Work Function and Process Integration Issues of Metal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UCC27531 35-V Gate Driver for Sic MOSFET Applications (Rev. A)
(1) Application Report SLUA770A–March 2016–Revised May 2018 UCC27531 35-V Gate Driver for SiC MOSFET Applications Richard Herring........................................................................................... High Power Driver Solutions ABSTRACT SiC MOSFETs are gaining popularity in many high-power applications due to their significant switching performance advantages. SiC MOSFETs are also available with attractive voltage ratings and current capabilities. However, the characteristics of SiC MOSFETs require consideration of the gate-driver circuit to optimize the switching performance of the SiC device. Although SiC MOSFETs are not difficult to drive properly, many typical MOSFET drivers may result in compromised switching speed performance. The UCC27531 gate driver includes features and has operating parameters that allow for driving SiC power MOSFETs within the recommended optimum drive configuration. This application note reviews the characteristics of SiC MOSFETs and how to drive them to achieve the performance improvement that SiC can bring at the system level. The features of UCC27531 to achieve optimal performance of SiC are explained and results from a demonstration circuit are provided. 1 Introduction In the past, the majority of applications such as uninterruptible power supplies (UPS), photovoltaic (PV) inverters, and motor drive have utilized IGBTs for the power devices due to the combination of high- voltage ratings exceeding 1 kV and high current capability. Usable switching frequency of IGBTs has typically been limited to 20–30 kHz, due to the high turnoff losses caused by the long turnoff current tail. Design comparisons have shown that SiC MOSFET designs can operate at considerably higher switching frequency and achieve the same or better efficiency. Although the device cost of the SiC MOSFETs are higher than the equivalent IGBTs, the significant savings in transformer, capacitor, and enclosure size results in a lower system cost. -
Design and Process Developments Towards an Optimal 6.5 Kv Sic Power MOSFET
Design and process developments towards an optimal 6.5 kV SiC power MOSFET Victor Soler ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX ( h t t p : / / w w w . t d x . c a t / ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons (http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una ventana o marco ajeno a UPCommons (framing). -
Study of Velocity Distribution of Thermionic Electrons with Reference to Triode Valve
Bulletin of Physics Projects, 1, 2016, 33-36 Study of Velocity Distribution of Thermionic electrons with reference to Triode Valve Anupam Bharadwaj, Arunabh Bhattacharyya and Akhil Ch. Das # Department of Physics, B. Borooah College, Ulubari, Guwahati-7, Assam, India # E-mail address: [email protected] Abstract Velocity distribution of the elements of a thermodynamic system at a given temperature is an important phenomenon. This phenomenon is studied critically by several physicists with reference to different physical systems. Most of these studies are carried on with reference to gaseous thermodynamic systems. Basically velocity distribution of gas molecules follows either Maxwell-Boltzmann or Fermi-Dirac or Bose-Einstein Statistics. At the same time thermionic emission is an important phenomenon especially in electronics. Vacuum devices in electronics are based on this phenomenon. Different devices with different techniques use this phenomenon for their working. Keeping all these in mind we decided to study the velocity distribution of the thermionic electrons emitted by the cathode of a triode valve. From our work we have found the velocity distribution of the thermionic electrons to be Maxwellian. 1. Introduction process of electron emission by the process of increase of Metals especially conductors have large number of temperature of a metal is called thermionic emission. The free electrons which are basically valence electrons. amount of thermal energy given to the free electrons is Though they are called free electrons, at room temperature used up in two ways- (i) to overcome the surface barrier (around 300K) they are free only to move inside the metal and (ii) to give a velocity (kinetic energy) to the emitted with random velocities. -
Alkamax Application Note.Pdf
OLEDs are an attractive and promising candidate for the next generation of displays and light sources (Tang, 2002). OLEDs have the potential to achieve high performance, as well as being ecologically clean. However, there are still some development issues, and the following targets need to be achieved (Bardsley, 2001). Z Lower the operating voltage—to reduce power consumption, allowing cheaper driving circuitry Z Increase luminosity—especially important for light source applications Z Facilitate a top-emission structure—a solution to small aperture of back-emission AMOLEDs Z Improve production yield These targets can be achieved (Scott, 2003) through improvements in the metal-organic interface and charge injection. SAES Getters’ Alkali Metal Dispensers (AMDs) are widely used to dope photonic surfaces and are applicable for use in OLED applications. This application note discusses use of AMDs in fabrication of alkali metal cathode layers and doped organic electron transport layers. OLEDs OLEDs are a type of LED with organic layers sandwiched between the anode and cathode (Figure 1). Holes are injected from the anode and electrons are injected from the cathode. They are then recombined in an organic layer where light emission takes place. Cathode Unfortunately, fabrication processes Electron transport layer are far from ideal. Defects at the Emission layer cathode-emission interface and at the Hole transport layer anode-emission interface inhibit Anode charge transfer. Researchers have added semiconducting organic transport layers to improve electron Figure 1 transfer and mobility from the cathode to the emission layer. However, device current levels are still too high for large-size OLED applications. SAES Getters S.p.A. -
Graphene Field-Effect Transistor Array with Integrated Electrolytic Gates Scaled to 200 Mm
Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm N C S Vieira1,3, J Borme1, G Machado Jr.1, F Cerqueira2, P P Freitas1, V Zucolotto3, N M R Peres2 and P Alpuim1,2 1INL - International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal. 2CFUM - Center of Physics of the University of Minho, 4710-057, Braga, Portugal. 3IFSC - São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos-SP, Brazil E-mail: [email protected] Abstract Ten years have passed since the beginning of graphene research. In this period we have witnessed breakthroughs both in fundamental and applied research. However, the development of graphene devices for mass production has not yet reached the same level of progress. The architecture of graphene field-effect transistors (FET) has not significantly changed, and the integration of devices at the wafer scale has generally not been sought. Currently, whenever an electrolyte-gated FET (EGFET) is used, an external, cumbersome, out-of-plane gate electrode is required. Here, an alternative architecture for graphene EGFET is presented. In this architecture, source, drain, and gate are in the same plane, eliminating the need for an external gate electrode and the use of an additional reservoir to confine the electrolyte inside the transistor active zone. This planar structure with an integrated gate allows for wafer-scale fabrication of high-performance graphene EGFETs, with carrier mobility up to 1800 cm2 V-1 s-1. As a proof-of principle, a chemical sensor was achieved. It is shown that the sensor can discriminate between saline solutions of different concentrations. -
11.5 FD Richardson Emission
Thermoionic Emission of Electrons: Richardson effect Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 05, 2016) 1. Introduction After the discovery of electron in 1897, the British physicist Owen Willans Richardson began work on the topic that he later called "thermionic emission". He received a Nobel Prize in Physics in 1928 "for his work on the thermionic phenomenon and especially for the discovery of the law named after him". The minimum amount of energy needed for an electron to leave a surface is called the work function. The work function is characteristic of the material and for most metals is on the order of several eV. Thermionic currents can be increased by decreasing the work function. This often- desired goal can be achieved by applying various oxide coatings to the wire. In 1901 Richardson published the results of his experiments: the current from a heated wire seemed to depend exponentially on the temperature of the wire with a mathematical form similar to the Arrhenius equation. J AT 2 exp( ) kBT where J is the emission current density, T is the temperature of the metal, W is the work function of the metal, kB is the Boltzmann constant, and AG is constant. 2. Richardson’s law We consider free electrons inside a metal. The kinetic energy of electron is given by 1 ( p 2 p 2 p 2 ) p 2m x y z Fig. The work function of a metal represents the height of the surface barrier over and above the Fermi level. Suppose that these electrons escape from the metal along the positive x direction. -
Determination of Filament Work Function in Vacuum by Paul Lulai
Determination of Filament Work Function in Vacuum by Paul Lulai John L Vossen Memorial Award Recipient October 2001 Objective: The objective of this experiment is to experimentally determine the work function (f) of a filament. This experiment will also demonstrate that work function is a property of the surface of the sample and has very little to do with the bulk of the sample. In this process, students will use data to determine an equation that models the relationship between temperature and resistance of a filament. Students will also construct a system for conducting research in vacuum. A Review of Work Function and Thermionic Emission: The energy required to remove an electron from the Fermi-level of a metal and free it from the influence of that metal is a property of the metal itself. This property is known as the metal’s work function (f) (Oxford Paperback Reference, 1990). Before the advent of transistors, vacuum tubes were used to amplify signals. It requires less energy to remove an electron from a vacuum tube’s filament if the work function of the filament is low. As current flows through a circuit of two dissimilar metals heat is absorbed at one junction and given up at the other. It has recently been discovered that if the metals used have low work functions this process (known as the Peltier Effect) can occur at an efficiency of 70-80%. This process shows promise for uses ranging from cooling electronics to more industrial cooling processes. How well electrons can be removed from a heated filament depends on that filaments work function. -
Advanced MOSFET Structures and Processes for Sub-7 Nm CMOS Technologies
Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies By Peng Zheng A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Tsu-Jae King Liu, Chair Professor Laura Waller Professor Costas J. Spanos Professor Junqiao Wu Spring 2016 © Copyright 2016 Peng Zheng All rights reserved Abstract Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies by Peng Zheng Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Tsu-Jae King Liu, Chair The remarkable proliferation of information and communication technology (ICT) – which has had dramatic economic and social impact in our society – has been enabled by the steady advancement of integrated circuit (IC) technology following Moore’s Law, which states that the number of components (transistors) on an IC “chip” doubles every two years. Increasing the number of transistors on a chip provides for lower manufacturing cost per component and improved system performance. The virtuous cycle of IC technology advancement (higher transistor density lower cost / better performance semiconductor market growth technology advancement higher transistor density etc.) has been sustained for 50 years. Semiconductor industry experts predict that the pace of increasing transistor density will slow down dramatically in the sub-20 nm (minimum half-pitch) regime. Innovations in transistor design and fabrication processes are needed to address this issue. The FinFET structure has been widely adopted at the 14/16 nm generation of CMOS technology. -
Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power Mosfets
Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power MOSFETs by Abraham Yoo A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Materials Science and Engineering University of Toronto © Copyright by Abraham Yoo 2010 Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power MOSFETs Abraham Yoo Doctor of Philosophy Department of Materials Science and Engineering University of Toronto 2010 Abstract In this thesis, next generation low-voltage integrated power semiconductor devices are proposed and analyzed in terms of device structure and layout optimization techniques. Both approaches strive to minimize the power consumption of the output stage in DC-DC converters. In the first part of this thesis, we present a low-voltage CMOS power transistor layout technique, implemented in a 0.25µm, 5 metal layer standard CMOS process. The hybrid waffle (HW) layout was designed to provide an effective trade-off between the width of diagonal source/drain metal and the active device area, allowing more effective optimization between switching and conduction losses. In comparison with conventional layout schemes, the HW layout exhibited a 30% reduction in overall on-resistance with 3.6 times smaller total gate charge for CMOS devices with a current rating of 1A. Integrated DC-DC buck converters using HW output stages were found to have higher efficiencies at switching frequencies beyond multi-MHz. ii In the second part of the thesis, we present a CMOS-compatible lateral superjunction FINFET (SJ-FINFET) on a SOI platform. One drawback associated with low-voltage SJ devices is that the on-resistance is not only strongly dependent on the drift doping concentration but also on the channel resistance as well. -
Core-Level Photoemission and Work-Function Investigation of Na on Cu(110) C
University of Rhode Island DigitalCommons@URI Physics Faculty Publications Physics 1993 Core-Level Photoemission and Work-Function Investigation of Na on Cu(110) C. Su X. Shi See next page for additional authors Follow this and additional works at: https://digitalcommons.uri.edu/phys_facpubs Terms of Use All rights reserved under copyright. Citation/Publisher Attribution Su, C., Shi, X., Tang, D., Heskett, D., & Tsuei, K.-D. (1993). Core-level photoemission and work-function investigation of Na on Cu(110). Physical Review B, 48(16), 12146-12150. doi: 10.1103/PhysRevB.48.12146 Available at: http://dx.doi.org/10.1103/PhysRevB.48.12146 This Article is brought to you for free and open access by the Physics at DigitalCommons@URI. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors C. Su, X. Shi, D. Tang, David R. Heskett, and K. -D. Tsuei This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/phys_facpubs/229 PHYSICAL REVIEW B VOLUME 48, NUMBER 16 15 OCTOBER 1993-II Core-level photoemission and work-function investigation of Na on Cu(110) C. Su, X. Shi, D. Tang, and D. Heskett Department ofPhysics, University ofRhode Island, Kingston, Rhode Island 02881 K.-D. Tsuei Department ofPhysics, Brookhaven National Laboratory, Upton, New York 11973 (Received 19 November 1992; revised manuscript received 12 April 1993) Core-level photoemission, low-energy electron diffraction (LEED), and work-function change mea- surements have been carried out to study the coverage dependence of Na/Cu(110) at room temperature. -
Fundamentals of MOSFET and IGBT Gate Driver Circuits
Application Report SLUA618A–March 2017–Revised October 2018 Fundamentals of MOSFET and IGBT Gate Driver Circuits Laszlo Balogh ABSTRACT The main purpose of this application report is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Therefore, it should be of interest to power electronics engineers at all levels of experience. The most popular circuit solutions and their performance are analyzed, including the effect of parasitic components, transient and extreme operating conditions. The discussion builds from simple to more complex problems starting with an overview of MOSFET technology and switching operation. Design procedure for ground referenced and high side gate drive circuits, AC coupled and transformer isolated solutions are described in great details. A special section deals with the gate drive requirements of the MOSFETs in synchronous rectifier applications. For more information, see the Overview for MOSFET and IGBT Gate Drivers product page. Several, step-by-step numerical design examples complement the application report. This document is also available in Chinese: MOSFET 和 IGBT 栅极驱动器电路的基本原理 Contents 1 Introduction ................................................................................................................... 2 2 MOSFET Technology ...................................................................................................... -
Driving Egantm Transistors for Maximum Performance
Driving eGaNTM Transistors for Maximum Performance Johan Strydom: Director of Applications, Efficient Power Conversion Corporation Alex Lidow: CEO, Efficient Power Conversion Corporation The recent introduction of enhancement mode MOSFET development, silicon has approached GaN transistors (eGaN™) as power MOSFET/ its theoretical limits. In contrast, GaN is young in IGBT replacements in power management its life cycle, and will see significant improvement applications enables many new products that in the years to come. promise to add great system value. In general, an eGaN transistor behaves much like a power MOSFET with a quantum leap in performance, but to extract all of the newly-available eGaN transistor performance requires designers to understand the differences in drive requirements. eGaN Power Transistor Characteristics As with silicon power MOSFETs, applying a positive bias to the gate relative to the source of an eGaN power transistor causes a field effect, which attracts electrons that complete a Figure 1. Theoretical resistance times die area limits of GaN, silicon, and silicon carbide versus voltage. bidirectional channel between the drain and the source. When the bias is removed from the gate, the electrons under it are dispersed into the GaN, Figure of Merit (FOM) recreating the depletion region and, once again, giving it the capability to block voltage. The FOM is a useful method for comparing power devices and has been used by MOSFET To obtain a higher-voltage device, the distance manufactures to show both generational between the drain and gate is increased. Doing improvements and to compare their parts to so increases the on-resistance of the transistor.