Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power Mosfets

Total Page:16

File Type:pdf, Size:1020Kb

Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power Mosfets Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power MOSFETs by Abraham Yoo A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Materials Science and Engineering University of Toronto © Copyright by Abraham Yoo 2010 Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power MOSFETs Abraham Yoo Doctor of Philosophy Department of Materials Science and Engineering University of Toronto 2010 Abstract In this thesis, next generation low-voltage integrated power semiconductor devices are proposed and analyzed in terms of device structure and layout optimization techniques. Both approaches strive to minimize the power consumption of the output stage in DC-DC converters. In the first part of this thesis, we present a low-voltage CMOS power transistor layout technique, implemented in a 0.25µm, 5 metal layer standard CMOS process. The hybrid waffle (HW) layout was designed to provide an effective trade-off between the width of diagonal source/drain metal and the active device area, allowing more effective optimization between switching and conduction losses. In comparison with conventional layout schemes, the HW layout exhibited a 30% reduction in overall on-resistance with 3.6 times smaller total gate charge for CMOS devices with a current rating of 1A. Integrated DC-DC buck converters using HW output stages were found to have higher efficiencies at switching frequencies beyond multi-MHz. ii In the second part of the thesis, we present a CMOS-compatible lateral superjunction FINFET (SJ-FINFET) on a SOI platform. One drawback associated with low-voltage SJ devices is that the on-resistance is not only strongly dependent on the drift doping concentration but also on the channel resistance as well. To resolve the issue, a SJ- FINFET structure consisting of a 3D trench gate and SJ drift region was developed to minimize both channel and drift resistances. Several prototype devices were fabricated in a 0.5µm CMOS compatible process with nine masking layers. In comparison with conventional SJ-LDMOSFETs, the fabricated SJ-FINFETs demonstrated approximately 30% improvement in Ron,sp. This is a positive indication that the SJ-FINFET can become a competitive power device for sub-100V rating applications. iii Acknowledgements First of all, I would like to thank Prof. Wai Tung Ng for his supervision, encouragement, and invaluable counsel throughout my Ph.D. program. Without whose presence my development as both a student and an individual would not have progressed as rapidly. I wish to further acknowledge Prof. Johnny Sin (Hong Kong University of Science and Technology) and Yasuhiko Onishi (Visiting Scientist from Fuji Electric Corp.) who have contributed to my knowledge in the field, which better enabled me to carry out and finish my research project on time. I would like to express appreciation to all the members in the Smart Power Integration & Semiconductor Devices Research Group for their fruitful discussions over the course of this research, particularly M. Chang, O. Trescases, H. Wang, E. Xu, G. Wei, and Q. Fung. I would also like to express my appreciation to all the staff in Nanoelectronic Fabrication Facility (NFF) at HKUST who provided me with various IC fabrication support. Financial support from the University of Toronto Open Fellowship, the Natural Sciences and Engineering Research Council of Canada, and the Auto21 Network of Centres of Excellence of Canada are gratefully acknowledged. Lastly, I would like to extend my appreciation to my wife, Mia Yoo for her patience, consideration and support during the past four years. She has been wonderful and a true partner. Also, special thanks to my mother and parents-in-law for their constant support and encouragement throughout the studies. iv Table of Contents Table of Contents .............................................................................................................. v List of Tables .................................................................................................................. viii List of Figures ................................................................................................................... ix List of Glossary .............................................................................................................. xiv List of Symbols ............................................................................................................... xvi Chapter 1 Introduction ..................................................................................................... 1 1.1 Technology and Market Trends in Power Semiconductors ...................................... 1 1.2 Advantages of Power MOSFET Devices ................................................................. 3 1.3 Application Fields for Current and Future Power MOSFETs .................................. 4 1.4 Thesis Objectives and Organization ......................................................................... 6 Chapter 2 Power MOSFETs – a Brief Overview ........................................................... 7 2.1 Fundamentals of MOS Device .................................................................................. 7 2.2 Types of Power MOSFETs ..................................................................................... 11 2.2.1 Traditional Vertical Power MOSFETs ............................................................ 12 2.2.2 Traditional Lateral Power MOSFETs .............................................................. 14 2.3 CMOS-based Power MOSFETs ............................................................................. 18 2.3.1 Monolithic Integration: Standard CMOS Process ........................................... 18 2.3.2 CMOS Layout Techniques for Power Integrated Circuits ............................... 20 2.4 Super-Junction (SJ) Power MOSFETs ................................................................... 25 2.4.1 Device Concept and Characteristics ................................................................ 25 2.4.2 Current Status and Challenges of SJ Power MOSFETs .................................. 27 Chapter 3 Analytical Layout Modeling of Power MOSFET ...................................... 30 3.1 Analysis of Basic MOS Finger Structure................................................................ 30 3.2 Modeling of Conventional Multi-Finger (MF) Layout ........................................... 33 v 3.3 Modeling of Regular Waffle (RW) Layout ............................................................ 36 3.4 Proposed Hybrid Waffle (HW) Layout ................................................................... 38 3.4.1 Lfinger-Optimization of HW Layout Structure .................................................. 40 3.4.2 Performance Evaluation via FOM ................................................................... 42 3.4.3 Simulated Characteristics of Different Layout Structures ............................... 48 3.5 Summary ................................................................................................................. 53 Chapter 4 High Speed CMOS Output Stage for Integrated DC-DC Converter ...... 54 4.1 Output Stage Design based on 5V Hybrid Waffle Layout ..................................... 55 4.1.1 Design of Low-Side Switch: N-channel MOSFETs ........................................ 56 4.1.2 Design of High-Side Switch: P-channel MOSFETs ........................................ 59 4.1.3 Power Connection Routings ............................................................................ 61 4.1.4 ESD Protection, Power Clamp, and Guard Rings ............................................ 62 4.2 IC Fabrication and Packaging ................................................................................. 66 4.3 Test PCB Design ..................................................................................................... 68 4.4 Experimental Results and Discussion ..................................................................... 70 4.4.1 On-Resistance Measurements .......................................................................... 70 4.4.2 Gate-drive Loss Measurements ........................................................................ 75 4.4.3 Efficiency Measurements ................................................................................. 77 4.5 Summary ................................................................................................................. 79 Chapter 5 Device Structure and Analysis of the SJ-FINFET on SOI ........................ 80 5.1 Device Structure and Operating Concept ............................................................... 81 5.2 Process Simulations ................................................................................................ 87 5.2.1 Simulation of P-body Formation ..................................................................... 87 5.2.2 Simulation of SJ-drift Formation ..................................................................... 89 5.2.3 Simulation of N+ Source/Drain Contact Formation ........................................ 91 5.3 Device Simulations ................................................................................................. 92 5.3.1 Mesh Structure and Grid Refinement .............................................................. 92 5.3.2 Off-State Simulations ......................................................................................
Recommended publications
  • UCC27531 35-V Gate Driver for Sic MOSFET Applications (Rev. A)
    (1) Application Report SLUA770A–March 2016–Revised May 2018 UCC27531 35-V Gate Driver for SiC MOSFET Applications Richard Herring........................................................................................... High Power Driver Solutions ABSTRACT SiC MOSFETs are gaining popularity in many high-power applications due to their significant switching performance advantages. SiC MOSFETs are also available with attractive voltage ratings and current capabilities. However, the characteristics of SiC MOSFETs require consideration of the gate-driver circuit to optimize the switching performance of the SiC device. Although SiC MOSFETs are not difficult to drive properly, many typical MOSFET drivers may result in compromised switching speed performance. The UCC27531 gate driver includes features and has operating parameters that allow for driving SiC power MOSFETs within the recommended optimum drive configuration. This application note reviews the characteristics of SiC MOSFETs and how to drive them to achieve the performance improvement that SiC can bring at the system level. The features of UCC27531 to achieve optimal performance of SiC are explained and results from a demonstration circuit are provided. 1 Introduction In the past, the majority of applications such as uninterruptible power supplies (UPS), photovoltaic (PV) inverters, and motor drive have utilized IGBTs for the power devices due to the combination of high- voltage ratings exceeding 1 kV and high current capability. Usable switching frequency of IGBTs has typically been limited to 20–30 kHz, due to the high turnoff losses caused by the long turnoff current tail. Design comparisons have shown that SiC MOSFET designs can operate at considerably higher switching frequency and achieve the same or better efficiency. Although the device cost of the SiC MOSFETs are higher than the equivalent IGBTs, the significant savings in transformer, capacitor, and enclosure size results in a lower system cost.
    [Show full text]
  • Design and Process Developments Towards an Optimal 6.5 Kv Sic Power MOSFET
    Design and process developments towards an optimal 6.5 kV SiC power MOSFET Victor Soler ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX ( h t t p : / / w w w . t d x . c a t / ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons (http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una ventana o marco ajeno a UPCommons (framing).
    [Show full text]
  • Failure Precursors for Insulated Gate Bipolar Transistors (Igbts) Nishad Patil1, Diganta Das1, Kai Goebel2 and Michael Pecht1
    Failure Precursors for Insulated Gate Bipolar Transistors (IGBTs) 1 1 2 1 Nishad Patil , Diganta Das , Kai Goebel and Michael Pecht 1Center for Advanced Life Cycle Engineering (CALCE) University of Maryland College Park, MD 20742, USA 2NASA Ames Research Center Moffett Field, CA 94035, USA Abstract Failure precursors indicate changes in a measured variable that can be associated with impending failure. By identifying precursors to failure and by monitoring them, system failures can be predicted and actions can be taken to mitigate their effects. In this study, three potential failure precursor candidates, threshold voltage, transconductance, and collector-emitter ON voltage, are evaluated for insulated gate bipolar transistors (IGBTs). Based on the failure causes determined by the failure modes, mechanisms and effects analysis (FMMEA), IGBTs are aged using electrical-thermal stresses. The three failure precursor candidates of aged IGBTs are compared with new IGBTs under a temperature range of 25-200oC. The trends in the three electrical parameters with changes in temperature are correlated to device degradation. A methodology is presented for validating these precursors for IGBT prognostics using a hybrid approach. Keywords: Failure precursors, IGBTs, prognostics Failure precursors indicate changes in a measured variable structure of an IGBT is similar to that of a vertical that can be associated with impending failure [1]. A diffusion power MOSFET (VDMOS) [3] except for an systematic method for failure precursor selection is additional p+ layer above the collector as seen in Figure 1. through the use of the failure modes, mechanisms, and The main characteristic of the vertical configuration is that effects analysis (FMMEA) [2].
    [Show full text]
  • MOSFET - Wikipedia, the Free Encyclopedia
    MOSFET - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/MOSFET MOSFET From Wikipedia, the free encyclopedia The metal-oxide-semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), is by far the most common field-effect transistor in both digital and analog circuits. The MOSFET is composed of a channel of n-type or p-type semiconductor material (see article on semiconductor devices), and is accordingly called an NMOSFET or a PMOSFET (also commonly nMOSFET, pMOSFET, NMOS FET, PMOS FET, nMOS FET, pMOS FET). The 'metal' in the name (for transistors upto the 65 nanometer technology node) is an anachronism from early chips in which the gates were metal; They use polysilicon gates. IGFET is a related, more general term meaning insulated-gate field-effect transistor, and is almost synonymous with "MOSFET", though it can refer to FETs with a gate insulator that is not oxide. Some prefer to use "IGFET" when referring to devices with polysilicon gates, but most still call them MOSFETs. With the new generation of high-k technology that Intel and IBM have announced [1] (http://www.intel.com/technology/silicon/45nm_technology.htm) , metal gates in conjunction with the a high-k dielectric material replacing the silicon dioxide are making a comeback replacing the polysilicon. Usually the semiconductor of choice is silicon, but some chip manufacturers, most notably IBM, have begun to use a mixture of silicon and germanium (SiGe) in MOSFET channels. Unfortunately, many semiconductors with better electrical properties than silicon, such as gallium arsenide, do not form good gate oxides and thus are not suitable for MOSFETs.
    [Show full text]
  • AN5252 Low-Voltage Power MOSFET Switching Behavior And
    AN5252 Application note Low-voltage Power MOSFET switching behavior and performance evaluation in motor control application topologies Introduction During the last years, some applications based on electrical power conversion are gaining more and more space in the civil and industrial fields. The constant development of microprocessors and the improvement of modulation techniques, which are useful for the control of power devices, have led to a more accurate control of the converted power as well as of the power dissipation, thus increasing the efficiency of the motor control applications. Nowdays, frequency modulation techniques are used to control the torque and the speed of brushless motors in several high- and low-voltage applications and in different circuit topologies using power switches in different technologies such as MOSFETs and IGBTs. Therefore, the devices have to guarantee the best electrical efficiency and the least possible impact in terms of emissions. The aim of this application note is to provide a description of the most important parameters which are useful for choosing a low- voltage Power MOSFET device for a motor control application. Three different motor control applications and topology cases are deeply analyzed to offer to motor drive designers the guidelines required for an efficient and reliable design when using the MOSFET technology in hard-switch applications: • BLDC motor in a 3-phase inverter topology • DC motor in H-bridge configuration • DC motor in single-switch configuration AN5252 - Rev 1 - November 2018 - By C. Mistretta and F. Scrimizzi www.st.com For further information contact your local STMicroelectronics sales office. AN5252 Control techniques and brushless DC (BLDC) motors 1 Control techniques and brushless DC (BLDC) motors During the last years, servomotors have evolved from mostly brush to brushless type.
    [Show full text]
  • Fundamentals of MOSFET and IGBT Gate Driver Circuits
    Application Report SLUA618A–March 2017–Revised October 2018 Fundamentals of MOSFET and IGBT Gate Driver Circuits Laszlo Balogh ABSTRACT The main purpose of this application report is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Therefore, it should be of interest to power electronics engineers at all levels of experience. The most popular circuit solutions and their performance are analyzed, including the effect of parasitic components, transient and extreme operating conditions. The discussion builds from simple to more complex problems starting with an overview of MOSFET technology and switching operation. Design procedure for ground referenced and high side gate drive circuits, AC coupled and transformer isolated solutions are described in great details. A special section deals with the gate drive requirements of the MOSFETs in synchronous rectifier applications. For more information, see the Overview for MOSFET and IGBT Gate Drivers product page. Several, step-by-step numerical design examples complement the application report. This document is also available in Chinese: MOSFET 和 IGBT 栅极驱动器电路的基本原理 Contents 1 Introduction ................................................................................................................... 2 2 MOSFET Technology ......................................................................................................
    [Show full text]
  • Insulated Gate Bipolar Transistors (Igbts)
    ECE442 Power Semiconductor Devices and Integrated Circuits Insulated Gate Bipolar Transistors (IGBTs) Zheng Yang (ERF 3017, email: [email protected]) Silicon Power Device Status Overview Silicon Power Rectifiers In the case of low voltage (<100V), the silicon P-i-N rectifier has been replaced by the silicon Schottky rectifier. In the case of high voltage (>100V), the silicon P-i-N rectifier continues to dominate but significant improvements are expected. Silicon Power Switches In the case of low voltage (<100V) systems, the silicon bipolar power transistor has been replaced by the silicon power MOSFET. In the case of high voltage (>100V) systems, the silicon bipolar power transistor has been replaced by the silicon IGBT. Power devices from wide-bandgap materials [cited from “H Amano et al, “The 2018 GaN power electronics roadmap”, Journal of Physics D: Applied Physics 51, 163001 (2018)] Background Pros of power MOSFET: (1) It has an excellent low on-state voltage drop due to the low resistance of the drift region (at low and modest voltages). (2) It is a voltage-controlled device and has a very high input impedance in steady-state due to its MOS gate structure. (3) It has a very fast inherent switching speed in comparison to power BJTs, due to the absence of minority carrier injection. (4) It has superior ruggedness and forward biased safe operating area (SOA) when compared to power BJTs. Cons of power MOSFET: Due to its excellent electrical characteristics, it would be desirable to utilize power MOSFET’s for high voltage power electronics applications. Unfortunately, the specific on-resistance of the drift region increases very rapidly with increasing breakdown voltage because of the need to reduce its doping concentration and increase its thickness.
    [Show full text]
  • Power MOSFET Basics by Vrej Barkhordarian, International Rectifier, El Segundo, Ca
    Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca. Breakdown Voltage......................................... 5 On-resistance.................................................. 6 Transconductance............................................ 6 Threshold Voltage........................................... 7 Diode Forward Voltage.................................. 7 Power Dissipation........................................... 7 Dynamic Characteristics................................ 8 Gate Charge.................................................... 10 dV/dt Capability............................................... 11 www.irf.com Power MOSFET Basics Vrej Barkhordarian, International Rectifier, El Segundo, Ca. Discrete power MOSFETs Source Field Gate Gate Drain employ semiconductor Contact Oxide Oxide Metallization Contact processing techniques that are similar to those of today's VLSI circuits, although the device geometry, voltage and current n* Drain levels are significantly different n* Source t from the design used in VLSI ox devices. The metal oxide semiconductor field effect p-Substrate transistor (MOSFET) is based on the original field-effect Channel l transistor introduced in the 70s. Figure 1 shows the device schematic, transfer (a) characteristics and device symbol for a MOSFET. The ID invention of the power MOSFET was partly driven by the limitations of bipolar power junction transistors (BJTs) which, until recently, was the device of choice in power electronics applications. 0 0 V V Although it is not possible to T GS define absolutely the operating (b) boundaries of a power device, we will loosely refer to the I power device as any device D that can switch at least 1A. D The bipolar power transistor is a current controlled device. A SB (Channel or Substrate) large base drive current as G high as one-fifth of the collector current is required to S keep the device in the ON (c) state. Figure 1. Power MOSFET (a) Schematic, (b) Transfer Characteristics, (c) Also, higher reverse base drive Device Symbol.
    [Show full text]
  • Driving Egantm Transistors for Maximum Performance
    Driving eGaNTM Transistors for Maximum Performance Johan Strydom: Director of Applications, Efficient Power Conversion Corporation Alex Lidow: CEO, Efficient Power Conversion Corporation The recent introduction of enhancement mode MOSFET development, silicon has approached GaN transistors (eGaN™) as power MOSFET/ its theoretical limits. In contrast, GaN is young in IGBT replacements in power management its life cycle, and will see significant improvement applications enables many new products that in the years to come. promise to add great system value. In general, an eGaN transistor behaves much like a power MOSFET with a quantum leap in performance, but to extract all of the newly-available eGaN transistor performance requires designers to understand the differences in drive requirements. eGaN Power Transistor Characteristics As with silicon power MOSFETs, applying a positive bias to the gate relative to the source of an eGaN power transistor causes a field effect, which attracts electrons that complete a Figure 1. Theoretical resistance times die area limits of GaN, silicon, and silicon carbide versus voltage. bidirectional channel between the drain and the source. When the bias is removed from the gate, the electrons under it are dispersed into the GaN, Figure of Merit (FOM) recreating the depletion region and, once again, giving it the capability to block voltage. The FOM is a useful method for comparing power devices and has been used by MOSFET To obtain a higher-voltage device, the distance manufactures to show both generational between the drain and gate is increased. Doing improvements and to compare their parts to so increases the on-resistance of the transistor.
    [Show full text]
  • Work Function and Process Integration Issues of Metal
    WORK FUNCTION AND PROCESS INTEGRATION ISSUES OF METAL GATE MATERIALS IN CMOS TECHNOLOGY REN CHI NATIONAL UNIVERSITY OF SINGAPORE 2006 WORK FUNCTION AND PROCESS INTEGRATION ISSUES OF METAL GATE MATERIALS IN CMOS TECHNOLOGY REN CHI B. Sci. (Peking University, P. R. China) 2002 A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE OCTOBER 2006 _____________________________________________________________________ ACKNOWLEGEMENTS First of all, I would like to express my sincere thanks to my advisors, Prof. Chan Siu Hung and Prof. Kwong Dim-Lee, who provided me with invaluable guidance, encouragement, knowledge, freedom and all kinds of support during my graduate study at NUS. I am extremely grateful to Prof. Chan not only for his patience and painstaking efforts in helping me in my research but also for his kindness and understanding personally, which has accompanied me over the past four years. He is not only an experienced advisor for me but also an elder who makes me feel peaceful and blessed. I also greatly appreciate Prof. Kwong from the bottom of my heart for his knowledge, expertise and foresight in the field of semiconductor technology, which has helped me to avoid many detours in my research work. I do believe that I will be immeasurably benefited from his wisdom and professional advice throughout my career and my life. I would also like to thank Prof. Kwong for all the opportunities provided in developing my potential and personality, especially the opportunity to join the Institute of Microelectronics, Singapore to work with and learn from so many experts in a much wider stage.
    [Show full text]
  • 1Q 2013Issue Analog Applications Journal
    Texas Instruments Incorporated High-Performance Analog Products Analog Applications Journal First Quarter, 2013 © Copyright 2013 Texas Instruments Texas Instruments Incorporated IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof.
    [Show full text]
  • Analytical Modeling of Device-Circuit Interactions for the Power Insulated Gate Bipolar Transistor (Igbt)*
    ANALYTICAL MODELING OF DEVICE-CIRCUIT INTERACTIONS FOR THE POWER INSULATED GATE BIPOLAR TRANSISTOR (IGBT)* ALLEN R. HEFNER, JR. MEMBER, IEEE Semiconductor Electronics Division National Bureau of Standards Gaithersburg, MD 20899 ABSTRACT-The device-circuit interactions of the power Polyslllcon Metal IGBT MOSFET MOSFET cathode source drain Insulated Gate Bipolar Transistor (IGBT) for a series resistor- IGBT yate inductor load, both with and without a snubber, are simulated. An analytical model for the transient operation of the IGBT, Oxide previously developed, is used in conjunction with the load cir- cuit state equations for the simulations. The simulated results are compared with experimental results for all conditions. De- - 10um - 20pm -; "Bipolar base vices with a variety of base lifetimes are studied. For the fastest I 93pm , \ Epitaxial layer devices studied (base lifetime = 0.3 pa), the voltage overshoot i I of the series resistor-inductor load circuit approaches the device i I voltage rating (500 for load inductances greater than 1 pH. 1 V) t For slower devices, though, the voltage overshoot is much less PA Bipolar' emitter j and a larger inductance can therefore be switched without a Subs t r ale i I snubber circuit (e.g., 80 pH for a 7.1-ps device). In this study, IGBT anode the simulations are used to determine the conditions for which the different devices can be switched safely without a snubber Fig.1. A diagram of two of the many thousand diffused cells protection circuit. Simulations are also used to determine the of an n-channel IGBT. required values and ratings for protection circuit components when protection circuits are necessary.
    [Show full text]