: •02 NMOS Logic Gates •03 NMOS Logic Gates •04 Pseudo-NMOS •05 Pseudo-NMOS •06 Transistor Equivalency Dr. Joseph Elias; Dr. Andrew Mason 1 Class 08: NMOS, Pseudo-NMOS NMOS (Martin c. 1) § nMOS Inverter with resistive load § nMOS Inverter with depletion load Depletion nMOS, Vtn < 0 always ON for VGS = 0 § switch level model W/L Q1 > W/L Q2 so Q1 can “pull down” Vout § nMOS NOR gate c = a+b (a) NMOS off (b) NMOS on want to realize resistor with a transistor § nMOS NAND gate § Including transistor resistance c = ab rds º channel resistance RL >> rds so output close to 0V Dr. Joseph Elias; Dr. Andrew Mason 2 Class 08: NMOS, Pseudo-NMOS NMOS (Martin c. 1) • General nMOS schematic Examples: depletion-load nMOS logic – single load transistor – parallel and series nMOS transistor to complete the compliment of the desired function i.e., they determine when the output is low “0” rather than high “1” Dr. Joseph Elias; Dr. Andrew Mason 3 Class 08: NMOS, Pseudo-NMOS Pseudo-NMOS (Martin c. 4) •NMOS Common-Source Amplifier with •Pseudo-NMOS inverter with PMOS load current sourrce load and load capacitor •Choose W/L so that: •Choose Vbias in between VDD and ground Q2 always on since |Vgs| > |Vtp| Q2 in saturation if (for VDD=3.3) |Vds| > |Veff| > |Vgs| – |Vt| VDD – Vout > |Vgs| - |Vt| Vout < VDD - |Vgs| + |Vt| Vout < 1.65 + Vt < 2.45 Q1 in saturation if Vgs = Vin > Vt Vds > Veff > Vgs – Vt => •Current-source realized with a PMOS transistor Vout > Vin - Vt •Power Dissipation: Veff = Vgs - Vt output low (Vin is high): P = IL * VDD Vds = Vgs + Vdg at saturation, Vdg=-Vt output high (Vin is low): P = 0 Valid if: average static dissipation: P = ½ * IL * VDD Veff = |Vds-sat| > |Vgs| - |Vtp| -want drain at least Vt from gate Dr.
    [Show full text]
  • Fundamentals of MOSFET and IGBT Gate Driver Circuits
    Application Report SLUA618A–March 2017–Revised October 2018 Fundamentals of MOSFET and IGBT Gate Driver Circuits Laszlo Balogh ABSTRACT The main purpose of this application report is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Therefore, it should be of interest to power electronics engineers at all levels of experience. The most popular circuit solutions and their performance are analyzed, including the effect of parasitic components, transient and extreme operating conditions. The discussion builds from simple to more complex problems starting with an overview of MOSFET technology and switching operation. Design procedure for ground referenced and high side gate drive circuits, AC coupled and transformer isolated solutions are described in great details. A special section deals with the gate drive requirements of the MOSFETs in synchronous rectifier applications. For more information, see the Overview for MOSFET and IGBT Gate Drivers product page. Several, step-by-step numerical design examples complement the application report. This document is also available in Chinese: MOSFET 和 IGBT 栅极驱动器电路的基本原理 Contents 1 Introduction ................................................................................................................... 2 2 MOSFET Technology ......................................................................................................
    [Show full text]